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Abstract. To facilitate the realization of this groundbreaking concept, this paper presents an original approach to

represent intuitionistic fuzzy sets and operators through quadratic optimization problems. This approach aims to

enable the deployment of fuzzy inference mechnism on a specific category of quantum computers referred to as

quantum annealers.

1. Introduction

Quantum computing is an intriguing field of study where computer science, physics, and

engineering intersect. It has garnered significant interest from both academia and the corporate

sector due to its potential to revolutionize computing performance [1]. The introduction of fuzzy

sets theory defined by Zadeh in [8] has demonstrated meaningful applications across various

fields of study. Fuzzy sets are appreciated for their ability to effectively manage uncertainty and

vagueness, a challenge that Cantorian set theory couldn’t tackle. In fuzzy set theory, an element’s

membership in a fuzzy set is represented by a singular value ranging from zero to one. A more

extensive form of fuzzy sets, known as intuitionistic fuzzy sets (IFS), was proposed by Atanassov

in [4,5]. IFS includes a measure of hesitation referred to as the hesitation margin, which is defined

as the complement of the combined membership and non-membership degrees, equal to 1 minus

their sum. Intuitionistic fuzzy logic and quantum computing are pertinent research domains that

bring together analysis and the quest for novel solutions to complex problems at a pace surpassing

traditional logical approaches or conventional computing [3].

The qubit stands as the fundamental unit of information in the quantum realm, epitomized

by a unitary and two-dimensional state vector, which is the simplest form of a quantum system.

Typically represented in Dirac notation as |ϕ〉 = α|0〉+ β|1〉, where α and β are complex numbers
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denoting the amplitudes of their respective states within the computational basis (or state space),

it’s essential that the condition |α|2 + |β|2 = 1 is met to ensure the unitary nature of the state vectors

in the quantum system, depicted as (α, β)t.

When delving into quantum systems comprising multiple qubits, the state space is derived

from the tensor product of the state spaces of its component subsystems. For a two-qubit quantum

system with |ϕ1〉 = α1|0〉 + β1|1〉 and |ϕ2〉 = α2|0〉 + β2|1〉, the state space embodies the tensor

product outlined by

|φ〉 = |ϕ1〉 ⊗ |ϕ2〉

= (α1|0〉+ β1|1〉) ⊗ (α2|0〉+ β2|1〉)

= α1 · α2|00〉+ α1 · β2|01〉+ β1 · α2|10〉+ β1 · β2|11〉

These problems are characterized as optimization challenges involving functions expressed

within the binary quadratic model. Suppose an upper-diagonal matrix, specifically an N × N
upper-triangular matrix containing real weights, and X denotes a vector of binary variables. A

quadratic unconstrained binary optimization problems involves the minimization of the following

function:

f (X) =
n∑

i=1

(qixi) +
n−1∑
i=1

n∑
j=i+1

(qi jxix j)

where qi and qi j are configurable both linear and quadratic coefficients.

This type of problem can be efficiently tackled using quantum annealers. In this computing

model, the fundamental components are known as quantum bits or qubits. While classical bits can

hold binary values, qubits in their superpositioned state can concurrently hold both 0 and 1 with

varying probabilities. Furthermore, these qubits can become entangled, meaning the state of one

qubit is dependent on another. In the quantum annealers model, a specific configuration of qubits

is specialized to discover the optimal solution for minimizing a binary objective function [2]. The

quantum computer determines the best solution by minimizing the overall energy of the quantum

system through an annealing process, which is why this model is also referred to as quantum

annealing. In essence, formulating a problem within the adiabatic model involves finding qi

and qi j, which are associated with the biases for superposition and entanglement, respectively.

These biases are chosen so that the assignments of binary values x1, . . . , xn minimize the objective

function, thereby representing solutions to the problem. During the annealing phase, the qubits

transition to collapsed states of 0 or 1, allowing the system to naturally converge toward its lowest

possible energy state. This means that the binary states of the collapsed qubits collectively yield

a solution for minimizing f (X). As with any quantum system, the solution is probabilistic, so

the results obtained from multiple runs are averaged to obtain the solutions. To set the stage for

this ground breaking context, this piece presents a new portrayal of fuzzy sets and their functions

using quadratic binary optimization without constraints. This allows for the establishment of
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fuzzy logic processors on quantum computers, specifically quantum annealers in [7], Moreover,

some intuitionistic fuzzy operations were considered in [6, 9].

