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Abstract. The sufficient reduction (SR) method was developed for detecting a mean shift in a bivariate zero-inflated

Poisson process. The derived sequence of statistics from the reduction was monitored with the EWMA and EWMA-SN

charts for monitoring a mean shift in a process. The detection performance was compared against other SR methods

developed for a Poisson process and evaluated via the simulations under the different shift sizes and proportions of

zero in the process. The results showed that the presence of zeros in the process influenced the performance of SR

methods by delaying shift detection and reducing the detection accuracy, especially when shift size was small. The

proposed method with the EWMA chart gave the shortest delay for detecting a small to moderate shift and gave the

highest true alarm rate and the lowest non-detection rate for detecting a small shift compared to other methods.

1. Introduction

Various statistical techniques have been developed for multivariate data under the different

purposes. One of the main purposes is to reduce the dimension of the multivariate data so that

the reduced data or components can be used or easy to implement with other statistical methods.

In a multivariate process, where the multivariate data are observed and monitored routinely, a

shift detection in a process is also of interest as the sooner a shift is detected, the less damage

caused. However, to be able to detect a shift in a multivariate process is rather complicated than

those in a univariate process as it requires multivariate tools to handle this type of data. Although

multivariate control charts have been used to monitor a change in a process, they face the problems

of signal interpretation and threshold calculation which are more difficult than the univariate one.

With regard to the dimensionality reduction, the sufficient reduction (SR) methods use the

principle of sufficiency to reduce the dimension of the multivariate series by summarizing all

relevant information regarding to a parameter of interest to a single series so that the reduced

series from the reduction can be simply used with other univariate statistical techniques. Several
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SR methods have been proposed to detect a mean shift in a multivariate process under different

conditions regarding to the relations between/within series (correlation between series and/or

autocorrelation within series) [11, 15] and types of change (simultaneous change and/or changes

with time lags) [8, 11, 15]. All methods were proposed and illustrated under the assumption that

the data in process are normally distributed [8, 11, 13, 15]. However, in real life there might be

other types of data to be considered. Count data such as number of nonconforming products

from manufacturing process or number of infected patients of diseases are considered as Poisson

distributed data. Some SR methods were developed for detecting a shift in an exponential family

distribution including Poisson distribution [8] and in bivariate Poisson distribution allowing for

correlation between series and autocorrelation within series [14]. However, in some situations,

for instance, number of nonconforming items in a well-managed process (or in a perfect state) or

number of cases of a rare disease, might contain lots of zero and need to be handled properly.

A large proportion of zeros in data causes the over-dispersion and might affect the detection

performance of SR methods.

To overcome the over-dispersion, several studies have developed the zero-inflated Poisson (ZIP)

distribution to model count data with excess zeros. Both univariate and multivariate ZIP distri-

butions have been considered under different circumstances. In this study we aim to develop the

sufficient reduction method for detecting a mean shift in a bivariate zero-inflated Poisson process,

while the multivariate case, which is more complicated, might be considered as a further study.

To evaluate the detection performance, a reduced sequence of statistics from the reduction will be

monitored with univariate exponentially weighted moving average (EWMA) control charts. De-

tails of the reduction, monitoring tools and performance evaluation are provided in the following

sections.

2. Methods

2.1. Bivariate zero-inflated Poisson distribution.

A bivariate Poisson (BP) distribution can be constructed by the trivariate method. Let Z1, Z2

and Z3 be mutually independent random variables from Poisson distributions with parameters

λ1, λ2 and λ3, respectively. Define

X1 = Z1 + Z3 and X2 = Z2 + Z3.

The random variables X1 and X2 follow a bivariate Poission distribution with parameters λ1, λ2

and λ3, denoted by X1, X2 ∼ BP(λ1,λ2,λ3). The joint probability function of X1 and X2 can be

written as

fBP(x1, x2;λ1,λ2,λ3) = e−(λ1+λ2+λ3)
λx1
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when m = min(x1, x2). Parameter λ3 represents the covariance between X1 and X2. If λ3 = 0, X1

and X2 are independent random variables from Poisson distributions with parameters λ1 and λ2,

respectively [4, 6, 10].

A bivariate zero-inflated Poission (BZIP) distribution has been defined in several studies as a

mixture of a bivariate Poisson, two univariate Poisson distributions and a point mass at (0,0) [1]

or a mixture of a bivariate Poisson distribution and a point mass at (0,0) [3, 7, 16].

