International Journal of Analysis and Applications

Weakly $p(\Lambda, p)$ -Open Functions and Weakly $p(\Lambda, p)$ -Closed Functions

Chawalit Boonpok, Montri Thongmoon*

Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

*Corresponding author: montri.t@msu.ac.th

Abstract. Our main purpose is to introduce the concepts of weakly $p(\Lambda, p)$ -open functions and weakly $p(\Lambda, p)$ -closed functions. Moreover, several characterizations of weakly $p(\Lambda, p)$ -open functions and weakly $p(\Lambda, p)$ -closed functions are investigated.

1. Introduction

In 1984, Rose [10] introduced and studied the notions of weakly open functions and almost open functions. Rose and Janković [9] investigated some of the fundamental properties of weakly closed functions. In 2004, Caldas and Navalagi [5] introduced two new classes of functions called weakly preopen functions and weakly preclosed functions as generalization of weak openness and weak closedness due to [10] and [9], respectively. Moreover, Caldas and Navalagi [3] introduced and investigated the concepts of weakly semi-open functions and weakly semi-closed functions as a new generalization of weakly open functions and weakly closed functions, respectively. In 2006, Caldas et al. [4] presented the class of weakly semi- θ -openness (resp. weakly semi- θ -closedness) as a new generalization of semi- θ -openness (resp. semi- θ -closedness). In 2009, Noiri et al. [8] introduced and studied two new classes of functions called weakly b- θ -open functions and weakly *b*- θ -closed functions by utilizing the notions of *b*- θ -open sets and the *b*- θ -closure operator. Weak *b*- θ -openness (resp. *b*- θ -closedness) is a generalization of both θ -preopenness and weak semi- θ openness (resp. θ -preclosedness and weak semi- θ -closedness). In [2], the present authors studied some properties of (Λ, sp) -open sets, $p(\Lambda, sp)$ -open sets, $\alpha(\Lambda, sp)$ -open sets, $\beta(\Lambda, sp)$ -open sets and $b(\Lambda, sp)$ -open sets. Srisarakham and Boonpok [11] investigated several properties of $\delta p(\Lambda, s)$ closed sets and the $\delta p(\Lambda, s)$ -closure operator. The concepts of (Λ, p) -closed sets and (Λ, p) -open

Received: Sep. 29, 2023.

²⁰²⁰ Mathematics Subject Classification. 54A05, 54C10.

Key words and phrases. weakly $p(\Lambda, p)$ -open function; weakly $p(\Lambda, p)$ -closed function; topological spaces.

sets were studied by Boonpok and Viriyapong [1]. In this paper, we introduce the concepts of weakly $p(\Lambda, p)$ -open functions and weakly $p(\Lambda, p)$ -closed functions. Furthermore, some properties of weakly $p(\Lambda, p)$ -open functions and weakly $p(\Lambda, p)$ -closed functions are discussed.

