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ABSTRACT. The purpose of the article is to evaluate the efficiency of seven test statistics for mean difference testing 

between two independent populations. The evaluation was based on the probability of type I error and power of the 

test at 0.05 significance level under population distributions assumed to be normal, exponential, log-normal, gamma, 

and Laplace with equal sample sizes, and both equal and unequal variances. The results showed that for equal variance, 

the test statistics with the highest testing power controlled the probability of type I error were Z-test for normal and 

exponential distributions, Welch based on rank test (WBR) for log-normal and gamma distributions, and Mann-

Whitney U test (MWU) for Laplace distribution. For unequal variance, Z-test was more efficient under normal, 

exponential, log-normal, and gamma distributions, while WBR was appropriate for Laplace distribution.  

  

 

1. Introduction 

The testing of mean differences obtained from two independent populations have been 

extensively utilized for testing statistical hypotheses in a variety of research areas, especially in 

educational science and medical studies. Generally, there are various test statistics; therefore, the 

selection of appropriate test statistics corresponding to the properties of data sets and the 

objectives of the research are important for mean comparison tests. If the distributions of two 

populations from which samples are drawn are normal and known variances, Z-test is used. 

However, if the distributions of two populations have normal and unknown variances, t-test is 
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applied in case of homogeneity of variances, Welch t-test is used in case of heterogeneity of 

variances. These test statistics are called parametric statistics, which strongly depend on 

assumption of normality [5]. In practice, the populations that are non-normally distributed lead 

to possible erroneous conclusions. Consequently, non-parametric statistics have become an 

interesting alternative method when the normality assumption is violated ([8],[13]).  

In literature, comparison of performance parametric and non-parametric statistics for 

testing means between two independent populations have been discussed by numerous 

publications. Thidarat et al. [12] compared the efficiency of test statistics of Mann-Whitney U test 

(MWU), Brunner and Munzel test, and nonparametric bootstrap rank Welch test (BRW) in terms 

of the probability of type I error and power of the test when the two populations were assumed 

to be normal, gamma, exponential, and Chi-squared distributions. They recommended that BRW 

had the highest testing power but the lowest ability to control the probability of type I error, 

whereas MWU was the second most powerful and able to control the probability of type I error 

if the variances were assumed to be equal. Eriobu and Umeh [4] pointed that MWU was better 

than Kolmogorov-Smirnov test and modified intrinsically ties adjusted Mann-Whitney U test 

(MAMWU) for the testing of two population means when populations had gamma and Weibull 

distributions. Sangthong and Klubnual [11] found that Welch based on rank test (WBR) was 

appropriate when the populations had log-normal, gamma, and poisson distributions with equal 

variance, while Welch t test yielded the highest efficiency when the populations had log-normal, 

gamma, exponential, uniform and poisson distributions with unequal variance. Dollada et al. [2] 

stated that MWU was the most powerful when the populations had negatively skewed 

distribution, symmetrical and leptokurtic distribution, and positively skewed and leptokurtic 

distribution.  

In this article, the researchers aim to evaluate the performance of test statistics for mean 

differences between two independent populations. The test statistics compared are Z-test, t-test, 

Welch t-test, MWU, MAMWU, WBR, and BRW. A simulation study is implemented to verify that 

their test statistics have the ability to control the probability of type I error and the highest testing 

power under normal, exponential, log-normal, gamma, and Laplace distributions with equal and 

unequal variances at 0.05 significance level. 

The rest of this article is organized as follows: Section 2 introduces the test statistics of this 

study. Then the construction method of these test statistics is provided in Section 3. To assess the 

efficiency of the test statistics, Section 4 presents simulated results to investigate the probability 

of type I error and power of the test. Finally, Section 5 presents the conclusion and discussion.  
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2. Statistical Methods 

2.1 Z-test  

 Z -test is a parametric statistic used for testing the difference between means of two 

independent populations from a normal distribution with known variance [6]. The Z-test is:  

1 2 1 2

2 2
1 2

1 2

(x x ) ( )
Z

n n

− − −
=

+

 

 
     (2.1) 

where 1 2,   are the means of populations 1 and 2. 1 2,   are the standard deviations of 

populations 1 and 2. 1 2n , n  are the sample sizes drawn from populations 1 and 2 and 1 2x , x  are 

the means of the samples drawn from populations 1 and 2. 

Then reject 0H ; when 2Z Z −   or  2Z Z  . 

 

2.2 t-test 

The t-test for two populations, also known as the independent samples t-test, is a 

parametric statistic that is appropriate when you want to determine whether there is a significant 

difference between the means of the two populations if the population standard deviations are 

unknown and the samples are relatively small. There are two variations of the t-test for two 

populations: t-test for equal variances and Welch t-test for unequal variances.  

The independent sample t-test is applied under the assumption of normal distribution 

and equal population variances [7]. The t-test statistic is: 
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, and 1 2s , s  are the standard deviation of the sample 

drawn from populations 1 and 2. 

Then reject 0H ; when  − 2 ,dft t  or  2 ,dft t  by = + −1 2 2df n n . 

 

2.3 Welch t-test 

The Welch t-test was presented by Welch [14]. This test statistic is used to determine the 

significant of mean difference between two independent populations under the assumption of 

normal distribution and unequal population variances. The Welch t-test statistic is: 
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Then reject 0H ; when  − 2 ,dfWelch t t  or  2 ,dfWelch t t  by 
( ) ( )

22 2
1 2

1 2

2 22 2
1 1 2 2

1 21 1

s s

n n
df

s n s n

n n

 
+ 

 
=

+
− −

. 

