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Abstract. The queuing model is widely used in the production, inventory, and service industries. In order to improve

the performance of a queuing model, it is crucial to characterize the practical queuing characteristics. The purpose of

this work is to examine an analysis of the economic cost of Coxian-2 service with encouraged arrival and balking in a

queuing system. In particular, we discussed Coxian-2 service-encouraged arrival queuing system and an accelerated

distribution. According to our presumption, units (customers) enter the system one at a time in an encouraged arrival

procedure, and the server offers Coxian-2 service one at a time according to the first in first out (FIFO) rule. As

probability-generating functions, the typical customer count, and the typical customer wait time in the system and

queue, respectively. We also derive steady-state probabilities and performance measures for the proposed model.

Finally, the economic analysis of the model is performed by introducing cost model with an empirical example is given

to show the effectiveness of the proposed model. The created formula also fulfills Little’s formula.

1. Introduction

The queuing theory deals with situations where some kind of customers are gathered at a service

facility to receive service, some are waiting for service, and others are leaving. Service facilities

develop queues or waiting lines when they cannot handle the number of units requiring service.

We all have to wait in a line or queue in our daily lives, whether it is at the food court, the clinic, or

the bank. The research on queuing systems with server vacation received more prominence and

importance in the literature on queuing theory. To effectively use idle time, servers take vacations.

Production, financial services, communications networks, internet technologies, etc. are just a

few of the areas where vacation queuing models have been effectively applied. Many academics

have an interest in studying queueing models with different vacation guidelines, such as single
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and multiple vacation regulations. In terms of managing operations, planning, executing, and

growing services for customers and other areas, a range of organizations can greatly benefit from

the encouraged arrival policy.

The M/D/1 queue is widely found in queue with optional server vacations Al-Jararha and

Madan [1]. The average number of customers, their average waiting time in the system, and

the steady-state queue size distributions in terms of these variables are found in Al-Rawi and Al

Shboul [2]. The first three moments are used to study phase-type distributions that approximate

generic distributions with known squared coefficients of variation, and the phase-type distribu-

tions are also discussed as being used to simulate processes as well as fit observable data sets and

approximate broad distributions for simulation and analytical models are investigated in [3], [8]

and [18]. Bounkhel [4] investigated how system-size steady-state probabilities are determined

using the probability generating function and linear operator techniques with measures of effec-

tiveness. Since the late 1970s, queueing systems with server vacations (servers doing non-queueing

tasks) have been the subject of much research. The early 1980s saw the completion of a sizable

number of works in this area and described about the balking (they can decide not to join the

queue) in vacation queuing models which were examined by Doshi and Haight [5] and [7] in 1986.

In order to arrive at the decision that the complementary waiting-time distribution function in

the Gl/G/I queue is the sum of two exponential functions when the service time has a Coxian-2

distribution, are disscused in [6]. Basics of queuing theory be found in [9] and [19]. Zhang [10],

have investigated the vacation queues with different vacation policies with single or multiple

server vacations. Due to an additional optional service, breakdowns, and repeated vacations with

dissatisfied customers,for a batch encouraged arrival of Markovian queuing model has been stud-

ied in [11] and [12]. The Markovian model’s quality control methodology provides an iterative

approach to the nth customer in the system are studied in [13]. Stationary distribution of coxian-2

service with vaction times and deterministic service were studied in [14], [16] and [17]. Perfor-

mance of load-balancing measures in steady-state conditions in conditions of high traffic, with

the system’s normalised load being studied in [15]. Single server finite capacity of maarkovian

service with encouraged arrival are discussed in [20]. The Coxian service time transition matrices

of industrial lines and to obtain the extact solution of a sparse linear systems are explained in [23]

and [24]. Yücel and Bulut [25] and [26] are explained the measures for steady-state distribution and

performance, including throughput, the average number of items in the buffers, and the average

system cost, which includes holding, production, and shortage costs in coxian-2 distrubution.

In this work, we investigate an analysis of the economic costs of coxian-2 service with encour-

aged arrival and balking with an accelerated distribution. When a customer uses a service, his

service time is a random variable distributed as Coxian-2 service. Furthermore, we suppose that

after each service, the server may take a vacation of arbitrary length with probability p or resume

the next service with probability (1-p). When the server takes a vacation, his vacation time is

dispersed accelerated distribution. We obtained the steady-state probabilities with a queue size
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distribution. Additionally, for the steady state, we find the mean queue size, the mean system size,

and the mean customer waiting time.

Maximisation of system size and optimisation of the cost analysis of Coxian-2 service by encour-

aging arrival and balking are proposed in this work. An introduction is described in Section 1.

The coxian-2 service with encouraged arrival for model elaboration is described in Section 2. The

governing system of equations is derived in Section 3. Steady-state solutions and performance

measures are also described in Sections 4 and 5. Numerical illustrations are provided in Section

6. To optimise the cost analysis, the economic cost was explained with an example in Section 7.

Results and discussion are given in Section 8. Section 9 contains the conclusion.

The mathematical model of our study is briefly described by the following assumptions:

2. Model Elaboration

In this work we assume that

(1) Customers arrive to the system in a Encouraged arrival rate and balking (λ(1 + ζ)ϑ),

where, ζ represents the percentage increase in number of customers calculated from past

or observed data and ϑ represents the customers are impatient, they can decide not to join

the queue (balking).

(2) Coxian-2 service is accelerated with kth phase mean service time
1
µk

, k=1,2.