For simplicity, in this study, we define a BZIP distribution as a mixture of a BP distribution and

a point mass at (0,0) with parameters λ1, λ2, λ3 and p, denoted by X1, X2 ∼ BZIP(λ1,λ2,λ3, p),
where p is the probability of getting a point mass at (0,0), 0 ≤ p < 1. The joint probability function

of X1 and X2 can be written as

f (x1, x2;λ1,λ2,λ3, p) =

 p + (1− p) fBP(0, 0;λ1,λ2,λ3) ; x1, x2 = 0

(1− p) fBP(x1, x2;λ1,λ2,λ3) ; x1 or x2 , 0

The mean and variance of Xi, i = 1, 2,

E(Xi) = (1− p)(λi + λ3)

V(Xi) = E(Xi)[1 + p(λi + λ3)]

The likelihood function is given by

L(λ1,λ2,λ3, p; x1,t, x2,t) =
s∏

t=1

[p + (1− p) fBP(0, 0;λ1,λ2,λ3)]
1−at [(1− p) fBP(x1,t, x2,t;λ1,λ2,λ3)]

at

where t = 1, 2, . . . , s, at = 0, if x1,t, x2,t = 0 and at = 1, if x1,t or x2,t , 0 [3, 4].

2.2. Sufficient reduction method for BZIP process.

The sufficient reduction (SR) methods were proposed for detecting a shift in a multivariate

process in several studies under different circumstances [8, 11, 14, 15]. The principle of sufficiency

was used to reduce a p dimensional multivariate series to a single series of statistics summarizing

all relevant information from the original series. Then the reduce series can be used to monitor

with a univariate control chart for the purpose of shift detection. Wessman (1998) proposed

the SR method to detect a simultaneous shift in a multivariate process. Data were assumed

normally distributed with the correlation between the p series [11]. Frisén (2011) proposed the SR

method to detect shifts with known time lags. The data were considered from the exponential

family distributions including normal, exponential, gamma and Poisson, etc. Although lags

between series were allowed, the p series were assumed independent [8]. Later, Siripanthana

(2013) proposed the SR method for detecting a shift in a bivariate Poisson process, where corre-

lations between the p series were cooperated [14]. Siripanthana and Stillman (2016) extended the

SR methods of Wessman and Frisén by allowing autocorrelation in a multivariate normal data [15].
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Let xt = (x1,t, x2,t)′ be a vector of observations of random variables X1 and X2 observed at

time t, t = 1, 2, . . . , s. X1 and X2 follow a bivariate zero-inflated Poission (BZIP) distribution with

parameters λ1, λ2, λ3 and p. Let τi and τ be a change point of variable Xi, i = 1, 2, and a change

point of a process, respectively. In this study, we focus on detecting a simultaneous change in the

process, thus τ1 = τ2 = τ. According to a change point τ, the process is divided into two stages: in

control stage and out of control stage. The distribution parameters of these two stages are defined

as follow.

X1, X2 ∼ BZIP(λ1,λ2,λI
3, p) in control stage , t = 1, 2, . . . , τ− 1

X1, X2 ∼ BZIP(λ1,λ2,λO
3 , p) out of control stage, t = τ, τ+ 1, . . . , s

where s is a decision time, s = 1, 2, . . . . At each decision time s, the decision will be made

whether the process is in control or out of control. λI
3 and λO

3 represent parameter λ3 when

the process is in control and out of control, respectively, where λO
3 = λI

3 + c and c is a constant

representing a shift size we desire to detect. Assuming that parameters λ1, λ2 and p are unchanged

over time, in this study, we investigate a mean shift in the process via a change in parameter

λ3 since it reflects a mean (and also a variance) shift in both series if X1 and X2 are not independent.

Let f (xt;λ1,λ2,λI
3, p) and f (xt;λ1,λ2,λO

3 , p) be the joint probability functions of X1 and X2 for

the in control and out of control stages, respectively. As a shift in parameter λ3 (i.e. λO
3 − λ

I
3), is

of interest, we use the principle of sufficiency to factorize the log-likelihood function regarding to

parameters λO
3 and λI

3. The log-likelihood function regarding to a change point τ can be define as

follow.

l(λ1,λ2,λ3, p|τ; xt) = ln L(λ1,λ2,λ3, p|τ; xt)

=
τ−1∑
t=1

ln f (xt;λ1,λ2,λI
3, p) +

s∑
t=τ

ln f (xt;λ1,λ2,λO
3 , p)

=
s∑

t=1

ln f (xt;λ1,λ2,λI
3, p) +

s∑
t=τ

ln
f (xt;λ1,λ2,λO

3 , p)

f (xt;λ1,λ2,λI
3, p)