 

2.4 Mann-Whitney U test (MWU)  

 Mann-Whitney U test was proposed by Wilcoxon [15] based on rank statistics assigned to 

observations from two populations. This test statistic is useful for testing hypothesis by assigning 

the same distribution from two independent populations [4].  

For 1 20n   and 2 20n  , the MWU test statistic is:  

1 2U min(U ,U )=       (2.4) 

where 1 1
1 1 2 1

1

2

n (n )
U n n R

+
= + −  and 2 2

2 1 2 2

1

2

n (n )
U n n R

+
= + − . 

1 2n , n  are the sample sizes drawn from populations 1 and 2 and 1 2R , R   are the sum 

of ranks assigned to observations from populations 1 and 2 in the combined ranking of these 

observations from the two populations. 

Then reject 0H ; when 2U U   

For 1 20n   and 2 20n  , the MWU test statistic is:  
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Then reject 0H ; when 2Z Z −   or  2Z Z  . 

 

2.5 Modified intrinsically ties adjusted Mann-Whitney U test (MAMWU) 

Oyeka and Okeh [9] developed modified intrinsically ties adjusted Mann-Whitney U test 

(MAMWU), which is adjusted from the approach of MWU to solve the problem of tied 

observations between the two-sample populations. MAMWU is useful for hypothesis testing in 

which the sample sizes are drawn from the same distribution [4]. The MAMWU test statistic is: 

2
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where 1 2n , n  are the sample sizes drawn from populations 1 and 2. 1 2R ,R   are the 

respective sums of the ranks assigned to observations from populations 1 and 2 in the combined 

ranking of these observations from the two populations, and ,+ −   are, respectively, the 

probabilities that observations or scores by subject from population 1 is on the average greater 

than or less than observations or scores by subject from population 2. 

Then reject 0H ; when 2 2
1 1,−    

 

2.6 Welch based on rank test (WBR) 

 Welch [14] proposed the Welch based on rank, which is associated with the midrank. It 

was explained as follows ([10], [11], [16]): 

    (1) Combine 1n  and 2n  and rank the data from the lowest to the highest. If tied 

observations between two samples are found, the midrank are averaged. 

 (2) Calculate the means and variances of midrank to the first and second samples, denoted 

as 1R  and 2R  , and calculated 2
1s  and 2

2s , respectively. 

 (3) Calculate the Welch based on rank test statistic (WBR): 
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(4) Reject 0H ; when   − 2 ,dfWBR t  or    2 ,dfWBR t  by   
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2.7 Nonparametric bootstrap rank Welch test (BRW)  

The nonparametric bootstrap rank Welch test (BRW) is applied from the principle of 

bootstrap and the technique of rank Welch test statistic ([3], [10]). The method of hypothesis 

testing is the following: 

(1) Let 
11 11 12 13 1nx x , x , x , ..., x=  be the observations in sample 1 of size n1 drawn from 

population 1 and 
22 21 22 23 2nx x , x , x , ..., x=  be the observations in sample 2 of size n2 drawn from 

population 2. 

(2) Pool the two samples into one combined sample of size 1 2n n n= + , then ascend order. 

If tied observations between two samples are found, the midrank are averaged. 

(3) Calculate the WBR test statistics in equation (2.7). 
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(4) Return sampling with replacement from 1x  and 2x  of size 1n  and 2n  transform into  

1
*x  and 2

*x , then ascend order for the combined observations. If tied observations between two 

samples are found, the midrank are averaged. 

  (5) Calculate the WBR* test statistics: 

1 2

2 2
1 2

1 2

* *
*

* *

R R
WBR

s s

n n

−
=

+

      (2.8) 

   (6) Repeat step (4) and (5) for B iterations (B = 10,000). 

   (7) Approximate 
( )number of times

p value
B

*WBR WBR
=  

 

3. Research Method  

       The Monte Carlo simulation techniques were used to generate data for determining the 

performance of test statistics. MATLAB version R2021b was written to calculate the probability 

of type I error and power of the test for the following conditions:  

 1) Generate two independent populations into five distributions: 

Distribution The probability of type I error calculation Power of the test calculation 

normal = =2
1 1 11 1X N( , )   

= =2
2 2 21X N( , a)   

= =2
1 1 11 1X N( , )   

= =2
2 2 2X N( M, a)   

exponential 
Equal Variance: =2 1  

=1 1 1X Exp( )  

=2 2 1X Exp( )   

Unequal Variance: =2 3 5 9, ,  

= −1 1 1 1X Exp( )  

 = −2 2 1 1X Exp( )   

=1 1 1X Exp( )  

 = − +2 2 1 1X Exp( ) M   

=2 1 3 5 9, , , . 

log-normal 
Equal Variance: =2 1  

= = − +
3 22

1 1 11 1 1X Lognorm( , ) exp   

 = = − + 
3 22

2 2 21 1 1X Lognorm( , ) exp    

Unequal Variance: =2 3 5 9, ,  

= = −
3 22

1 1 11 1X Lognorm( , ) exp   

 = = − 
3 22

2 2 21 1X Lognorm( , ) exp    

= = − +
3 22

1 1 11 1 1X Lognorm( , ) exp   

 = = − + 
3 22

2 2 21 1X Lognorm( , ) exp M  

=2 1 3 5 9, , , . 
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gamma = =1 1 1 1X gamma( a, )   

= =2 2 21X gamma( , a)   

 

= = − +1 1 11 1 1 1X gamma( , )   

 = = − +2 2 21 1X gamma( , a) M    

=2 1 3 5 9, , , .  