(3) The server’s vacation period has an accelerated distribution with mean vacation time
1
β

(4) The system’s random variables, such as customer service times, customer service intervals,

and server vacation intervals, are all independent of one another.

Also we define.

(1) Probk
n(t) : Probability that a time t there are n customers in the queue excluding one unit in

phase-k service, k=1,2; n=0,1,2...

(2) Q(t) : Probability that at time t there is no customer in the queue and the server is idle.

(3) Mn(t) : Probability that at time t there is no customer in the queue and the server is on

vacation.

Then we have the following sets of equations:

Prob1
n(t + ∆t) =Prob1

n(t)[1− (λ(1 + ζ)ϑ)∆t](1− µ1∆t)

+ Prob1
n−1(t)[(λ(1 + ζ)ϑ)∆t]((1− µ1∆t)

+ Prob1
n+1(t)(1− (λ(1 + ζ)ϑ)∆t)(1− b)(µ1∆t)(1− p)

+ Prob2
n+1(t)(1− (λ(1 + ζ)ϑ)∆t)(µ2∆t)(1− p)

+ Mn+1(t)(1− (λ(1 + ζ)ϑ)∆t)β∆t (2.1)

Prob1
0(t + ∆t) =Prob1

0(t)[1− (λ(1 + ζ)ϑ)∆t](1− µ1∆t)

+ Prob1
1(t)(1− (λ(1 + ζ)ϑ)∆t)(1− b)(µ1∆t)(1− p)
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+ Prob2
1(t)(1− (λ(1 + ζ)ϑ)∆t)(µ2∆t)(1− p)

+ M1(t)(1− (λ(1 + ζ)ϑ)∆t)β∆t + Q(t)(λ(1 + ζ)ϑ)∆t (2.2)

Prob2
n(t + ∆t) =Prob2

n(t)[1− λ(1 + ζ)ϑ∆t](1− µ2∆t)

+ Prob2
n−1(t)[λ(1 + ζ)ϑ∆t](1− µ2∆t)

+ Prob1
n(1− λ(1 + ζ)ϑ∆t)(µ1∆t)b, n ≥ 1 (2.3)

Prob2
0(t + ∆t) =Prob2

0(t)[1− λ(1 + ζ)ϑ∆t](1− µ2∆t)

+ Prob1
0(1− λ(1 + ζ)ϑ∆t)(µ1∆t)b (2.4)

Mn(t + ∆t) =Mn(t)[1− λ(1 + ζ)ϑ∆t](1− β∆ + Mn−1(t)[1− λ(1 + ζ)ϑ∆t](1− β∆t)

+ Prob2
n(t)[1− λ(1 + ζ)ϑ∆t](µ2∆t)p

+ Prob1
n(t)[1− λ(1 + ζ)ϑ∆t](µ1∆t)(1− b)p, n ≥ 1 (2.5)

M0(t + ∆t) =M0(t)[1− λ(1 + ζ)ϑ∆t](1− β∆t + Prob2
0(t)[1− λ(1 + ζ)ϑ∆t](µ2∆t)p

+ Prob1
0(t)[1− λ(1 + ζ)ϑ∆t](µ1∆t)(1− b)p (2.6)

Q(t + ∆t) =Q(t)[1− λ(1 + ζ)ϑ∆t] + Prob1
0(t)[1− λ(1 + ζ)ϑ∆t](µ1∆t)(1− b)(1− p)

+ Prob2
0(t)[1− λ(1 + ζ)ϑ∆t](µ2∆t)(1− p) + M0(t)[1− λ(1 + ζ)ϑ∆t]β∆t (2.7)

The probabilities of the system at time t and those at time t+∆t can be connected by considering

Probn1(t+ ∆t), which represents the probability that there are n customers at time t, excluding one

unit in phase 1. The following scenarios are mutually exclusive and included:

• It is assumed that at time t, there are n customers in the queue, which excludes one customer

in phase 1 service. There are no encouraged arrivals, no balking and no service completions

during (t,t+∆t] and there are (n-1) customers in the queue, which excludes one customer in

phase 1 service. There are one encouraged arrival, one balking and no service completions

during (t,t+∆t]. These case has a joint probability Prob1
n(t)[1− (λ(1+ ζ)ϑ)∆t](1−µ1∆t) and

Prob1
n−1(t)[(λ(1 + ζ)ϑ)∆t]((1− µ1∆t)

• There are (n+1) customers in the queue at time t, with the excluding of one customer in

phase 1 and phase 2 service, and there are no encouraged arrival, no balking and one

service completion during (t,t+∆t], and the customer prefers not to use phase 2 and phase

1 of service. Then the server also doesn’t take a vacation with probability (1-p). In this

situation joint probability exits in Prob1
n+1(t)(1 − (λ(1 + ζ)ϑ)∆t)(1 − b)(µ1∆t)(1 − p) and

Prob2
n+1(t)(1 − (λ(1 + ζ)ϑ)∆t)(µ2∆t)(1 − p). When there are there are (n+1) customers in

the queue and the server is on vacation, and no encouraged arrival, no balking , but one

vacation completed during (t,t+∆t]. These case has a joint probability Mn+1(t)(1− (λ(1 +
ζ)ϑ)∆t)β∆t.
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3. The Governing System of Equation

The following set of difference-differential equations is obtained by rearranging the terms of the

equations and let ∆t→ 0,

d
dt

Prob1
n(t) = − [(λ(1 + ζ)ϑ) + µ1]Prob1

n(t) + (λ(1 + ζ)ϑ)Prob1
n−1(t)