2. Preliminaries

Throughout the present paper, spaces (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset A of a topological space (X, τ) , Cl(A) and Int(A), represent the closure and the interior of A, respectively. A subset A of a topological space (X, τ) is said to be preopen [7] if $A \subseteq Int(Cl(A))$. The complement of a preopen set is called *preclosed*. The family of all preopen sets of a topological space (X, τ) is denoted by $PO(X, \tau)$. A subset $\Lambda_p(A)$ [6] is defined as follows: $\Lambda_p(A) = \bigcap \{U \mid A \subseteq V\}$ $U, U \in PO(X, \tau)$. A subset A of a topological space (X, τ) is called a Λ_v -set [1] (pre- Λ -set [6]) if $A = \Lambda_p(A)$. A subset A of a topological space (X, τ) is called (Λ, p) -closed [1] if $A = T \cap C$, where *T* is a Λ_p -set and *C* is a preclosed set. The complement of a (Λ, p) -closed set is called (Λ, p) -open. The family of all (Λ, p) -open (resp. (Λ, p) -closed) sets in a topological space (X, τ) is denoted by $\Lambda_p O(X, \tau)$ (resp. $\Lambda_p C(X, \tau)$). Let *A* be a subset of a topological space (X, τ) . A point $x \in X$ is called a (Λ, p) -cluster point [1] of A if $A \cap U \neq \emptyset$ for every (Λ, p) -open set U of X containing x. The set of all (Λ, p) -cluster points of A is called the (Λ, p) -closure [1] of A and is denoted by $A^{(\Lambda, p)}$. The union of all (Λ, p) -open sets of X contained in A is called the (Λ, p) -interior [1] of A and is denoted by $A_{(\Lambda,p)}$. A subset *A* of a topological space (X, τ) is said to be $p(\Lambda, p)$ -open [1] (resp. $\alpha(\Lambda, p)$ -open [13], $r(\Lambda, p)$ -open [1]) if $A \subseteq [A^{(\Lambda, p)}]_{(\Lambda, p)}$ (resp. $A \subseteq [[A_{(\Lambda, p)}]^{(\Lambda, p)}]_{(\Lambda, p)}$, $A = [A^{(\Lambda, p)}]_{(\Lambda, p)}$). The union of all $p(\Lambda, p)$ -open sets of X contained in A is called the $p(\Lambda, p)$ -interior of A and is denoted by $A_{p(\Lambda, p)}$. The complement of a $p(\Lambda, p)$ -open (resp. $\alpha(\Lambda, p)$ -open, $r(\Lambda, p)$ -open) set is called $p(\Lambda, p)$ -closed (resp. $\alpha(\Lambda, p)$ -closed, $r(\Lambda, p)$ -closed). The intersection of all $p(\Lambda, p)$ -closed sets of X containing A is called the $p(\Lambda, p)$ -closure of A and is denoted by $A^{p(\Lambda, p)}$. Let A be a subset of a topological space (X, τ) . The $\theta(\Lambda, p)$ -closure [1] of $A, A^{\theta(\Lambda, p)}$, is defined as follows:

 $A^{\theta(\Lambda,p)} = \{x \in X \mid A \cap U^{(\Lambda,p)} \neq \emptyset \text{ for each } (\Lambda,p)\text{-open set } U \text{ containing } x\}.$

A subset *A* of a topological space (X, τ) is called $\theta(\Lambda, p)$ -*closed* [1] if $A = A^{\theta(\Lambda, p)}$. The complement of a $\theta(\Lambda, p)$ -closed set is said to be $\theta(\Lambda, p)$ -*open*. A point $x \in X$ is called a $\theta(\Lambda, p)$ -*interior point* [12] of *A* if $x \in U \subseteq U^{(\Lambda, p)} \subseteq A$ for some $U \in \Lambda_p O(X, \tau)$. The set of all $\theta(\Lambda, p)$ -interior points of *A* is called the $\theta(\Lambda, p)$ -*interior* [12] of *A* and is denoted by $A_{\theta(\Lambda, p)}$.

Lemma 2.1. [12] For subsets A and B of a topological space (X, τ) , the following properties hold:

- (1) $X A^{\theta(\Lambda,p)} = [X A]_{\theta(\Lambda,p)}$ and $X A_{\theta(\Lambda,p)} = [X A]^{\theta(\Lambda,p)}$.
- (2) *A* is $\theta(\Lambda, p)$ -open if and only if $A = A_{\theta(\Lambda, p)}$.
- (3) $A \subseteq A^{(\Lambda,p)} \subseteq A^{\theta(\Lambda,p)}$ and $A_{\theta(\Lambda,p)} \subseteq A_{(\Lambda,p)} \subseteq A$.
- (4) If $A \subseteq B$, then $A^{\theta(\Lambda,p)} \subseteq B^{\theta(\Lambda,p)}$ and $A_{\theta(\Lambda,p)} \subseteq B_{\theta(\Lambda,p)}$.
- (5) If A is (Λ, p) -open, then $A^{(\Lambda, p)} = A^{\theta(\Lambda, p)}$.