Laplace = =2
1 1 11 1X Laplace( , )   

= =2
2 1 21 1X Laplace( , )    

=2 1 3 5 9, , , . 

= = +2
1 1 11 1 1X Laplace( , )   

 = = − + 
2

2 2 21 1 1X Laplace( , ) M    

=2 1 3 5 9, , , . 

Where  = 1 3 5 9a , , ,   and = 1 5 2M . , . 

 2) Determine the equal sample sizes for two populations. 1 2 10 10(n ,n ) ( , )= , (20,20), and 

(50,50). 

 3) Assign the difference of means for two population groups as follows: 

                    3.1) The means between two population groups are not different when calculating the 

probability of type I error. 

                   3.2) The means between two population groups are different when computing power 

estimation with the ratios of 1:1.5 and 1:2 [13]. 

              4) Specify four variance ratios for both equal and unequal variances. The variance ratios 

were 1:1, 1:3, 1:5, and 1:9. 

               5) The significance level of the test is 0.05 ( 0 05.= ). 

               6) The number of iterations for each case is 10,000. 

               7) Compute the probability of the type I error by assigning the equivalent mean ratio. 

The probability of the type I error is defined as the ratio of number of times of rejection 0H  to 

number of iterations.  When hypothesis testing at a significance level of 0.05, if the probability of 

type I error is between 0.025 – 0.075, the test statistics are considered to be capable of controlling 

the probability of type I error based on criteria from Bradley [1].    

               8) Compute the testing power by assigning the mean differences with the ratios of 1:1.5 

for the small mean differences and 1:2 for the moderate mean differences. Power of the test is 

computed by the ratio of number of times of rejection  0H  to number of iterations.  

 

4. Results 

To evaluate the performance of seven test statistics, Z-test, t-test, Welch t-test, MWU, 

MAMWU, WMR, and BRW, we conducted the simulation data based on research method to 

calculate their probability of type I error and power of the test for testing the mean differences of 

two independent populations at the significance level of 0.05 ( 0 05.= ) in which the populations 

have normal, exponential, log-normal, gamma, and Laplace distributions.  
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In comparison, the test statistics that have ability to control the probability of type I error 

and higher test estimation power are preferable to the choice of the test statistics that are robust. 

Tables 1 to 5 display the common probability of type I error and testing power from 

simulation results classified by normal, exponential, log-normal, gamma, and Laplace 

distributions, respectively.  

 The following abbreviations are used in Tables. 1 2(n , n ) , 1 2(V :V ) , TE, PE 1:1.5 and PE 1:2 

represent the sample sizes, the variance ratios, the probability of type I error, power of the test 

for the small and the moderate mean differences obtained from two populations, respectively.  

Note bold entries indicate the test statistics that could control the probability of type I 

error, whereas bold and underlined entries indicate the test statistics that could control the 

probability of type I error while retaining the highest test estimation power. 

According to normally distributed population in Table 1, it is clearly seen that Z-test, t-

test, Welch t-test, MWU and WBR were all able to control the probability of type I error for all 

sample sizes in both equal and unequal variances. 

Table 1 also indicates that for equal variance, Z-test had the highest testing power that 

could control the probability of type I error, as shown by the higher testing power relative to 

other test statistics for both small and moderate mean differences. For unequal variance with a 

small mean difference, Z-test had the highest test estimation power that had capacity for 

controlling the probability of type I error in most conditions, while t-test was quite similar in 

performance to MWU, which were close to 22.22% of the total conditions. When the mean 

difference was moderate, Z-test had the greatest estimation power. 
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Table 1. Probability of type I error and power of the test of seven test statistics for two 

independent populations with normal distributions 

 

1 2(n , n )  
1 2(V :V )  Z-test t-test Welch t-test 

TE PE1:1.5 PE1:2 TE PE1:1.5 PE1:2 TE PE1:1.5 PE1:2 

(10, 10) 1:1 0.0514 0.2023 0.6174 0.0516 0.1855 0.5743 0.0491 0.1822 0.5689 
 1:3 0.0472 0.1285 0.3581 0.0530 0.1218 0.3316 0.0489 0.1165 0.3204 
 1:5 0.0470 0.1028 0.2583 0.0553 0.1036 0.2418 0.0500 0.0942 0.2220 
 1:9 0.0480 0.0799 0.1755 0.0576 0.0877 0.1725 0.0511 0.0768 0.1535 

(20, 20) 1:1 0.0472 0.3635 0.8900 0.0478 0.3503 0.8723 0.0474 0.3491 0.8715 
 1:3 0.0471 0.2094 0.6100 0.0493 0.2021 0.5919 0.0473 0.1975 0.5852 
 1:5 0.0472 0.1544 0.4541 0.0504 0.1509 0.4376 0.0470 0.1445 0.4263 
 1:9 0.0478 0.1128 0.3015 0.0508 0.1139 0.2936 0.0475 0.1050 0.2807 