+ (1− b)(1− p)µ1Prob1
n+1(t) + (1− p)µ2Prob2

n+1(t) + βVn+1(t) (3.1)

d
dt

Prob1
0(t) = − [(λ(1 + ζ)ϑ) + µ1]Prob1

0(t) + (1− b)(1− p)µ1Prob1
1(t)

+ (1− p)µ2Prob2
1(t) + βV1(t) + (λ(1 + ζ)ϑ)Q(t) (3.2)

d
dt

Prob2
n(t) = − [(λ(1 + ζ)ϑ) + µ2]Prob2

n(t) + (λ(1 + ζ)ϑ)Prob2
n−1(t) + bµ1Prob1

n(t) (3.3)

d
dt

Prob2
0(t) = − [(λ(1 + ζ)ϑ) + µ2]Prob2

0(t) + bµ1Prob1
0(t) (3.4)

d
dt

Mn(t) = − [(λ(1 + ζ)ϑ) + β]Mn(t) + (λ(1 + ζ)ϑ)Mn−1(t) + pµ2Prob2
n(t)

+ (1− b)pµ1Prob1
n(t) (3.5)

d
dt

M0(t) = − [(λ(1 + ζ)ϑ) + β]M0(t) + pµ2Prob2
0(t) + (1− b)pµ1Prob1

0(t) (3.6)

d
dt

Q(t) = − [λ(1 + ζ)ϑ]Q(t) + (1− b)(1− p)µ1Prob1
0(t)

+ (1− p)µ2Prob2
0(t) + βM0(t) (3.7)

Let us assume that initially there are no customers in the system and the server is idle. We have

the following initial conditions:

Probk
n(0) = 0, k = 1, 2, Mn(0) = 0,∀n ≥ 0, Q(0) = 1 (3.8)

Now, by applying the Laplace transformation to equations (3.1) through (3.7), and by using

(3.8), we obtain the following:

cProb∗1n (c) − Prob1
n(0) = − [(λ(1 + ζ)ϑ) + µ1]Prob∗1n (c) + (λ(1 + ζ)ϑ)Prob∗1n−1(c)

+ (1− b)(1− p)µ1Prob∗1n+1(c)

+ (1− p)µ2Prob∗2n+1(c) + βM∗n+1(c)

[c + (λ(1 + ζ)ϑ) + µ1]Prob∗1n (c) =(λ(1 + ζ)ϑ)Prob∗1n−1(c) + (1− b)(1− p)µ1Prob∗1n+1(c)

+ (1− p)µ2Prob∗2n+1(c) + βM∗n+1(c), n ≥ 1 (3.9)

[c + (λ(1 + ζ)ϑ) + µ1]Prob∗10 (c) =(1− b)(1− p)µ1Prob∗11 (c) + (1− p)µ2Prob∗21 (c)

+ βM∗1(c) + (λ(1 + ζ)ϑ)Q∗(c) (3.10)

[c + (λ(1 + ζ)ϑ) + µ2]Prob∗2n (c) =(λ(1 + ζ)ϑ)Prob∗2n−1(c) + bµ1Prob∗1n (c) (3.11)

[c + (λ(1 + ζ)ϑ) + µ2]Prob∗20 (c) =bµ1Prob∗10 (c) (3.12)

[c + (λ(1 + ζ)ϑ) + β]M∗n(c) =(λ(1 + ζ)ϑ)M∗n−1(c) + pµ2Prob∗2n (c)
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+ (1− b)pµ1Prob∗1n (c) (3.13)

[c + (λ(1 + ζ)ϑ) + β]M∗n(c) =pµ2Prob∗2n (c) + (1− b)pµ1Prob∗1n (c) (3.14)

[c + λ(1 + ζ)ϑ]Q∗(c) =(1− b)(1− p)µ1Prob∗10 (c)

+ (1− p)µ2Prob∗20 (c) + βM∗0(c) + 1 (3.15)

To define the probability-generating functions listed below in terms of their Laplace transforms

are:

Prob∗k(y, c) =
∞∑

n=0

Prob∗kn (c)yn, k = 1, 2 (3.16)

M∗(y, c) =
∞∑

n=0

P∗n(c)yn (3.17)

Multiply the equation (3.9) by yn+1 and sum over n=1 to ∞, and multiply eqaution (3.10) by y,

then add together get,

[c + (λ(1 + ζ)ϑ) + µ1]
∞∑

n=0

Prob∗1n (c)yn+1 = (λ(1 + ζ)ϑ)y2
∞∑

n=0

Prob∗1n (c)yn + (1− b)(1− p)µ1

∞∑
n=1

Prob∗1n (c)yn + (1− p)µ2

∞∑
n=1

Prob∗2n (c)yn + β
∞∑

n=1

M∗n(c)yn + Q∗(c)y

And by using the terms define by equations (3.16) and (3.17), we obtain,

yProb∗1(y, c)[c + (λ(1 + ζ)ϑ) + µ1 − (λ(1 + ζ)ϑ)y] =(1− b)(1− p)µ1P∗1(y, c)

+(1− p)µ2P∗2(y, c) + βM∗(y, c)+(λ(1 + ζ)ϑ)yQ∗(c)

−[(1− b)(1− p)µ1Prob∗10 (c) + (1− p)µ2Prob∗20 (c) + βM∗0(c)] (3.18)