3. On Weakly $p(\Lambda, p)$ -Open Functions

In this section, we introduce the concept of weakly $p(\Lambda, p)$ -open functions. Moreover, some characterizations of weakly $p(\Lambda, p)$ -open functions are discussed.

Definition 3.1. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be weakly $p(\Lambda, p)$ -open if $f(U) \subseteq [f(U^{(\Lambda,p)})]_{p(\Lambda,p)}$ for each (Λ, p) -open set U of X.

Theorem 3.1. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (1) *f* is weakly $p(\Lambda, p)$ -open;
- (2) $f(A_{\theta(\Lambda,p)}) \subseteq [f(A)]_{p(\Lambda,p)}$ for every subset A of X;
- (3) $[f^{-1}(B)]_{\theta(\Lambda,p)} \subseteq f^{-1}(B_{p(\Lambda,p)})$ for every subset B of Y;
- (4) $f^{-1}(B^{p(\Lambda,p)}) \subseteq [f^{-1}(B)]^{\theta(\Lambda,p)}$ for every subset B of Y;
- (5) for each $x \in X$ and each (Λ, p) -open set U of X containing x, there exists a $p(\Lambda, p)$ -open set V of Y containing f(x) such that $V \subseteq f(U^{(\Lambda, p)})$;
- (6) $f(K_{(\Lambda,p)}) \subseteq [f(K)]_{p(\Lambda,p)}$ for each (Λ, p) -closed set K of X;
- (7) $f([U^{(\Lambda,p)}]_{(\Lambda,p)}) \subseteq [f(U^{(\Lambda,p)})]_{p(\Lambda,p)}$ for each (Λ,p) -open set U of X;
- (8) $f(U) \subseteq [f(U^{(\Lambda,p)})]_{p(\Lambda,p)}$ for each $p(\Lambda,p)$ -open set U of X;
- (9) $f(U) \subseteq [f(U^{(\Lambda,p)})]_{p(\Lambda,p)}$ for each $\alpha(\Lambda,p)$ -open set U of X.

Proof. (1) \Rightarrow (2): Let *A* be any subset of *X* and $x \in A_{\theta(\Lambda,p)}$. Then, there exists a (Λ, p) -open set *U* of *X* such that $x \in U \subseteq U^{(\Lambda,p)} \subseteq A$. Then, $f(x) \in f(U) \subseteq f(U^{(\Lambda,p)}) \subseteq f(A)$. Since *f* is weakly $p(\Lambda,p)$ -open, $f(U) \subseteq [f(U^{(\Lambda,p)})]_{p(\Lambda,p)} \subseteq [f(A)]_{p(\Lambda,p)}$. It implies that $f(x) \in [f(A)]_{p(\Lambda,p)}$. This shows that $x \in f^{-1}([f(A)]_{p(\Lambda,p)})$. Thus, $A_{\theta(\Lambda,p)} \subseteq f^{-1}([f(A)]_{p(\Lambda,p)})$ and hence $f(A_{\theta(\Lambda,p)}) \subseteq [f(A)]_{p(\Lambda,p)}$. (2) \Rightarrow (1): Let *U* be any (Λ, p) -open set of *X*. As $U \subseteq [U^{(\Lambda,p)}]_{\theta(\Lambda,p)}$ implies

$$f(U) \subseteq f([U^{(\Lambda,p)}]_{\theta(\Lambda,p)})$$
$$\subseteq [f(U^{(\Lambda,p)})]_{p(\Lambda,p)}.$$

Thus, *f* is weakly $p(\Lambda, p)$ -open.