(50, 50) 1:1 0.0490 0.7255 0.9992 0.0501 0.7174 0.9989 0.0500 0.7174 0.9989 
 1:3 0.0491 0.4396 0.9510 0.0501 0.4314 0.9460 0.0497 0.4288 0.9454 
 1:5 0.0491 0.3182 0.8389 0.0527 0.3130 0.8302 0.0508 0.3092 0.8273 
 1:9 0.0500 0.2114 0.6311 0.0527 0.2098 0.6197 0.0512 0.2057 0.6138 

1 2(n , n )  
1 2(V :V )  MAMWU MWU BRW 

TE PE1:1.5 PE1:2 TE PE1:1.5 PE1:2 TE PE1:1.5 PE1:2 

(10, 10) 1:1 0.9705 0.9833 0.9978 0.0418 0.1604 0.5207 0.8574 0.6429 0.9671 
 1:3 0.9708 0.9757 0.9909 0.0465 0.1089 0.2919 0.8524 0.2572 0.8583 
 1:5 0.9693 0.9757 0.9846 0.0504 0.0949 0.2191 0.8536 0.1856 0.6849 
 1:9 0.9721 0.9724 0.9803 0.0546 0.0848 0.1616 0.9174 0.1697 0.5142 

(20, 20) 1:1 0.9869 0.9966 1.0000 0.0462 0.3298 0.8519 0.7510 0.8168 0.8248 
 1:3 0.9897 0.9943 0.9991 0.0494 0.1959 0.5587 0.7237 0.9222 0.7892 
 1:5 0.9894 0.9930 0.9978 0.0554 0.1516 0.4152 0.7014 0.9467 0.8089 
 1:9 0.9888 0.9909 0.9950 0.0605 0.1246 0.2889 0.6464 0.8098 0.8529 

(50, 50) 1:1 0.9919 0.9996 1.0000 0.0480 0.6937 0.9989 0.4328 0.5317 0.3625 
 1:3 0.9919 0.9990 1.0000 0.0544 0.4135 0.9290 0.2568 0.6760 0.5790 
 1:5 0.9913 0.9974 0.9998 0.0592 0.3036 0.7971 0.2395 0.7758 0.7045 
 1:9 0.9908 0.9957 0.9996 0.0655 0.2180 0.5893 0.1675 0.8590 0.7669 

1 2(n , n )  
1 2(V :V )  WBR       

TE PE1:1.5 PE1:2       

(10, 10) 1:1 0.0478 0.1727 0.5436       
 1:3 0.0500 0.1149 0.3026       
 1:5 0.0527 0.0986 0.2232       
 1:9 0.0557 0.0852 0.1632       

(20, 20) 1:1 0.0462 0.3298 0.8519       
 1:3 0.0494 0.1959 0.5587       
 1:5 0.0551 0.1516 0.4146       
 1:9 0.0597 0.1233 0.2871       

(50, 50) 1:1 0.0485 0.6964 0.9989       
 1:3 0.0545 0.4142 0.9293       
 1:5 0.0593 0.3037 0.7970       
 1:9 0.0655 0.2180 0.5891       
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Table 2. Probability of type I error and power of the test of seven test statistics for two 

independent populations with exponential distribution 

 

1 2(n , n )  
1 2(V :V )  Z-test t-test Welch t-test 

TE PE1:1.5 PE1:2 TE PE1:1.5 PE1:2 TE PE1:1.5 PE1:2 

(10, 10) 1:1 0.0533 0.1417 0.2796 0.0449 0.1162 0.2524 0.0387 0.1026 0.2233 
 1:3 0.0526 0.1223 0.3370 0.0675 0.0875 0.3304 0.0635 0.0742 0.3052 
 1:5 0.0508 0.0993 0.2358 0.0841 0.0639 0.1906 0.0790 0.0535 0.1631 
 1:9 0.0500 0.0803 0.1623 0.0983 0.0640 0.1045 0.0943 0.0548 0.0828 

(20, 20) 1:1 0.0468 0.2312 0.4971 0.0429 0.2180 0.5177 0.0404 0.2107 0.5058 
 1:3 0.0470 0.1914 0.5856 0.0581 0.1604 0.6169 0.0564 0.1514 0.6085 
 1:5 0.0454 0.1447 0.4238 0.0689 0.0996 0.4221 0.0672 0.0911 0.4074 
 1:9 0.0452 0.1049 0.2709 0.0786 0.0663 0.2244 0.0754 0.0598 0.2068 

(50, 50) 1:1 0.0510 0.4893 0.8920 0.0495 0.4967 0.9239 0.0494 0.4955 0.9229 
 1:3 0.0493 0.3949 0.9465 0.0547 0.3993 0.9592 0.0539 0.3956 0.9592 

 1:5 0.0517 0.2814 0.8149 0.0586 0.2607 0.8588 0.0573 0.2571 0.8571 
 1:9 0.0513 0.1915 0.5816 0.0624 0.1483 0.6090 0.0610 0.1427 0.6017 