Now using equations (3.15), (3.18) can be written as,

Prob∗1(y, c)[y(c + (λ(1 + ζ)ϑ) + µ1 − (λ(1 + ζ)ϑ))y− (1− b)(1− p)µ1]

= (1− p)µ2Prob∗2(y, c) + βV∗(y, c) + Q∗(c)[(λ(1 + ζ)ϑ)y− c− (λ(1 + ζ)ϑ)] + 1 (3.19)

Next multiply equation (3.11) by yn and sum over n=1 to∞, equation (3.12) to the result. Thus we

have,

Prob∗2(y, c)[c + (λ(1 + ζ)ϑ) + µ2 − (λ(1 + ζ)ϑ)y] =bµ1Prob∗1(y, c) (3.20)

Then multiplying equation (3.13) by yn and summing over n=1 to ∞ then, adding the result to

equation (3.14) we give,

M∗(y, c)[c + (λ(1 + ζ)ϑ) + β− (λ(1 + ζ)ϑ)y] = pµ2Prob∗2(y, c) + p(1− b)µ1Prob∗1(y, c) (3.21)

Now, on solving equations (3.19) - (3.21) using Cramerś rule we get;

Prob∗1(y, c) =
[Q∗(c)((λ(1 + ζ)ϑ)y− (λ(1 + ζ)ϑ) − c) + 1][c + µ2 + (λ(1 + ζ)ϑ) − (λ(1 + ζ)ϑ)y][c + β+ (λ(1 + ζ)ϑ) − (λ(1 + ζ)ϑ)z]

E(c, y)
(3.22)
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Prob∗2(y, c) =
bµ1[Q∗(c)((λ(1 + ζ)ϑ)y− (λ(1 + ζ)ϑ) − c) + 1][c + β+ (λ(1 + ζ)ϑ) − (λ(1 + ζ)ϑ)y]

E(c, y)
(3.23)

M∗(y, c) =
[Q∗(c)((λ(1 + ζ)ϑ)y− (λ(1 + ζ)ϑ) − c) + 1][bpµ1µ2 + p(1− b)µ1][c + µ2 + (λ(1 + ζ)ϑ) − (λ(1 + ζ)ϑ)y]

E(c, y)
(3.24)

where,

E(c, y) =z(c + µ1 + (λ(1 + ζ)ϑ) − (λ(1 + ζ)ϑ)y)(c + µ2 + (λ(1 + ζ)ϑ)

− (λ(1 + ζ)ϑ)y)(c + β+ (λ(1 + ζ)ϑ) − (λ(1 + ζ)ϑ)y)

− (1− b)(1− p)µ1(c + µ2 + (λ(1 + ζ)ϑ) − (λ(1 + ζ)ϑ)y)(c + β+ (λ(1 + ζ)ϑ)

− (λ(1 + ζ)ϑ)z) − (1− p)bµ1µ2(c + β+ (λ(1 + ζ)ϑ) − (λ(1 + ζ)ϑ)y)

− βp(1− b)µ1(c + µ1 + (λ(1 + ζ)ϑ) − (λ(1 + ζ)ϑ)y) − βpbµ1µ2 (3.25)

4. Steady State Solution

Using the well known property of Laplace transform(L.T)

limc→0 cQ∗(c) = Q = limt→∞Q(t) We obtain from equation (3.25)

E(y) = lim
c→0

E(c, y) =z(µ1 + (λ(1 + ζ)ϑ) − (λ(1 + ζ)ϑ)y)(µ2 + (λ(1 + ζ)ϑ) − (λ(1 + ζ)ϑ)y)

(β+ (λ(1 + ζ)ϑ) − (λ(1 + ζ)ϑ)y)

− (1− b)(1− p)µ1(µ2 + (λ(1 + ζ)ϑ)

− (λ(1 + ζ)ϑ)y)(β+ (λ(1 + ζ)ϑ) − (λ(1 + ζ)ϑ)y)

− (1− p)bµ1µ2(β+ (λ(1 + ζ)ϑ) − (λ(1 + ζ)ϑ)y)

− βp(1− b)µ1(µ1 + (λ(1 + ζ)ϑ) − (λ(1 + ζ)ϑ)y) − βpbµ1µ2 (4.1)

then, for the steady state we have,

Prob1(y) = lim
c→0

sProb∗1(y, c)

Prob1(y) =
limc→0 c[Q∗(c)((λ(1 + ζ)ϑ)c− (λ(1 + ζ)ϑ) − c) + 1][c + µ2 + (λ(1 + ζ)ϑ) − (λ(1 + ζ)ϑ)y][c + β+ (λ(1 + ζ)ϑ) − (λ(1 + ζ)ϑ)z]

E(c, y)

Prob1(y) =
[Q(λ(1 + ζ)ϑ)y− (λ(1 + ζ)ϑ)][µ2 + (λ(1 + ζ)ϑ) − (λ(1 + ζ)ϑ)y][β+ (λ(1 + ζ)ϑ) − (λ(1 + ζ)ϑ)y]

E(y)
(4.2)

Prob1(y) = lim
c→0

sProb∗2(y, c)

=
bµ1Q[(λ(1 + ζ)ϑ)y− (λ(1 + ζ)ϑ)][β+ (λ(1 + ζ)ϑ) − (λ(1 + ζ)ϑ)y]

E(y)
(4.3)

M(y) = lim
c→0

cM∗(y, c)

=
Q[(λ(1 + ζ)ϑ)y− (λ(1 + ζ)ϑ)][bpµ1µ2 + p(1− b)µ1][µ2 + (λ(1 + ζ)ϑ) − (λ(1 + ζ)ϑ)y]

E(y)
(4.4)
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Where E(y) is given in equation (4.1), In order to find the only unknown probability Q, we shall

use the normalizing condition.