(2) \Rightarrow (3): Let *B* be any subset of *Y*. Then by (2), $f([f^{-1}(B)]_{\theta(\Lambda,p)}) \subseteq B_{p(\Lambda,p)}$. Thus,

$$[f^{-1}(B)]_{\theta(\Lambda,p)} \subseteq f^{-1}(B_{p(\Lambda,p)}).$$

(3) \Rightarrow (2): Let *A* be any subset of *X*. By (3), we have $A_{\theta(\Lambda,p)} \subseteq [f^{-1}(f(A))]_{\theta(\Lambda,p)} \subseteq f^{-1}([f(A)]_{p(\Lambda,p)})$ and hence $f(A_{\theta(\Lambda,p)}) \subseteq [f(A)]_{p(\Lambda,p)}$.

 $(3) \Rightarrow (4)$: Let *B* be any subset of *Y*. Using (3), we have

$$X - [f^{-1}(B)]^{\theta(\Lambda,p)} = [X - f^{-1}(B)]_{\theta(\Lambda,p)}$$
$$= [f^{-1}(Y - B)]_{\theta(\Lambda,p)}$$
$$\subseteq f^{-1}([Y - B]_{p(\Lambda,p)})$$
$$= f^{-1}(Y - B^{p(\Lambda,p)})$$
$$= X - f^{-1}(B^{p(\Lambda,p)})$$

and hence $f^{-1}(B^{p(\Lambda,p)}) \subseteq [f^{-1}(B)]^{\theta(\Lambda,p)}$.

 $(4) \Rightarrow (3)$: Let *B* be any subset of *Y*. Using (4), we have

$$X - f^{-1}(B_{p(\Lambda,p)}) \subseteq X - [f^{-1}(B)]_{\theta(\Lambda,p)}$$

and hence $[f^{-1}(B)]_{\theta(\Lambda,p)} \subseteq f^{-1}(B_{p(\Lambda,p)}).$

(1) \Rightarrow (5): Let $x \in X$ and U be any (Λ, p) -open set of X containing x. Since f is weakly $p(\Lambda, p)$ -open, $f(x) \in f(U) \subseteq [f(U^{(\Lambda,p)})]_{p(\Lambda,p)}$. Put $V = [f(U^{(\Lambda,p)})]_{p(\Lambda,p)}$. Then, V is $p(\Lambda, p)$ -open in Y containing f(x) such that $V \subseteq f(U^{(\Lambda,p)})$.

 $(5) \Rightarrow (1)$: Let *U* be any (Λ, p) -open set of *X* and $y \in f(U)$. It follows from (5) that $V \subseteq f(U^{(\Lambda,p)})$ for some $p(\Lambda, p)$ -open set *V* of *Y* containing *y*. Thus, $y \in V \subseteq [f(U^{(\Lambda,p)})]_{p(\Lambda,p)}$ and hence $f(U) \subseteq [f(U^{(\Lambda,p)})]_{p(\Lambda,p)}$. This shows that *f* is weakly $p(\Lambda, p)$ -open.

(1) \Rightarrow (6): Let *K* be any (Λ, p) -closed set of *X*. Then, $K_{(\Lambda, p)}$ is (Λ, p) -open in *X*. Thus by (1), $f(K_{(\Lambda, p)}) \subseteq [f([K_{(\Lambda, p)}]^{(\Lambda, p)})]_{p(\Lambda, p)} \subseteq [f(K^{(\Lambda, p)})]_{p(\Lambda, p)} = [f(K)]_{p(\Lambda, p)}.$

(6) \Rightarrow (7): Let *U* be any (Λ, p) -open set of *X*. Then, we have $U^{(\Lambda, p)}$ is (Λ, p) -closed in *X* and by (6), $f([U^{(\Lambda, p)}]_{(\Lambda, p)}) \subseteq [f(U^{(\Lambda, p)})]_{p(\Lambda, p)}$.