1 2(n , n )  
1 2(V :V )  MAMWU MWU BRW 

TE PE1:1.5 PE1:2 TE PE1:1.5 PE1:2 TE PE1:1.5 PE1:2 

(10, 10) 1:1 0.9695 0.9794 0.9877 0.0441 0.1076 0.2321 0.6906 0.4289 0.4114 
 1:3 0.9760 0.9760 0.9938 0.1022 0.0661 0.3783 0.3630 0.4502 0.4130 
 1:5 0.9799 0.9725 0.9811 0.1337 0.0554 0.1443 0.3413 0.4507 0.3144 
 1:9 0.9700 0.9719 0.9742 0.1586 0.0772 0.0698 0.3775 0.5861 0.2372 

(20, 20) 1:1 0.9878 0.9947 0.9982 0.0459 0.1907 0.4505 0.8383 0.4080 0.4598 
 1:3 0.9931 0.9927 0.9992 0.1636 0.0910 0.6825 0.5763 0.6947 0.3354 
 1:5 0.9954 0.9907 0.9951 0.2209 0.0649 0.2561 0.5852 1.0000 0.5304 
 1:9 0.9946 0.9909 0.9900 0.2661 0.1060 0.0868 0.5526 0.5257 0.6430 

(50, 50) 1:1 0.9922 0.9988 0.9999 0.0504 0.4154 0.8345 0.5227 0.6369 0.5396 
 1:3 0.9974 0.9938 1.0000 0.3299 0.1521 0.9754 0.7270 0.8551 0.4734 
 1:5 0.9983 0.9927 0.9987 0.4464 0.0614 0.5392 0.7494 0.3002 0.6880 
 1:9 0.9990 0.9941 0.9946 0.5274 0.1498 0.1142 0.7402 0.1080 0.6715 

1 2(n , n )  
1 2(V :V )  WBR       

TE PE1:1.5 PE1:2       

(10, 10) 1:1 0.0501 0.1183 0.2458       
 1:3 0.1054 0.0708 0.4017       
 1:5 0.1356 0.0578 0.1507       
 1:9 0.1596 0.0779 0.0716       

(20, 20) 1:1 0.0459 0.1907 0.4505       
 1:3 0.1635 0.0909 0.6825       
 1:5 0.2191 0.0649 0.2561       
 1:9 0.3641 0.1047 0.0860       

(50, 50) 1:1 0.0511 0.4175 0.8359       
 1:3 0.3299 0.1530 0.9756       
 1:5 0.4463 0.0614 0.5398       
 1:9 0.5268 0.1495 0.1142       
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Table 3. Probability of type I error and power of the test of seven test statistics for two 

independent populations with log-normal distribution 

 

1 2(n , n )  
1 2(V :V )  Z-test t-test Welch t-test 

TE PE1:1.5 PE1:2 TE PE1:1.5 PE1:2 TE PE1:1.5 PE1:2 

(10, 10) 1:1 0.0530 0.0572 0.0644 0.0341 0.0461 0.0723 0.0276 0.0370 0.0641 
 1:3 0.0503 0.0546 0.0611 0.0744 0.0542 0.0438 0.0695 0.0495 0.0369 
 1:5 0.0483 0.0517 0.0574 0.1008 0.0784 0.0635 0.0959 0.0740 0.0581 
 1:9 0.0451 0.0492 0.0538 0.1273 0.1088 0.0902 0.1210 0.1020 0.0849 

(20, 20) 1:1 0.0531 0.0576 0.0766 0.0373 0.0546 0.1053 0.0338 0.0515 0.1016 
 1:3 0.0500 0.0537 0.0634 0.0688 0.0455 0.0429 0.0669 0.0432 0.0387 
 1:5 0.0487 0.0527 0.0599 0.0868 0.0621 0.0470 0.0849 0.0600 0.0440 
 1:9 0.0455 0.0503 0.0599 0.1047 0.0836 0.0666 0.1019 0.0818 0.0643 

(50, 50) 1:1 0.0528 0.0720 0.1302 0.0415 0.0768 0.1717 0.0406 0.0760 0.1699 
 1:3 0.0492 0.0618 0.0932 0.0579 0.0493 0.0708 0.0566 0.0482 0.0680 
 1:5 0.0480 0.0568 0.0790 0.0715 0.0528 0.0524 0.0706 0.0521 0.0506 
 1:9 0.0471 0.0526 0.0661 0.0799 0.0610 0.0519 0.0790 0.0596 0.0505 

1 2(n , n )  
1 2(V :V )  MAMWU MWU BRW 

TE PE1:1.5 PE1:2 TE PE1:1.5 PE1:2 TE PE1:1.5 PE1:2 

(10, 10) 1:1 0.9688 0.9749 0.9834 0.0466 0.0681 0.1319 0.4867 0.8675 0.9479 
 1:3 0.9831 0.9736 0.9716 0.1519 0.1044 0.0709 0.3452 0.4603 0.4643 
 1:5 0.9824 0.9801 0.9760 0.2005 0.1600 0.1249 0.3800 0.6504 0.6440 
 1:9 0.9845 0.9815 0.9780 0.2411 0.2084 0.1800 0.4258 0.7416 0.7091 

(20, 20) 1:1 0.9895 0.9914 0.9944 0.0499 0.1013 0.2622 0.7965 0.1684 0.2100 
 1:3 0.9960 0.9919 0.9934 0.2765 0.1707 0.0989 0.5806 0.6244 0.3818 
 1:5 0.9965 0.9961 0.9920 0.3773 0.2860 0.2088 0.6018 0.8050 0.6160 
 1:9 0.9977 0.9966 0.9959 0.4500 0.3793 0.3207 0.6534 0.8664 0.7791 