Q + Prob1(1) + Prob2(1) + M(1) = 1 (4.5)

Now, since each of Prob1(1), Prob2(1)&M(1) in equations (4.2) - (4.4) is indeterminate of the
0
0

form at z=1, we use L’hospital rule and obtain,

Prob1(1) = lim
y→1

Prob1(y) =
(λ(1 + ζ)ϑ)µ2βQ

µ1µ2β− (λ(1 + ζ)ϑ)µ2β− (λ(1 + ζ)ϑ)bµ1β− (λ(1 + ζ)ϑ)pµ1µ2
(4.6)

Prob2(1) = lim
y→1

Prob2(y) =
(λ(1 + ζ)ϑ)bµ1βQ

µ1µ2β− (λ(1 + ζ)ϑ)µ2β− (λ(1 + ζ)ϑ)bµ1β− (λ(1 + ζ)ϑ)pµ1µ2
(4.7)

M(1) = lim
y→1

M(y) =
(λ(1 + ζ)ϑ)pµ1µ2Q

µ1µ2β− (λ(1 + ζ)ϑ)µ2β− (λ(1 + ζ)ϑ)bµ1β− (λ(1 + ζ)ϑ)pµ1µ2
(4.8)

Using equations (4.6) - (4.8) in equation (4.5) and simplifying we obtain

Q =
µ1µ2β− (λ(1 + ζ)ϑ)µ2β− (λ(1 + ζ)ϑ)bµ1β− (λ(1 + ζ)ϑ)pµ1µ2

µ1µ2β

Which on simplifying gives,

Q =1−
λ(1 + ζ)ϑ

µ1
−
(λ(1 + ζ)ϑ)b

µ2
−
(λ(1 + ζ)ϑ)p

β

=1− [
λ(1 + ζ)ϑ

µ1
+

(λ(1 + ζ)ϑ)b
µ2

+
(λ(1 + ζ)ϑ)p

β
]

=1− ρ (4.9)

and so, ρ =[
λ(1 + ζ)ϑ

µ1
+

(λ(1 + ζ)ϑ)b
µ2

+
(λ(1 + ζ)ϑ)p

β
] (4.10)

4.1. Some special Cases:

(1) We may note that when p=0, (no vacation),

Q = 1− [
λ(1 + ζ)ϑ

µ1
+

(λ(1 + ζ)ϑ)b
µ2

]

(2) Further, when p=0,b=1 (no vacation,two phase service),

Q = 1− [
λ(1 + ζ)ϑ

µ1
+
λ(1 + ζ)ϑ

µ2
]

(3) And when p=0,b=0 (no vacation, no second phase service)

Q = 1−
λ(1 + ζ)ϑ

µ1
(4.11)

This equation (4.11) is known as the result of M/M/1 Queue.
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5. PerformanceMeasures

In this section, our aim is to determine the average number of customers in the system and their

mean waiting time. We define:

L = The average number in the system

Lq = The average number in the queue (mean queue length)

W = The mean waiting time in the system

Wq = The mean waiting time in the queue.

Let Prob(z) = Prob1(z) + Prob2(z) + M(z) define the p.g.f of the number of units present in the

queue without regard to the state of the server.Then we write,

Prob(z) =
S(y)
E(y)

Where,

S(y) =Q(λ(1 + ζ)ϑ)[(y− 1)(µ2 + (λ(1 + ζ)ϑ) − (λ(1 + ζ)ϑ)y)(β+ (λ(1 + ζ)ϑ)

− (λ(1 + ζ)ϑ)y) + bµ1(y− 1)(β+ (λ(1 + ζ)ϑ) − (λ(1 + ζ)ϑ)y)

+ (y− 1)[bpµ1µ2 + p(1− b)µ1(µ2 + (λ(1 + ζ)ϑ) − (λ(1 + ζ)ϑ)y)]]

and E(y) is given by equation (4.1)

Now since, Lq =
d
dz

Prob(y)|y|=1 =
0
0

,Then, we use L’Hosptial’s rule twice to get,

Łq =
E
′

(1)S
′′

(1) − S
′

(1)E
′′

(1)
2[E′(1)]

S
′

(1) =Q(λ(1 + ζ)ϑ)[µ2β+ bµ1β+ pµ1µ2]

S
′′

(1) =Q(λ(1 + ζ)ϑ)[2(λ(1 + ζ)ϑ)bpµ1 − 2(λ(1 + ζ)ϑ)β− 2(λ(1 + ζ)ϑ)pµ1

− 2(λ(1 + ζ)ϑ)bµ1 − 2(λ(1 + ζ)ϑ)µ2]

E
′

(1) =µ1µ2β− (λ(1 + ζ)ϑ)bµ1β− (λ(1 + ζ)ϑ)pµ1µ2 − (λ(1 + ζ)ϑ)bµ2β

E
′′

(1) =2(λ(1 + ζ)ϑ)2β− 2(λ(1 + ζ)ϑ)µ1µ2 − 2(λ(1 + ζ)ϑ)µ1β+ 2(λ(1 + ζ)ϑ)2µ2

− 2(λ(1 + ζ)ϑ)µ2β+ 2p(λ(1 + ζ)ϑ)2µ1 + 2b(λ(1 + ζ)ϑ)2µ1 − 2bp(λ(1 + ζ)ϑ)2µ1

Further, L = Lq + ρ

where, ρ = [
λ(1 + ζ)ϑ

µ1
+

(λ(1 + ζ)ϑ)b
µ2

+
(λ(1 + ζ)ϑ)p

β
], W =

L
λ(1 + ζ)ϑ

and so Wq =
Lq

λ(1 + ζ)ϑ
.