 $(7) \Rightarrow (8)$: Let *U* be any $p(\Lambda, p)$ -open set of *X*. Then, we have $U \subseteq [U^{(\Lambda, p)}]_{(\Lambda, p)}$. By (7),

$$f(U) \subseteq f([U^{(\Lambda,p)}]_{(\Lambda,p)})$$

= $f([[[U^{(\Lambda,p)}]_{(\Lambda,p)}]^{(\Lambda,p)}]_{(\Lambda,p)})$
 $\subseteq [f([[U^{(\Lambda,p)}]_{(\Lambda,p)}]^{(\Lambda,p)})]_{p(\Lambda,p)}$
 $\subseteq [f(U^{(\Lambda,p)})]_{p(\Lambda,p)}.$

- (8) \Rightarrow (9): This is obvious since every $\alpha(\Lambda, p)$ -open set is $p(\Lambda, p)$ -open.
- $(9) \Rightarrow (1)$: Let *U* be any (Λ, p) -open set of *X*. Then, *U* is $\alpha(\Lambda, p)$ -open in *X*. By (9), we have

$$f(U) \subseteq [f(U^{(\Lambda,p)})]_{p(\Lambda,p)}$$

and hence *f* is weakly $p(\Lambda, p)$ -open.

Theorem 3.2. Let $f : (X, \tau) \to (Y, \sigma)$ be a bijective function. Then, the following properties are equivalent:

- (1) *f* is weakly $p(\Lambda, p)$ -open;
- (2) $[f(U)]^{p(\Lambda,p)} \subseteq f(U^{(\Lambda,p)})$ for every (Λ,p) -open set U of X;
- (3) $[f(K_{(\Lambda,p)})]^{p(\Lambda,p)} \subseteq f(K)$ for every (Λ, p) -closed set K of X.

Proof. (1) \Rightarrow (3): Let *K* be any (Λ , *p*)-closed set of *X*. By (1), we have

$$f(X - K) = Y - f(K)$$
$$\subseteq [f([X - K]^{(\Lambda, p)})]_{p(\Lambda, p)}$$

and hence $Y - f(K) \subseteq Y - [f(K_{(\Lambda,p)})]^{p(\Lambda,p)}$. Thus, $[f(K_{(\Lambda,p)})]^{p(\Lambda,p)} \subseteq f(K)$.

 $(3) \Rightarrow (2): \text{ Let } U \text{ be any } (\Lambda, p) \text{-open set of } X. \text{ Since } U^{(\Lambda, p)} \text{ is } (\Lambda, p) \text{-closed and } U \subseteq [U^{(\Lambda, p)}]_{(\Lambda, p)}.$ Thus by (3), $[f(U)]^{p(\Lambda, p)} \subseteq [f([U^{(\Lambda, p)}]_{(\Lambda, p)})]^{p(\Lambda, p)} \subseteq f(U^{(\Lambda, p)}).$

(2) \Rightarrow (3): Let *K* be any (Λ , *p*)-closed set of *X*. Since $K_{(\Lambda,p)}$ is (Λ , *p*)-open in *X* and by (2),

$$[f(K_{(\Lambda,p)})]^{p(\Lambda,p)} \subseteq f([K_{(\Lambda,p)}]^{(\Lambda,p)})$$
$$\subseteq f(K^{(\Lambda,p)})$$
$$= f(K).$$

 $(3) \Rightarrow (1)$: Let *U* be any (Λ, p) -open set of *X*. By (3), we have

$$Y - [f(U^{(\Lambda,p)})]_{p(\Lambda,p)} = [Y - f(U^{(\Lambda,p)})]^{p(\Lambda,p)}$$
$$\subseteq f(X - U)$$
$$= Y - f(U)$$

and hence $f(U) \subseteq [f(U^{(\Lambda,p)})]_{p(\Lambda,p)}$. Thus, *f* is weakly $p(\Lambda,p)$ -open.

4. On Weakly $p(\Lambda, p)$ -Closed Functions

We begin this section by introducing the concept of weakly $p(\Lambda, p)$ -closed functions.

Definition 4.1. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be weakly $p(\Lambda, p)$ -closed if $[f(K_{(\Lambda, p)})]^{p(\Lambda, p)} \subseteq f(K)$ for each (Λ, p) -closed set K of X.