(50, 50) 1:1 0.9899 0.9957 0.9996 0.0511 0.1970 0.5617 0.9749 0.3294 0.3279 
 1:3 0.9996 0.9971 0.9945 0.5706 0.3410 0.1568 0.4491 0.6829 0.8675 
 1:5 1.0000 0.9991 0.9979 0.7149 0.5699 0.4143 0.4832 0.7528 0.7615 
 1:9 0.9998 0.9998 0.9995 0.8001 0.7128 0.6196 0.4901 0.7614 0.7676 

1 2(n , n )  
1 2(V :V )  WBR       

TE PE1:1.5 PE1:2       

(10, 10) 1:1 0.0508 0.0762 0.1407       
 1:3 0.1549 0.1079 0.0733       
 1:5 0.2016 0.1619 0.1265       
 1:9 0.2416 0.2089 0.1806       

(20, 20) 1:1 0.0499 0.1013 0.2622       
 1:3 0.2756 0.1705 0.0989       
 1:5 0.3751 0.2840 0.2073       
 1:9 0.4452 0.3765 0.3172       

(50, 50) 1:1 0.0522 0.1985 0.5630       
 1:3 0.5706 0.3411 0.1570       
 1:5 0.7146 0.5699 0.4131       
 1:9 0.7991 0.7122 0.6192       
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Table 4. Probability of type I error and power of the test of seven test statistics for two 

independent populations with gamma distribution 

 

1 2(n , n )  
1 2(V :V )  Z-test t-test Welch t-test 

TE PE1:1.5 PE1:2 TE PE1:1.5 PE1:2 TE PE1:1.5 PE1:2 

(10, 10) 1:1 0.0460 0.0483 0.2875 0.0405 0.2252 0.6156 0.0347 0.2180 0.6071 
 1:3 0.0468 0.7080 0.9819 0.0640 0.7411 0.9730 0.0617 0.7272 0.9701 
 1:5 0.0511 0.9373 0.9996 0.0804 0.9075 0.9977 0.0765 0.8939 0.9970 
 1:9 0.0463 0.9972 1.0000 0.0863 0.9841 1.0000 0.0822 0.9772 1.0000 

(20, 20) 1:1 0.0530 0.1121 0.6524 0.0470 0.3728 0.8637 0.0449 0.3708 0.8617 
 1:3 0.0475 0.9568 1.0000 0.0585 0.9601 0.9998 0.0573 0.9594 0.9997 
 1:5 0.0492 0.9984 1.0000 0.0650 0.9973 1.0000 0.0633 0.9973 1.0000 

 1:9 0.0501 1.0000 1.0000 0.0768 1.0000 1.0000 0.0728 1.0000 1.0000 

(50, 50) 1:1 0.0492 0.3879 0.9870 0.0446 0.6976 0.9966 0.0441 0.6968 0.9965 
 1:3 0.0509 0.9999 1.0000 0.0535 0.9999 1.0000 0.0531 0.9999 1.0000 

 1:5 0.0486 1.0000 1.0000 0.0544 1.0000 1.0000 0.0536 1.0000 1.0000 

 1:9 0.0475 1.0000 1.0000 0.0626 1.0000 1.0000 0.0613 1.0000 1.0000 

1 2(n , n )  
1 2(V :V )  MAMWU MWU BRW 

TE PE1:1.5 PE1:2 TE PE1:1.5 PE1:2 TE PE1:1.5 PE1:2 

(10, 10) 1:1 0.9715 0.9917 0.9991 0.0402 0.3053 0.7143 0.0277 0.4030 0.5026 
 1:3 0.9770 0.9998 1.0000 0.0850 0.8150 0.9842 0.7546 0.5957 0.5021 
 1:5 0.9770 1.0000 1.0000 0.1143 0.9462 0.9987 0.8519 0.7098 0.5539 
 1:9 0.9761 1.0000 1.0000 0.1313 0.9939 1.0000 0.8988 0.7645 0.8976 

(20, 20) 1:1 0.9895 0.9994 1.0000 0.0445 0.5811 0.9633 0.1572 0.6635 0.0813 
 1:3 0.9941 1.0000 1.0000 0.1364 0.9904 1.0000 0.2758 0.6879 0.7086 
 1:5 0.9935 1.0000 1.0000 0.1930 0.9996 1.0000 0.8581 0.7876 0.7042 
 1:9 0.9939 1.0000 1.0000 0.2388 1.0000 1.0000 0.2721 0.5236 0.8516 

(50, 50) 1:1 0.9911 1.0000 1.0000 0.0469 0.9305 1.0000 0.4715 0.1544 0.4084 
 1:3 0.9972 1.0000 1.0000 0.2715 1.0000 1.0000 0.9575 0.1577 0.1761 
 1:5 0.9985 1.0000 1.0000 0.3915 1.0000 1.0000 0.9579 0.8291 0.6487 
 1:9 0.9987 1.0000 1.0000 0.4841 1.0000 1.0000 0.6214 0.6881 0.7045 

1 2(n , n )  
1 2(V :V )  WBR       

TE PE1:1.5 PE1:2       

(10, 10) 1:1 0.0454 0.3171 0.7194       
 1:3 0.0886 0.8242 0.9850       
 1:5 0.1171 0.9496 0.9987       
 1:9 0.1325 0.9944 1.0000       