6. Numerical Illustrations

In order to see the effective of various parameters on server’s idle time Q and various other

queue characteristics such as ρ, L, W, Lq and Wq, are the basic numerical examples on our main

results. For this purpose, we choose arbitrary values of the parameters (λ(1 + ζ)ϑ), β, p, b, µ1 and

µ2 such that the steady state condition is always satisfied. We have assumed (λ(1 + ζ)ϑ) = 0.0220,

β= 0.1, µ1 = 6, µ2 = 8,ζ = 0.1, ϑ =0.01 with varying values of p from 0.0 to 1.0 at the intervals

of 0.1 and varying values of b = 0, b = 0.5 and b = 1. Using MATLAB, we obtain the following
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tables: Table 1 presents an encouraged arrival for 10% discounts with a Coxian-2 service b=0,

Table 2 presents an encouraged arrival for 10% discounts with a Coxian-2 service b=0.5 and Table

3 presents an encouraged arrival for 10% discounts with a Coxian-2 service b=1.0

b p Q ρ L Lq W Wq

0.0 0.9963 0.0037 0.0037 0.0000 0.1673 0.0006

0.1 0.9743 0.0257 0.0307 0.0051 1.3969 0.2302

0.2 0.9523 0.0477 0.0580 0.0103 2.6370 0.4704

0.3 0.9303 0.0697 0.0855 0.0159 3.8886 0.7219

0.4 0.9083 0.0917 0.1134 0.0217 5.1523 0.9856

0.0 0.5 0.8863 0.1137 0.1414 0.0278 6.4291 1.2624

0.6 0.8643 0.1357 0.1698 0.0342 7.7200 1.5533

0.7 0.8423 0.1577 0.1986 0.0409 9.0261 1.8595

0.8 0.8203 0.1797 0.2277 0.0480 10.3486 2.1820

0.9 0.7983 0.2017 0.2572 0.0555 11.6889 2.5223

1.0 0.7763 0.2237 0.2871 0.0634 13.0485 2.8819

Table 1. Encouraged arrival for 10% discounts with a Coxian-2 service b=0.

Figure 1. For b=0 the Coxian-2 service with 10% encouraged arrival and balking

for the length in system and queue, as well as waiting time in system and queue

For b=0, the Coxian-2 service with 10% encouraged arrival and balking for the length in systems

and queues are increasing as shows in the Figure 1.
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b p Q ρ L Lq W Wq

0.0 0.9950 0.0050 0.0051 0.0000 0.2302 0.0010

0.1 0.9730 0.0270 0.0322 0.0051 1.4615 0.2323

0.2 0.9510 0.0490 0.0595 0.0104 2.7035 0.4744

0.3 0.9290 0.0710 0.0871 0.0160 3.9570 0.7278

0.4 0.9070 0.0930 0.1149 0.0219 5.2228 1.2726

0.5 0.5 0.8850 0.1150 0.1430 0.0280 6.5018 1.2726

0.6 0.8630 0.1370 0.1715 0.0344 7.7950 1.5658

0.7 0.8410 0.1590 0.2003 0.0412 9.1036 1.8744

0.8 0.8190 0.1810 0.2294 0.0484 10.4287 2.1996

0.9 0.7970 0.2030 0.2590 0.0559 11.7718 2.5427

1.0 0.7750 0.2250 0.2890 0.0639 13.1344 2.90552

Table 2. Encouraged arrival for 10% discounts with a Coxian-2 service b=0.5

Figure 2. For b=0.5 the Coxian-2 service with 10% encouraged arrival and balking

for the length in system and queue, as well as waiting time in system and queue

The Coxian-2 service with 10% encouraged arrival and balking for the length in systems and

queues are increasing in b=0.5 as shown in the Figure 2.
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b p Q ρ L Lq W Wq

0.0 0.9936 0.0064 0.0064 0.0000 0.2931 0.0014

0.1 0.9716 0.0284 0.0336 0.0052 1.5262 0.2345

0.2 0.9496 0.0505 0.0609 0.0105 2.7700 0.4784

0.3 0.9276 0.0724 0.0886 0.0161 4.0255 0.7338

0.4 0.9056 0.0944 0.1165 0.0220 5.2933 1.0017

1.0 0.5 0.8836 0.1164 0.1446 0.0282 6.5745 1.2828

0.6 0.8616 0.1384 0.1731 0.0347 7.8701 1.5784

0.7 0.8396 0.1604 0.2020 0.0416 9.1811 1.8894

0.8 0.8176 0.1824 0.2312 0.0488 10.5089 2.2172

0.9 0.7956 0.2044 0.2608 0.0564 11.8548 2.5631

1.0 0.7736 0.2264 0.2908 0.0644 13.2203 2.9287

Table 3. Encouraged arrival for 10% discounts with a Coxian-2 service b=1.0

Figure 3. For b=1.0 the Coxian-2 service with 10% encouraged arrival and balking

for the length in system and queue, as well as waiting time in system and queue

When b=1.0 the system size and the queues are increased in coxian-2 service with encouraged

arrival and with balking as shown in Figure 3.