Theorem 4.1. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (1) *f* is weakly $p(\Lambda, p)$ -closed;
- (2) $[f(U)]^{p(\Lambda,p)} \subseteq f(U^{(\Lambda,p)})$ for every (Λ, p) -open set U of X.

Proof. (1) \Rightarrow (2): Let *U* be any (Λ , *p*)-open set of *X*. Then by (1),

$$[f(U)]^{p(\Lambda,p)} = [f(U_{(\Lambda,p)})]^{p(\Lambda,p)}$$
$$\subseteq [f([U^{(\Lambda,p)}]_{(\Lambda,p)})]^{p(\Lambda,p)}$$
$$\subseteq f(U^{(\Lambda,p)}).$$

 $(2) \Rightarrow (1)$: Let *K* be any (Λ, p) -closed set of *X*. Using (2), we have

$$[f(K_{(\Lambda,p)})]^{p(\Lambda,p)} \subseteq f([K_{(\Lambda,p)}]^{(\Lambda,p)})$$
$$\subseteq f(K^{(\Lambda,p)})$$
$$= f(K).$$

This shows that *f* is weakly $p(\Lambda, p)$ -closed.

Theorem 4.2. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is weakly $p(\Lambda, p)$ -closed;
- (2) $[f(K_{(\Lambda,p)})]^{p(\Lambda,p)} \subseteq f(K)$ for every $p(\Lambda,p)$ -closed set K of X;
- (3) $[f(K_{(\Lambda,p)})]^{p(\Lambda,p)} \subseteq f(K)$ for every $\alpha(\Lambda,p)$ -closed set K of X.

Proof. (1) \Rightarrow (2): Let *K* be any $p(\Lambda, p)$ -closed set of *X*. Then, $[K_{(\Lambda, p)}]^{(\Lambda, p)} \subseteq K$. Thus by (1),

$$[f(K_{(\Lambda,p)})]^{p(\Lambda,p)} \subseteq [f([[K_{(\Lambda,p)}]^{(\Lambda,p)}]_{(\Lambda,p)})]^{p(\Lambda,p)}$$
$$\subseteq f([K_{(\Lambda,p)}]^{(\Lambda,p)})$$
$$\subseteq f(K).$$

(2) \Rightarrow (3): Let *K* be any $\alpha(\Lambda, p)$ -closed set of *X*. Then, *K* is $p(\Lambda, p)$ -closed in *X*. Using (2), we have $[f(K_{(\Lambda, p)})]^{p(\Lambda, p)} \subseteq f(K)$.

 $(3) \Rightarrow (1)$: Let *K* be any (Λ, *p*)-closed set of *X*. Then, we have *K* is *α*(Λ, *p*)-closed in *X*. By (3), $[f(K_{(\Lambda,p)})]^{p(\Lambda,p)} ⊆ f(K)$. Thus, *f* is weakly $p(\Lambda, p)$ -closed. □

Theorem 4.3. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (1) *f* is weakly $p(\Lambda, p)$ -closed;
- (2) $[f([U^{(\Lambda,p)}]_{(\Lambda,p)})]^{p(\Lambda,p)} \subseteq f(U^{(\Lambda,p)})$ for every (Λ,p) -open set U of X;
- (3) $[f([U^{\theta(\Lambda,p)}]_{(\Lambda,p)})]^{p(\Lambda,p)} \subseteq f(U^{\theta(\Lambda,p)})$ for every (Λ,p) -open set U of X;
- (4) $[f(U)]^{p(\Lambda,p)} \subseteq f(U^{(\Lambda,p)})$ for every $p(\Lambda,p)$ -open set U of X;
- (5) $[f(U)]^{p(\Lambda,p)} \subseteq f(U^{(\Lambda,p)})$ for every $r(\Lambda,p)$ -open set U of X;
- (6) for each subset B of Y and each (Λ, p) -open set U of X with $f^-(B) \subseteq U$, there exists a $p(\Lambda, p)$ -open set V of Y such that $B \subseteq V$ and $f^{-1}(V) \subseteq U^{(\Lambda, p)}$;
- (7) for each point $y \in Y$ and each (Λ, p) -open set U of X with $f^{-}(y) \subseteq U$, there exists a $p(\Lambda, p)$ -open set V of Y containing y and $f^{-1}(V) \subseteq U^{(\Lambda, p)}$.