= h(xs) + k(lrt(xs;λO
3 − λ

I
3))

where h and k are the functions of xs and lrt(xs;λO
3 − λ

I
3), respectively. As a decision will be made

sequentially, data available at decision time s is xs = (x1, x2, . . . , xs) and lrt(xs;λO
3 −λ

I
3) is a sequence

of a statistic T(xt) derived from the reduction according to the parameter of interest at time t, which

can be written as

lrt(xs;λO
3 − λ

I
3) = {Tt(xt), . . . , Ts(xs)}

From the factorization theorem, this sequence is proved to be a sufficient sequence of statistics

regarding to a shift in parameter in the process [2, 12]. The statistic T(xt) at time t can be derived

from the log-likelihood ratio between in control and out of control stages as shown below.
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where m = min(x1,t, x2,t), at = 0, if x1,t, x2,t = 0, and at = 1, if x1,t or x2,t , 0.

Thus, T(xt) at time t is

Tt(xt) = ln

[
p + (1− p)e−(λ1+λ2+λO

3 )
]1−at
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2.3. Evaluation.

To evaluate the performance of the proposed SR method, a simulation study was conducted by

generating data from a BZIP distribution with parameters λ1 = λ2 = λI
3 = 4 and λO

3 = λI
3 + c. c

is defined as a size of shift to be detected, where c = δσ0 (i.e. σ0 =
√

V(Xi) when process is in

control). For a small shift δ = 0.1, 0.2, 0.3, δ = 0.5, 0.7, 0.1 for a moderate shift and δ = 2, 3 for a

large shift. In this study we investigate a point mass at (0,0) existing in a process with probability p
= 0.05, 0.1, 0.2 and 0.3. Let τ = 100 be a change point of the process, the distributions of in control

and out of control stages can be defined as follow.

X1, X2 ∼ BZIP(4, 4, 4, p) in control stage, t = 1, 2, . . . , 99

X1, X2 ∼ BZIP(4, 4, 4 + c, p) out of control stage, t = 100, 101, . . . , 200

After the reduction, the derived sequence of statistics T(xt) will be monitored with a univariate

control chart for the purpose of shift detection. In this study we use an exponentially weighted
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moving average (EWMA) control chart as a detection tools as it performs well for detecting a small

shift and also quite robust to non-normal data compared to the Shewhart control charts [5]. Since

the underlying distribution of the statistics T(xt) is unknown, in this study we monitor a shift in

the process by a parametric exponentially weighted moving average (EWMA) control chart along

with a non-parametric exponentially weighted moving average sign (EWMA-SN) control chart

defined as follows.

The statistic (Zt) and control limits of EWMA chart can be calculated from

Zt = λT(xt) + (1− λ)Zt−1 , Z0 = µ̂0

UCL = µ̂0 + Lσ̂0

√
λ

2− λ
(1− (1− λ)2t)

CL = µ̂0

LCL = µ̂0 − Lσ̂0

√
λ

2− λ
(1− (1− λ)2t)

where T(xt) is a statistic derived at time t, µ̂0 and σ̂0 are the estimated mean and variance of statistics

T(xt) when the process is in control (t = 1, 2, . . . , τ− 1). λ and L are a smoothing parameter and a

width of the control limits, respectively. For a desired ARL0 = 370, define λ = 0.2 and L = 2.859 [5].

An alarm will be flagged if the statistic (Zt) goes outside the control limits.

For the EWMA-SN chart, define

St = sign(T(xt) − θ̂0)

where sign() is a sign function and θ̂0 is the median of statistics T(xt) when the process is in control

(t = 1, 2, . . . , τ− 1). St = 0, if T(xt) equals θ̂0. St = 1, if T(xt) > θ̂0, otherwise St = −1. The statistic

(Wt) and control limits of EWMA-SN chart can be calculated from

Wt = λSt + (1− λ)Wt−1, W0 = θ̂0

UCL = θ̂0 + L

√
λ

2− λ
(1− (1− λ)2t)

CL = θ̂0

LCL = θ̂0 − L

√
λ

2− λ
(1− (1− λ)2t)

For a desired ARL0 = 370, define λ = 0.2 and L = 2.471 [9]. An alarm will be triggered if the statistic

(Wt) goes beyond the control limits.

The performance of proposed method is compared against the two other SR methods of Frisén

(2011) and Siripanthana (2013) developed for detecting a shift in a Poisson process [8, 14]. Let

tA be a time of an alarm. Four measures used to assess the detection performance include the

conditional expected delay (CED), false alarm rate (FAR), true alarm rate (TAR) and non-detection
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rate (NDR) defined as follows.