7. Economic Cost Analysis

In order to optimise the system’s operating costs, we established a cost function. In the system,

ch represents the unit holding cost per customer, co represents the operating cost per unit of time,

ca represents the startup cost per unit of time for the server setup, and cs represents the setup cost

per busy cycle. Then, the total expected cost per unit of time is

TC(c) = chL + co
exp[B]
exp[C]

+ ca
exp[I]
exp[C]

+ cs
1

exp[C]
, (7.1)
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Where the expected idle period, the expected busy period, and the expected busy cycle are

respectively given by

exp[I] =
1

λ(1 + ζ)ϑ
, exp[B] =

1− Po

Po
exp[I], exp[C] = exp[I] + exp[B], (7.2)

Thus,

TC(c) = chL + co + ((λ(1 + ζ)ϑ)cs + ca − co)Po (7.3)

Let us considered the unit costs are ch = 10, co = 20, ca = 50, cs = 500 and the system of linear

equations yields Prob0 = 0.7522 ∗ (λ(1 + ζ)ϑ).

p TC at b=0 TC at b=0.5 TC at b=1

0.0 20.712 20.726 20.739

0.1 20.982 20.997 21.011

0.2 21.255 21.270 21.284

0.3 21.530 21.546 21.561

0.4 21.809 21.824 21.840

0.5 22.089 22.105 22.121

0.6 22.373 22.390 22.406

0.7 22.661 22.678 22.695

0.8 22.952 22.969 22.987

0.9 23.247 23.265 23.283

1.0 23.546 23.565 23.583

Table 4. Expected total cost for b=0, 0.5, 1 with encouraged arrival and balking

8. Results and Discussion

• The above table(1, 2, 3) clearly shows that as p increases for a fixed value of b, or b increases

for a fixed value of p. Although the idle time on servers decreases, the utilisation factor,

the average size of the system, and the average queue size are all increasing.

• Further note that values of the above queues characteristics for p = 0 corresponds to the

case, when the server does not take any vacations.

• From the values of b = 0 were corresponds to the vacation periods with a encouraged arrival

and balking of accelerate phase, same as the values of b = 1 are corresponds to vacation

periods with two accelerate phases. Table 4 shows that the expected total cost increases for

each b=0, 0.5, 1 when p increases for a fixed value of b. Further verification in the tables, it

shows that the following graphs are increased.

9. Conclusion

We have investigated the Economic cost of Coxian-2 service with encouraged arrival and balking

with accelerated distribution in queuing model. Additionally, the system utilization factor, the
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average number of customers in queue, and the average wait time for each customer have all been

gathered in closed form. The system size and the queue size are increased. A numerical example

is given that illustrates distinct and significant patterns caused by the impacts of specific factors,

and the graphs further support these trends.The above calculated values are found with varying

values of p from 0.0 to 1.0 at the intervals of 0.1 and varying values of b = 0, 0.5 & 1 and to improve

the standard of service to be more effective and efficient. The economic cost anlaysis are also more

efficiency to optimize the cost analysis.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.

References

[1] J. Al-Jararha, K. Madan, Steady state Analysis of an M/D/1 Queue With Coxian-2 Server Vacations and a Single

Vacation Policy, Inf. Manage. Sci. 13 (2002), 69–82.

[2] Z.R. Al-Rawi, K.M.S. Al Shboul, A Single Server Queue with Coxian-2 Service and One-Phase Vacation (M/C-2/M/1

Queue), Open J. Appl. Sci. 11 (2021), 766–774. https://doi.org/10.4236/ojapps.2021.116056.

[3] T. Altiok, On the Phase-Type Approximations of General Distributions, IIE Trans. 17 (1985), 110–116. https://doi.

org/10.1080/07408178508975280.

[4] M. Bounkhel, L. Tadj, R. Hedjar, Steady-State Analysis of a Flexible Markovian Queue with Server Breakdowns,

Entropy. 21 (2019), 259. https://doi.org/10.3390/e21030259.

[5] B.T. Doshi, Queueing Systems With Vacations–A Survey, Queueing Syst. 1 (1986), 29–66. https://doi.org/10.1007/

bf01149327.

[6] A.S. Gordon, A.H. Marshall, M. Zenga, Predicting Elderly Patient Length of Stay in Hospital and Community Care

Using a Series of Conditional Coxian Phase-Type Distributions, Further Conditioned on a Survival Tree, Health

Care Manage. Sci. 21 (2017), 269–280. https://doi.org/10.1007/s10729-017-9411-9.

[7] F.A. Haight, Queueing With Balking, Biometrika. 44 (1957), 360–369. https://doi.org/10.1093/biomet/44.3-4.360.

[8] M.J. Faddy, On Inferring the Number of Phases in a Coxian Phase-Type Distribution, Commun. Stat. Stoch. Models.

14 (1998), 407–417. https://doi.org/10.1080/15326349808807479.

[9] B.R.K. Kashyap, M.L. Chaudhry, An Introduction to Queueing Theory, A & A Publications, Kingston, (1988).

[10] J.C. Ke, C.H. Wu, Z.G. Zhang, Recent Developments in Vacation Queueing Models: A Short Survey, Int. J. Oper.

Res. 7 (2010), 3–8.