Proof. (1) \Rightarrow (2): Let *U* be any (Λ, p) -open set of *X*. Then, $U^{(\Lambda, p)}$ is (Λ, p) -closed in *X*. Since *f* is weakly $p(\Lambda, p)$ -closed, $[f([U^{(\Lambda, p)}]_{(\Lambda, p)})]^{p(\Lambda, p)} \subseteq f(U^{(\Lambda, p)})$.

(2) \Rightarrow (3): It is suffices see that $U^{\theta(\Lambda,p)} = U^{(\Lambda,p)}$ for every (Λ,p) -open set U of X.

(3) \Rightarrow (4): It is suffices see that $U^{\theta(\Lambda,p)} = U^{(\Lambda,p)}$ for every $p(\Lambda,p)$ -open set U of X.

(4) ⇒ (5): Let *U* be any $r(\Lambda, p)$ -open set of *X*. Then, *U* is $p(\Lambda, p)$ -open in *X*. Using (4), we have $[f(U)]^{p(\Lambda,p)} \subseteq f(U^{(\Lambda,p)})$.

(5) \Rightarrow (6): Let *B* be any subset of *Y* and *U* be any (Λ, p) -open set of *X* with $f^{-1}(B) \subseteq U$. Then, $f^{-1}(B) \cap [X - U^{(\Lambda, p)}]^{(\Lambda, p)} = \emptyset$ and hence $B \cap f([X - U^{(\Lambda, p)}]^{(\Lambda, p)}) = \emptyset$. Since $X - U^{(\Lambda, p)}$ is $r(\Lambda, p)$ -open, $B \cap [f(X - U^{(\Lambda, p)})]^{p(\Lambda, p)} = \emptyset$ by (5). Put $V = Y - [f(X - U^{(\Lambda, p)})]^{p(\Lambda, p)}$. Then, we have *V* is $p(\Lambda, p)$ -open such that $B \subseteq V$ and

$$f^{-1}(V) \subseteq X - f^{-1}([f(X - U^{(\Lambda, p)})]^{p(\Lambda, p)})$$
$$\subseteq X - f^{-1}(f(X - U^{(\Lambda, p)}))$$
$$\subset U^{(\Lambda, p)}.$$

(6) \Rightarrow (7): This is obvious.

(7) \Rightarrow (1): Let *K* be any (Λ, p) -closed set of *X* and $y \in Y - f(K)$. Since $f^{-1}(y) \subseteq X - K$, there exists a $p(\Lambda, p)$ -open set *V* of *Y* such that $y \in V$ and $f^{-1}(V) \subseteq [X - K]^{(\Lambda, p)} = X - K_{(\Lambda, p)}$ by (7).

Thus, $V \cap f(K_{(\Lambda,p)}) = \emptyset$ and hence $y \in Y - [f(K_{(\Lambda,p)})]^{p(\Lambda,p)}$. It implies that $[f(K_{(\Lambda,p)})]^{p(\Lambda,p)} \subseteq f(K)$. Thus, f is weakly $p(\Lambda, p)$ -closed.

Theorem 4.4. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (1) *f* is weakly $p(\Lambda, p)$ -closed;
- (2) $[f(U)]^{p(\Lambda,p)} \subseteq f(U^{(\Lambda,p)})$ for every $r(\Lambda,p)$ -open set U of X.