(20, 20) 1:1 0.0445 0.5811 0.9633       
 1:3 0.1364 0.9904 1.0000       
 1:5 0.1929 0.9996 1.0000       
 1:9 0.2365 1.0000 1.0000       

(50, 50) 1:1 0.0477 0.9306 1.0000       
 1:3 0.2722 1.0000 1.0000       
 1:5 0.3915 1.0000 1.0000       
 1:9 0.4840 1.0000 1.0000       

 

 



Int. J. Anal. Appl. (2024), 22:4 13 

 

Table 5. Probability of type I error and power of the test of seven test statistics for two 

independent populations with Laplace distribution 

 

1 2(n , n )  
1 2(V :V )  Z-test t-test Welch t-test 

TE PE1:1.5 PE1:2 TE PE1:1.5 PE1:2 TE PE1:1.5 PE1:2 

(10, 10) 1:1 0.1621 0.1493 0.3575 0.0441 0.1187 0.3114 0.0427 0.1098 0.2951 
 1:3 0.0375 0.0696 0.1797 0.0435 0.0930 0.2319 0.0410 0.0893 0.2234 
 1:5 0.0231 0.0421 0.1112 0.0441 0.0815 0.1878 0.0416 0.0784 0.1809 
 1:9 0.0175 0.0281 0.0590 0.0457 0.0734 0.1454 0.0423 0.0683 0.1386 

(20, 20) 1:1 0.1667 0.2277 0.5939 0.0490 0.1814 0.5249 0.0484 0.1747 0.5144 
 1:3 0.0411 0.1015 0.3454 0.0516 0.1357 0.3974 0.0511 0.1338 0.3943 
 1:5 0.0233 0.0648 0.2225 0.0472 0.1194 0.3326 0.0460 0.1183 0.3302 
 1:9 0.0181 0.0365 0.1223 0.0530 0.0984 0.2524 0.0513 0.0962 0.2484 

(50, 50) 1:1 0.1657 0.4244 0.9202 0.0478 0.3571 0.8767 0.0477 0.3550 0.8748 
 1:3 0.0354 0.2155 0.7202 0.0492 0.2628 0.7543 0.0489 0.2622 0.7535 
 1:5 0.0243 0.1407 0.5422 0.0476 0.2210 0.6509 0.0476 0.2207 0.6506 
 1:9 0.0151 0.0704 0.3220 0.0504 0.1618 0.5153 0.0498 0.1610 0.5132 

1 2(n , n )  
1 2(V :V )  MAMWU MWU BRW 

TE PE1:1.5 PE1:2 TE PE1:1.5 PE1:2 TE PE1:1.5 PE1:2 

(10, 10) 1:1 0.9708 0.9787 0.9924 0.0420 0.1315 0.3466 0.2243 0.8595 0.7424 
 1:3 0.9713 0.9771 0.9893 0.0414 0.0986 0.2479 0.5548 0.4996 0.3286 
 1:5 0.9696 0.9742 0.9859 0.0406 0.0827 0.2014 0.0600 0.5193 0.4979 
 1:9 0.9705 0.9750 0.9844 0.0424 0.0705 0.1615 0.0751 0.0040 0.8783 

(20, 20) 1:1 0.9899 0.9958 0.9993 0.0498 0.2407 0.6506 0.1743 0.8195 0.7446 
 1:3 0.9900 0.9930 0.9978 0.0511 0.1652 0.4874 0.8801 0.2660 0.1811 
 1:5 0.9884 0.9947 0.9977 0.0506 0.1396 0.4130 0.8206 0.5149 0.9316 
 1:9 0.9891 0.9933 0.9957 0.0541 0.1141 0.3181 0.3221 0.8843 0.8395 

(50, 50) 1:1 0.9919 0.9986 0.9999 0.0505 0.5011 0.9620 0.3898 0.9042 0.1275 
 1:3 0.9928 0.9981 1.0000 0.0506 0.3571 0.8760 0.3926 0.0746 0.4801 
 1:5 0.9907 0.9969 0.9999 0.0513 0.2882 0.7937 0.2306 0.3321 0.6598 
 1:9 0.9922 0.9954 0.9997 0.0524   0.2263 0.6549 0.2846 0.3057 0.9978 

1 2(n , n )  
1 2(V :V )  WBR       

TE PE1:1.5 PE1:2       

(10, 10) 1:1 0.0440 0.1420 0.3620       
 1:3 0.0420 0.0970 0.2790       
 1:5 0.0590 0.0950 0.2330       
 1:9 0.0400 0.0790 0.1700       

(20, 20) 1:1 0.0440 0.2320 0.6430       
 1:3 0.0500 0.1710 0.4790       
 1:5 0.0450 0.1360 0.4240       
 1:9 0.0670 0.1190 0.3230       

(50, 50) 1:1 0.0470 0.4940 0.9600       
 1:3 0.0490 0.3520 0.8830       
 1:5 0.0380 0.3070 0.7810       
 1:9 0.0380 0.2180 0.6600       
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As shown in Table 2, when the populations had exponential distribution, it was found 

that Z-test, t-test, and Welch t-test were capable of controlling the probability of type I error for 

all sample sizes in both equal and unequal variances. On the other hand, MWU and WBR were 

capable of controlling the probability of type I error for only equal variance.  