CED = E(tA − τ|tA ≥ τ)

FAR = P(tA < τ)

TAR = E(tA − τ ≤ 19|tA ≥ τ)

NDR = E(tA − τ ≥ 20|tA ≥ τ) = 1− FAR− TAR

where TAR + FAR + NDR = 1 [8, 13, 15]. The CED = 0, if an alarm is triggered at time τ. If the

alarm flags before the change point τ, it is considered as a false alarm. To compare the detection

performance, we expect the system to flag an alarm within 20 consecutive time points since the

process has shifted. If it does, it is considered as a true alarm (or correct identification), otherwise

it fails to detect a shift in the process.

3. Result

Let ĉed, f̂ ar, t̂ar and n̂dr be the estimates of CED, FAR, TAR and NDR from the simulations,

respectively. The comparisons of the delay in detection are illustrated by line graphs (Figure 1),

while bar charts (Figures 2 - 5) show the accuracy of the detection when p = 0.05, 0.1, 0.2 and 0.3,

respectively. The notations of our proposed method (BZ), the Siripanthana method (SR) and the

Frisén method (FR) monitored with the EWMA chart are denoted by BZ.EW, SR.EW and FR.EW,

whereas BZ.SN, SR.SN and FR.SN denote those of three methods monitored with the EWMA-SN

chart.

Unsurprisingly, large shift sizes are more likely to be detected than small shift sizes as ĉed of all

methods tend to decrease when shift sizes (δ) increase (Figure 1). Obviously, the presence of zeros

in data affects the delay in detection, especially when shift size is small. All methods give longer

ĉed when p is large. It can be clearly seen that the methods with the EWMA chart give shorter

delay than those with the EWMA-SN chart. Overall, the BZ.EW give shortest delay for detecting

small to moderate shifts, while the SR.EW and FR.EW perform slightly better when shift size is

large.

The accuracy of detection also depends on shift size (Figures 2 - 5). All methods perform better

by giving higher t̂ar and lower n̂dr for detecting large shift sizes. The excess of zeros in the process

also influences the detection performance especially when shift size is small. It can be clearly seen

that the n̂drs tend to increase as p increase. However, the performances improve when shift size

is large. The methods with the EWMA chart outperform the methods with the EWMA-SN chart.

The BZ.EW method give the highest t̂ar and lowest n̂dr for detecting a small shift size. However,

when shift size is moderate or large, the performance of FR.EW is slightly better than the others.

Nevertheless, the SR.SN and FR.SN still fall behind the others even shift size is large. Having

considered the false alarm rates, the f̂ ars of all methods are insignificantly different. Overall,

the false alarm rates of the methods with EWMA chart are slightly lower than those with the

EWMA-SN chart.
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Figure 1. Line graphs comparing the conditional expected delay (ĉed).
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Figure 2. Bar charts comparing the detection performance when p = 0.05
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Figure 3. Bar charts comparing the detection performance when p = 0.1
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Figure 4. Bar charts comparing the detection performance when p = 0.2
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Figure 5. Bar charts comparing the detection performance when p = 0.3



Int. J. Anal. Appl. (2024), 22:16 13

4. Conclusion

In this study, the sufficient reduction method was developed for detecting a change in a bivariate

inflated-Poisson process. The derived sequence of statistics was monitored with the EWMA and

EWMA-SN chart. The simulation study was conducted for evaluating the detection performance

of the proposed method against the Siripanthana and the Frisén methods by considering the delay

and the accuracy of shift detection. As expected, large shift sizes are detected rapidly than small

shift sizes. All methods give shorter delay when shift size is large. The excess of zeros in the

process causes the over-dispersion and affects the detection performance. The proposed method,

which takes the excess of zero into account in the reduction, gives the shortest delay for detecting

a small to moderate shift and gives the highest true alarm rate and the lowest non-detection rate

for detecting a small shift compared to other methods.

Since the underlying distribution of the derived statistics is unknown, in this study we use the

EWMA and the EWMA-SN as detection tools. The EWMA-SN chart uses only a sign function to

compare a statistic whether it is lower or higher than the median of in control process and does

not take any differences into account, while the EWMA chart does. Therefore, it is obviously

seen that the methods monitored with the EMMA chart give shorter delay and higher true alarm

rate compared to those with the EWMA-SN chart. In addition to a Poisson process, the mean and

variance of the process are inseparable. To improve the detection performance, one might consider

the use of a control chart monitoring a mean shift along with a variance shift in a process as a

further study.
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