[11] I.E . Khan, R. Paramasivam, Analysis of Batch Encouraged Arrival Markovian Model Due to a Secondary Optional

Service, Break-Down and Numerous Vacations, Math. Stat. Eng. Appl. 72 (2023), 1166–1177.

[12] I.E. Khan, R. Paramasivam, Performance Study of an M/M/1 Retrial Queueing System with Balking, Dissatisfied

Customers, and Server Vacations, Contemp. Math. 4 (2023), 467–483. https://doi.org/10.37256/cm.4320233117.

[13] I.E. Khan, R. Paramasivam, Reduction in Waiting Time in an M/M/1/N Encouraged Arrival Queue with Feedback,

Balking and Maintaining of Reneged Customers, Symmetry. 14 (2022), 1743. https://doi.org/10.3390/sym14081743.

[14] M. Kramer, Stationary Distributions in a Queueing System With Vacation Times and Limited Service, Queueing

Syst. 4 (1989), 57–68. https://doi.org/10.1007/bf01150856.

[15] X. Liu, K. Gong, L. Ying, Steady-state Analysis of Load Balancing With Coxian-2 Distributed Service Times, Naval

Res. Logistics. 69 (2021), 57–75. https://doi.org/10.1002/nav.21986.

[16] K.C. Madan, M.F. Saleh, On Single Server Vacation Queues with Deterministic Service or Deterministic Vacations,

Calc. Stat. Assoc. Bull. 51 (2001), 225–242. https://doi.org/10.1177/0008068320010306.

[17] K.C. Madan, M.F. Saleh, On M/D/1 Queue With Deterministic Server Vacations, Syst. Sci. 27 (2001), 107–118.

https://doi.org/10.4236/ojapps.2021.116056
https://doi.org/10.1080/07408178508975280
https://doi.org/10.1080/07408178508975280
https://doi.org/10.3390/e21030259
https://doi.org/10.1007/bf01149327
https://doi.org/10.1007/bf01149327
https://doi.org/10.1007/s10729-017-9411-9
https://doi.org/10.1093/biomet/44.3-4.360
https://doi.org/10.1080/15326349808807479
https://doi.org/10.37256/cm.4320233117
https://doi.org/10.3390/sym14081743
https://doi.org/10.1007/bf01150856
https://doi.org/10.1002/nav.21986
https://doi.org/10.1177/0008068320010306


Int. J. Anal. Appl. (2024), 22:41 15

[18] A.H. Marshall, M. Zenga, Recent Developments in Fitting Coxian Phase-Type Distributions in Healthcare, In: The

XIII International Conference "Applied Stochastic Models and Data Analysis" (ASMDA-2009), June 30-July 3, 2009,

Vilnius, Lithuania

[19] J.F. Shortle, J.M. Thompson, D. Gross, C.M. Harris, Fundamentals of Queueing Theory, 1st ed., Wiley, 2018.

https://doi.org/10.1002/9781119453765.

[20] B.K. Som, S. Seth, An M/M/1/N Queuing System With Encouraged Arrivals, Glob. J. Pure Appl. Math. 17 (2017),

3443–3453.

[21] N. Tian, Z.G. Zhang, Vacation Queueing Models Theory and Applications, Springer US, Boston, MA, 2006. https:

//doi.org/10.1007/978-0-387-33723-4.

[22] J.C.W. Van Ommeren, R.D. Nobel, On the Waiting Time Distribution in a GI/G/1 Queue With a Coxian–2 Service

Time Distribution, Stat. Neerlandica 43 (1989), 85–90. https://doi.org/10.1111/j.1467-9574.1989.tb01250.x.

[23] M. Vidalis, Markovian Analysis of Production Lines With Coxian-2 Service Times, Int. Trans. Oper. Res. 6 (1999),

495–524. https://doi.org/10.1016/s0969-6016(99)00012-x.

[24] M. Vidalis, V. Vrisagotis, G. Varlas, Performance Evaluation of a Two-echelon Supply Chain With Stochastic

Demand, Lost Sales, and Coxian-2 Phase Replenishment Times, Int. Trans. Oper. Res. 21 (2014), 649–671. https:

//doi.org/10.1111/itor.12057.

[25] Ö. Yücel, Ö. Bulut, Exact Analysis of Production Lines With Coxian-2-Distributed Processing Times and Parallel

Machines, Computers Ind. Eng. 159 (2021), 107471. https://doi.org/10.1016/j.cie.2021.107471.

[26] A.B. Zadeh, A Batch Arrival Queue System with Coxian-2 Server Vacations and Admissibility Restricted, Amer. J.

Ind. Bus. Manage. 02 (2012), 47–54. https://doi.org/10.4236/ajibm.2012.22007.

https://doi.org/10.1002/9781119453765
https://doi.org/10.1007/978-0-387-33723-4
https://doi.org/10.1007/978-0-387-33723-4
https://doi.org/10.1111/j.1467-9574.1989.tb01250.x
https://doi.org/10.1016/s0969-6016(99)00012-x
https://doi.org/10.1111/itor.12057
https://doi.org/10.1111/itor.12057
https://doi.org/10.1016/j.cie.2021.107471
https://doi.org/10.4236/ajibm.2012.22007

	1. Introduction
	2. Model Elaboration
	3. The Governing System of Equation
	4. Steady State Solution
	4.1. Some special Cases:

	5. Performance Measures
	6. Numerical Illustrations
	7. Economic Cost Analysis
	8. Results and Discussion
	9. Conclusion
	References