In the realm of quantum computing and fuzzy logic, the fusion of these two domains has given

rise to a fascinating and promising field known as intuitionistic quantum fuzzy operation (IQFO).

This innovative concept merges the principles of quantum mechanics with the flexibility of fuzzy

logic, offering a novel approach to solving complex problems and decision-making processes.

IQFO represents a significant advancement in our understanding of computation, information

processing, and decision support systems. In this article, we will delve into the fundamental

concepts, theoretical foundations, and potential applications of intuitionistic quantum fuzzy op-

eration, exploring the intriguing intersection of quantum theory and fuzzy logic in the pursuit of

more efficient and adaptable computational systems.

2. Quantum Representation of Intuitionistic Fuzzy Sets

For a non-empty finite universe X, a membership function of a fuzzy set A in X defined by µA

where µA : X → [0, 1] and µA(x) determines the membership degree of the element x ∈ X to the

fuzzy set A, such that 0 ≤ µA(x) ≤ 1. Therefore, a fuzzy set A according to a nonempty set X is

given by

A = {(x,µA(x)) | x ∈ X}.

An intuitionistic fuzzy set I in a non-empty finite universe X, expressed as

I = {(x, (µI(x), νI(x))) | x ∈ X where µI(x) + νI(x) ≤ 1},

where µI(x) and νI(x) stand for the degree of membership and non-membership of x ∈ X respec-

tively.

We can extend a fuzzy set A to an intuitionistic fuzzy set by I = {(x,µA(x), 1 − µA(x)) | x ∈ X}.
Observing that, the nonmembership degree νI(x) of an element x ∈ X is less, at most equal to its

complement, the membership degree µI(x), it does not inevitably equal to one.

At first glance, using qubits to represent an intuitionistic fuzzy set might not appear related

to an optimization problem. However, as we will demonstrate in this section, they can be ex-

pressed as quadratic binary optimization problems, allowing quantum computers to handle them

as optimization challenges. In the following, we will delve into the process of representing an

intuitionistic fuzzy set using qubit states.

Let I be an intuitionistic fuzzy set with finite n members, {x1, . . . , xn} having membership grades

µI(x) and non-membership grades νI(x). I can be represented by n qubits, {q1, . . . , qn} in superpo-

sition state with pi(1) = µI(xi), p′i (1) = νI(xi); where pi(1) is the probability of qi being collapsed

to the state 1 and p′i (1) is the probability of qi not being collapsed to the state 1.

The definition provided above applies to both circuitry and adiabatic models. In the adiabatic

model, establishing a qubit system to represent an intuitionistic fuzzy set is tantamount to assigning

linear biases to the n qubits based on the membership function and nonmembership function.
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This essentially implies that an intuitionistic fuzzy set is effectively depicted as a collection of

stimulated qubits within a system known as the int-qfuzzy system:

u(X) =
n∑

i=1

(µI(xi) · xi) | X = {x1, . . . , xn}

v(X) =
n∑

i=1

(νI(xi) · xi) | X = {x1, . . . , xn}

Clearly, the proposed int-qfuzzy system does not serve as an optimization problem; therefore,

it is not the focus of annealing. Its significance lies in its stimulated state rather than its collapsed

state.

The subsequent phase in constructing a quantum-fuzzy inference engine involves incorporating

fundamental fuzzy set operations into quantum algorithms.

2.1. Quantum Implementation of Basic Intuitionistic Fuzzy Set Operations.

2.1.1. Intersection Operation. Let I and J be intuitionistic fuzzy sets with membership functions

µI(xi),µJ(xi) and nonmembership functions νI(xi), νJ(xi) respectively. Over the same universe of

discourse X = {x1, . . . , xn} are represented as two int-qfuzzy systems as follows:

I : u(X) =
n∑

i=1

(µI(xi) · xi), v(X) =
n∑

i=1

(νI(xi) · xi)

J : u(X) =
n∑

i=1

(µJ(xi) · xi), v(X) =
n∑

i=1

(νJ(xi) · xi)

We would like to find a new set I ∩ J represented by a new int-qfuzzy system represented as

follows:

I ∩ J : u(X) =
n∑

i=1

(µI∩J(xi) · xi), v(X) =
n∑

i=1

(νI∩J(xi) · xi)

where

µI∩J(xi) = min(µI(xi),µJ(xi))

νI∩J(xi) = max(νI(xi), νJ(xi))

2.1.2. Union Operation. Let intuitionistic fuzzy sets I and J, with membership functions

µI(xi),µJ(xi) and nonmembership functions νI(xi), νJ(xi) respectively. Over the same universe

of discourse X = {x1, . . . , xn} are represented as two int-qfuzzy systems as follows:

I : u(X) =
n∑

i=1

(µI(xi) · xi), v(X) =
n∑

i=1

(νI(xi) · xi)

J : u(X) =
n∑

i=1

(µJ(xi) · xi), v(X) =
n∑

i=1

(νJ(xi) · xi)
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Similarily, we could find a new set I ∪ J represented by a new int-qfuzzy system represented as

follows:

I ∪ J : u(X) =
n∑

i=1

(µI∪J(xi) · xi), v(X) =
n∑

i=1

(νI∪J(xi) · xi)

where

µI∪J(xi) = max(µI(xi),µJ(xi))

νI∪J(xi) = min(νI(xi), νJ(xi)).

2.1.3. α-Cut Operation. The α-cut operation processes an intuitionistic fuzzy set and generates a

set of distinct values along with the x-axis where either the membership grade is greater than or

equal to a specified α value or the nonmembership grade is less than or equal to a specified 1− α

value.

We would like to extract a crisp set C, as follows

C = {x ∈ I | µI(x) ≤ α or νI(x) ≥ 1− α}

2.1.4. Examples. Let us construct an additional quantum system Y comprising n qubits. The

concept underlying this system is that, after its annealing process, the qubits in their collapsed

states function as a binary switch (0/1) between sets A and B. Consequently, when qubit yi = 0 , it

selects the ith element from set A, and when qubit yi = 1, it picks the corresponding element from

set B.

Let I and J be any intuitionistic fuzzy set which corresponding to set A and B respectively.

Define an objective function of binary quadratic model as

u(Y) =
n∑

i=1

((µI(xi) − µJ(xi)) · yi)

v(Y) =
n∑

i=1

((νI(xi) − νJ(xi)) · yi)

Obviously, if µI(xi) < µJ(xi) or νI(xi) > νJ(xi), the ith term, this takes its minimum when yi = 1.

Similarly if µJ(xi) < µI(xi) or νJ(xi) > νI(xi) , this term takes its minimum when yi = 0.

Once the values yi are resulted from the annealing of system Y, the int-qfuzzy system I ∩ J can

be made and represented as

I ∩ J :
n∑

i=1

(µI∩J(xi) · xi),
n∑

i=1

(νI∩J(xi) · xi)

where

µI∩J(xi) = (1− yi) · µI(xi) + yiµJ(xi)

νI∩J(xi) = yi · νI(xi) + (1− yi)νJ(xi)
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Likewise, the union operation (which relies on the maximum values) between qfuzzy systems I
and J is established by introducing an intermediate quantum system Y, composed of n qubits, and

defining a binary quadratic model objective function as follows

u(Y) =
n∑

i=1

((µI(xi) − µJ(xi)) · yi)

v(Y) =
n∑

i=1

((νI(xi) − νJ(xi)) · yi)

After the annealing process for Y, we can similarly demonstrate that

I ∪ J :
n∑

i=1

(µI∪J(xi) · xi),
n∑

i=1

(νI∪J(xi) · xi)

where

µI∪J(xi) = (1− yi) · µI(xi) + yiµJ(xi)

νI∪J(xi) = yi · νI(xi) + (1− yi)νJ(xi)

Without the presence of a comparison operator, it becomes necessary to reconfigure the α-cut

operator within the framework of binary quadratic model. Much like the max operator, we would

require an intermediate qubit system, denoted as Y, to distinctly mark the x-values that belong

to the α-cut and differentiate them from those that do not. An initial proposal suggests that the

necessary binary quadratic model objective function should penalized. Thus the initial objective

function can be derived as

u(Y) =
n∑

i=1

(α− µI(xi)) · yi

v(Y) =
n∑

i=1

((1− α) − µI(xi)) · yi

This function reaches its minimum when yi is set to 0 for those xi values with membership grades

greater than α, and when yi is set to 1 otherwise. However, a challenge arises when there exists

an xi point for which µI(xi) = α, as the associated linear bias in the objective function becomes

zero. Consequently, the outcome becomes insensitive to the corresponding yi value. This implies

that the objective function attains its minimum value equally for both yi = 0 and yi = 1, making

it impossible for the algorithm to determine whether xi is inside or outside the α-cut.