Additionally, for equal variance, the test statistics with the highest testing power for 

controlling the probability of type I error in most conditions were Z-test for small mean difference 

and t-test for moderate mean difference. For unequal variance with small mean difference, the 

test statistics with the highest testing power for controlling the probability of type I error were Z-

test and t-test. Furthermore, when the mean difference was moderate, the test statistics with the 

highest testing power for controlling the probability of type I error were Z-test, followed by t-test, 

Welch t-test, respectively.  

Based on log-normal distribution given in Table 3, the results demonstrated that Z-test 

had the ability to control the probability of type I error for all sample sizes in both equal and 

unequal variances. For equal variance, t-test, Welch t-test, MWU and WBR had the ability to 

control the probability of type I error for all sample sizes. Nevertheless, for unequal variance, t-

test and Welch t-test with unequal variance ratio of 1:3, and Welch t-test for 1 2 50 50(n ,n ) ( , )=    

with unequal variance ratio of 1:5 were able to control the probability of type I error. 

This Table 3 confirms that for equal variance with small and moderate mean differences, 

WBR had superior test estimation power for controlling the probability of type I error, followed 

by MWU. For unequal variance with small and moderate mean differences, Z-test was very 

effective with the highest testing power that could control the probability of type I error.  

Table 4 gives the results of gamma distribution. It was found that Z-test could control the 

probability of type I error for all sample sizes in both equal and unequal variances. Moreover, t-

test and Welch t-test could also control the probability of type I error for  all conditions except for 

1 2 10 10(n ,n ) ( , )=  with unequal variance ratios of 1:5 and 1:9. For equal variance, MWU and 

WBR could control the probability of type I error for all sizes, while BRW could control the 

probability of type I error for only 1 2 10 10(n ,n ) ( , )= .  

Based on power of the test for equal variance with small and moderate mean differences, 

WBR dominated the other test statistics with the highest test estimation power and ability to 

control the probability of type I error. Whereas the second largest test estimation power and 

ability to control the probability of type I error were MWU and BRW in the case of small mean 

difference, and MWU in the case of moderate mean difference. For unequal variance, Z-test was 

suitable for both small and moderate mean differences. While the second most powerful test 

statistics were t-test for small mean difference, and Welch t-test for moderate mean difference. 

Table 5 displays the results of Laplace distribution, where it was observed that t-test, 

Welch t-test, MWU and WBR were able to control the probability of type I error for all cases in 
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both equal and unequal variances. For unequal variance, Z-test was able to control the probability 

of type I error with variance ratio of 1:3, while BRW could control the probability of type I error 

for only 1 2 10 10(n ,n ) ( , )=  with variance ratio of 1:5.  

Considering power of the test for equal variance with small and moderate mean 

differences, the superior test statistics with the highest testing power for controlling the 

probability of type I error in most conditions were MWU and WBR, respectively. For unequal 

variance with small mean differences, MWU and WBR had the greatest estimation power for 

controlling the probability of type I error, followed by BRW. For moderate mean difference, the 

highest testing power which could control the probability of type I error were WBR, MWU and 

BRW, respectively. 

 

5. Conclusion and Discussion 

The results showed that when the distributions of two populations assumed to be normal, 

exponential, log-normal, gamma and Laplace distributions in the case of homogeneous variances, 

Z-test, t-test, Welch t-test, MWU and WBR yielded acceptable capability of controlling the 

probability of type I error for all sample sizes based on Bradley’s criteria except for Z-test, which 

was not suitable for Laplace distribution. Consequently, the test statistics were robust to changes 

in the distribution of the population. Regardless of heterogeneity of variances for two population 

groups, all test statistics yielded a lower acceptable capability of controlling the probability of 

type I error. Z-test, t-test, and Welch t-test had the capability of controlling the probability of type 

I error for almost conditions under all considered distributions. Moreover, MWU and WBR were 

superior for all sample sizes under normal and Laplace distributions, whereas BRW was 

appropriate for gamma distribution with only 1 2 10 10(n ,n ) ( , )=  and unequal variance ratio of 

1:9. MAMWU performing poorly for all conditions. 

For equal variance with both small and moderate mean differences, the test statistics with 

the highest estimation power for controlling the probability of type I error in most conditions 

were Z-test for normal distribution, WBR for log-normal and gamma distributions, and MWU for 

Laplace distribution. Z-test was better for small mean difference, while t-test was superior for 

moderate mean difference when two populations had exponential distributions. 

For unequal variance with both small and moderate mean differences, Z-test had the 

highest testing power and ability to control the probability of type I error in most conditions for 

normal, exponential, log-normal and gamma distributions. MWU and WBR were superior for 

Laplace distribution when the mean difference was small. WBR was suitable when the mean 

difference was moderate. 

Besides, it was found that MAMWU gave the highest test estimation power for every 

condition but did not have the capacity to control the probability of type I error. This related to 
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the research of Eriobu and Umeh [4]. When two populations had gamma distributions and equal 

variance, WBR was recommended for testing hypothesis because this test statistic had the highest 

testing power for controlling the probability of type I error. This is consistent with the work of 

Sangthong and Klubnual [11]. Furthermore, the results also revealed that the testing power 

estimation tended to be higher as sample sizes increased when the variance ratios were identical 

between two populations.  
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