Proof. (1) \Rightarrow (2): Let *U* be any $r(\Lambda, p)$ -open set of *X*. Then, *U* is (Λ, p) -open in *X*. Thus, by Theorem 4.3,

$$[f(U)]^{p(\Lambda,p)} = [f([U^{(\Lambda,p)}]_{(\Lambda,p)})]^{p(\Lambda,p)} \subseteq f(U^{(\Lambda,p)}).$$

(2) \Rightarrow (1): Let *K* be any (Λ, p) -closed set of *X*. Then, $[K^{(\Lambda, p)}]_{(\Lambda, p)}$ is $r(\Lambda, p)$ -open in *X*. By (2), we have

$$[f(K_{(\Lambda,p)})]^{p(\Lambda,p)} \subseteq [f([K^{(\Lambda,p)}]_{(\Lambda,p)})]^{p(\Lambda,p)}$$
$$\subseteq f([[K^{(\Lambda,p)}]_{(\Lambda,p)}]^{(\Lambda,p)})$$
$$\subseteq f(K^{(\Lambda,p)})$$
$$= f(K).$$

This shows that *f* is weakly $p(\Lambda, p)$ -closed.

Acknowledgements: This research project was financially supported by Mahasarakham University.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- C. Boonpok, C. Viriyapong, On (Λ, *p*)-Closed Sets and the Related Notions in Topological spaces, Eur. J. Pure Appl. Math. 15 (2022), 415–436. https://doi.org/10.29020/nybg.ejpam.v15i2.4274.
- [2] C. Boonpok, J. Khampakdee, (Λ, sp)-Open Sets in Topological Spaces, Eur. J. Pure Appl. Math. 15 (2022), 572–588. https://doi.org/10.29020/nybg.ejpam.v15i2.4276.
- M. Caldas, G. Navalagi, On Weak Forms of Semi-Open and Semi-Closed Functions, Missouri J. Math. Sci. 18 (2006), 165–178. https://doi.org/10.35834/2006/1803165.
- [4] M. Caldas, S. Jafari, G. Navalagi, Weak Forms of Open and Closed Functions via Semi-θ-Open Sets, Carpathian J. Math. 22 (2006), 21–31. https://www.jstor.org/stable/43998903.
- [5] M. Caldas, G. Navalagi, On Weak Forms of Preopen and Preclosed Functions, Arch. Math. 40 (2004), 119–128. https://dml.cz/handle/10338.dmlcz/107896.
- [6] M. Ganster, S. Jafari, T. Noiri, On Pre-Λ-Sets and Pre-V-Sets, Acta Math. Hungar. 95 (2002), 337–343.
- [7] A.S. Mashhour, M.E. Abd El-Monsef, S.N. El-Deeb, On Precontinuous and Weak Precontinuous Mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.
- [8] T. Noiri, Weak Forms of Open and Closed Functions via b-θ-Open Sets, Demonstr. Math. 42 (2009), 193–203. https://doi.org/10.1515/dema-2009-0118.
- [9] D.A. Rose, D.S. Janković, Weakly Closed Functions and Hausdorff Spaces, Math. Nachr. 130 (1987), 105–110. https://doi.org/10.1002/mana.19871300109.

- [10] D.A. Rose, Weak Openness and Almost Openness, Int. J. Math. Math. Sci. 7 (1984), 35–40. https://doi.org/10.1155/ s0161171284000041.
- [11] N. Srisarakham, C. Boonpok, On Characterizations of $\delta p(\Lambda, s)$ - \mathcal{D}_1 Spaces, Int. J. Math. Computer Sci. 18 (2023), 743–747.
- [12] M. Thongmoon, C. Boonpok, Strongly $\theta(\Lambda, p)$ -Continuous Functions, Int. J. Math. Computer Sci. 19 (2024), 475–479.
- [13] N. Viriyapong, C. Boonpok, On (Λ, p) -Extremally Disconnected Spaces, Int. J. Math. Comput. Sci. 18 (2023), 289–293.