2.2. Quantum Implementation of Basic Intuitionistic Fuzzy Set Operations. The objective func-

tion in the binary quadratic model for system Y should be structured such that it experiences a

greater increase when smaller values of µI(xi) are marked compared to larger values of µI(xi). As

marking corresponds to setting yi = 1, this implies that the objective function should be augmented

by the quantity 1− µI(xi) when its corresponding yi is 1.

To maintain generality, let’s assume that µI(xi) exhibits only one peak. In this scenario, we

anticipate having precisely one, 1, in the outcome, meaning that the sum of all yi values should
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equal exactly 1. Consequently, we define the penalty term as (
∑n

i=1 yi − 1)2. The objective function

is thus defined as:

u(Y) =
n∑

i=1

(1− µI(xi))yi + (
n∑

i=1

yi − 1)2

v(Y) =
n∑

i=1

νI(xi)yi + (
n∑

i=1

yi − 1)2

Since y2
i = yi, binary values, and the constant value of 1 does not impact the minimization of the

objective function. Thus the equivalent objective function is derived as

u(Y) = −
n∑

i=1

µI(xi)yi +
n∑

i=1

n∑
j=i+1

2yiy j

v(Y) =
n∑

i=1

νI(xi)yi +
n∑

i=1

n∑
j=i+1

2yiy j −

n∑
i=1

yi

3. Conclusion and Discussion

This article has elucidated a pivotal operation within the realm of fuzzy quantum mechanics.

By ingeniously integrating intuitionistic fuzzy methodologies and quadratic unconstrained binary

optimization, we have not only enhanced the understanding of these complex concepts but also

paved the way for future research in this interdisciplinary domain. The synergistic combination

of these techniques presents promising prospects for advancing both theoretical and practical

applications, potentially leading to groundbreaking discoveries in quantum computation and

beyond. We anticipate that the insights provided herein will serve as a foundational reference for

scholars and practitioners aiming to delve deeper into this intricate field.

Unlike traditional fuzzy logic which deals with the degree of membership (how much an element

belongs to a set) and its complementary non-membership, intuitionistic fuzzy logic introduces a

third dimension called hesitation. This dimension captures the uncertainty or hesitation of an

element belonging to a particular set. The intuitionistic fuzzy operators, hence, processes not just

clear-cut membership values but also the inherent uncertainties. The application of intuitionistic

fuzzy operators has emerged as an advanced approach in various fields, particularly in the domain

of weather forecasting.

The intuitionistic fuzzy operator can model the uncertainty in these parameters, especially when

predictions need to be made well in advance. For instance, while predicting heavy rainfall, the

hesitation part can represent the uncertainty or unpredictability associated with various weather

parameters. This allows for a more nuanced forecast that does not just give a probability of heavy

rain but also an accompanying uncertainty measure. It aids authorities in preparing for worst-case

scenarios while also being aware of the possible variations.

In regions where water level fluctuations in basins are influenced by a myriad of factors, cap-

turing the inherent uncertainty becomes crucial. The intuitionistic fuzzy operator can model these

fluctuations, considering both the historical membership values (how similar current conditions
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are to past conditions that led to certain water levels) and the uncertainty in these conditions. The

result is a forecast that not only predicts potential water levels but also provides a range or un-

certainty level. This is invaluable for flood preparation, water resource management, and related

logistical operations.

The adoption of intuitionistic fuzzy operators in weather forecasting enables a more comprehen-

sive understanding of the dynamic and uncertain nature of atmospheric conditions. By considering

hesitation or uncertainty explicitly, predictions can be more adaptive and resilient. Especially in

critical scenarios like heavy rainfall or potential flooding, having an added dimension of uncer-

tainty aids in better resource allocation, planning, and risk assessment. In essence, the proposed

intuitionistic fuzzy operator stands as a robust tool, ready to enhance the accuracy and reliability

of weather forecasting, ensuring communities are better prepared for various climatic challenges.
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