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Abstract. In this paper we are concerned with a special case of Euler functions. We shall study the

Euler product of degree two (Type of L-Euler functions) and give some results. More precisely, we

shall deal with some Dirichlet series associated with a class of arithmetic {an} under the condition

that apapk = apk+1 + p
αapk−1 , provided p is prime, k > 1, and α is a fixed complex number. We will

demonstrate that there is an Euler’s product for the Dirichlet series
∑

n an/n
s . This result is important

in analysis, especially in analytic number theory.

1. Introduction

We start this note by recalling the definition of Riemann Zeta Function:

ζ(s) =

∞∑
n=1

n−s , s ∈ C, Re s > 1. (1.1)

We shall write in accordance with standard notation in analytic number theory s = σ+ i t with σ, t ∈ R.
So, for example, {s : σ > 1} is the set of all s which have real part greater than one.

Next, it is known that the Euler’s identity or Euler product is given by

ζ(s) =
∏
p

(1− p−s)−1, ∀s ∈ C. (1.2)

Here in the product in the right hand side of (1.2), p runs over all primes, and on other hand (1.2)

in particular contains this infinite product is convergent when σ > 1. Hence we have: ζ(s) 6= 0

for all s ∈ C with σ > 1 (see [11]). For more details about (1.1) and (1.2) see, for instance, the

references [1–12].
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In this paper, we are interested in studying type of L-functions that appear from several sources in

number theory, such as modular forms, elliptic curves, Galois representations which is Euler product

of degree 2 or L-function of Euler product of degree 2. For further elaboration, please refer to the

cited sources [13–19].

In fact, we shall deal with some Dirichlet series associated with a class of arithmetic functions {an}
satisfying the following condition: apapk = apk+1 + pαapk−1 with p is prime, k > 1 and α is a fixed

complex number. We shall show that the Dirichlet series
∑
n an/n

s has Euler’s product.

Our main results are

Theorem 1.1. Let A ∈ R and α ∈ C be given constants, and let {an} be a sequence of complex

numbers satisfying |an| = O(nA) for all n ∈ Z+. Assume that the sequence {an} is multiplicative, not

identically zero, and that apapk = apk+1 + pαapk−1 holds for every prime p and every k > 1. Then we

have
∞∑
n=1

ann
−s =

∏
p

(1− app−s + pαp−2s)−1 (σ > A+ 1).

Using Theorem 1.1, we can prove the next result.

Theorem 1.2. Let α ∈ C be a given constant and let {an} be a sequence of complex numbers. Then

the following two assertions are equivalent:

(i) The sequence {an} is multiplicative, not identically zero, satisfies |an| � nA for all n ∈ Z+ and

some constant A ∈ R; and for every prime p and every k > 1 we have

apapk = apk+1 + pαapk−1 .

(ii) There is some B ∈ R such that
∞∑
n=1

ann
−s =

∏
p

(1− app−s + pαp−2s)−1

holds for all s ∈ C with σ > B (in particular both the sum and the product converge when σ > B).

2. Review Some Basic Facts about Convergence of

Dirichlet Series

A series of the form
∑∞
n=1 ann

−s referred to as a Dirichlet series. Let a1, a2, . . . ∈ C and assume

that the α(s) =
∑∞
n=1 ann

−s is convergent if s = s0 = σ0 + i t0, and consider H > 0 be an arbitrary

constant. Then the series α(s) is uniformly convergent in the sector

S = {s = σ + i t : σ > σ0, |t − t0| 6 H(σ − σ0)}.

By assuming a large value for H, we can observe that the series α(s) converges for all s in the

halfplane σ > σ0, indicating that the halfplane is the domain of convergence. To be more specific, we

have
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Theorem 2.1. ( [10], Corollary 3.7) Any Dirichlet series α(s) =
∑∞
n=1 ann

−s has an abscissa of

convergence σc ∈ R ∪ {±∞} with the property that α(s) converges for all s with σ > σc , and for no

s with σ < σc . Furthermore α(s) converges uniformly in any compact subset of {s : σ > σc}.

In extreme circumstances, a Dirichlet series may converge anywhere (σc = +∞) or everywhere

(σc = −∞) in the plane.

The series may converge everywhere along the line σc + i t, at some places on the line but not all

of them, or not at all when the abscissa of convergence is finite.

We define the abscissa of absolute convergence and contrast it with conditional convergence, σa,

of a Dirichlet series α(s) =
∑∞
n=1 ann

−s as the infimum of those σ for which
∑∞
n=1 |an| n−s <∞ (By

Theorem 2.1, σa equals the abscissa of convergence of the Dirichlet series
∑∞
n=1 |an| n−s).

Since
∣∣ann−s ∣∣ = |an| n−σ we immediately see that the Dirichlet series

∑∞
n=1 ann

−s is absolutely

convergent for all s with σ > σa, but not for any s with σ < σa. Hence if σc < σa then
∑∞
n=1 ann

−s

is conditionally convergent for all s with σc < σ < σa. In fact one can prove that

Theorem 2.2. ( [11], Proposition 3.9) For every Dirichlet series we have σc 6 σa 6 σc + 1.

The fact that a Dirichlet series’ coefficients can only be derived from the resulting function is crucial:

Theorem 2.3. ( [11], Proposition 3.10) If
∑∞
n=1 ann

−s =
∑∞
n=1 bnn

−s for all s with σ > σ0 then

an = bn for all n > 1.

For more details abut convergence of Dirichlet series the reader can see, for example, ( [11], pp.

36-45) and ( [12], pp. 137-164).

3. Basic Result

We borrow the following fact from ( [9], Theorem 5) (also see [11], Proposition 2.7) which is

originally is discovered by Euler in 1737, is sometimes called the analytic version of the fundamental

theorem of arithmetic.

Theorem 3.1. Let f : Z+ → C be a multiplicative function which is not identically zero. Then
∞∑
n=1

f (n) =
∏
p

(1 + f (p) + f (p2) + · · · ), (3.1)

provided that the series on the left is absolutely convergent, in which case the product is also absolutely

convergent.

If f is multiplicative without restrictions, then also
∞∑
n=1

f (n) =
∏
p

1

1− f (p)
, (3.2)

In each case of (3.1) and (3.2), the product is called the Euler product of the series. We shall

utilize this important result in our work more than one time.
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4. Proof of Theorem 1.1

For any s with σ > A + 1 the Dirichlet series Σ∞n=1ann
−s is absolutely convergent, since

Σ∞n=1
∣∣ann−s ∣∣�∑∞

n=1 n
A−σ <∞. Hence for every such s we have, Theorem 3.1:

∞∑
n=1

ann
s =

∏
p

(1 + app
−s + ap2p

−2s + · · · ). (4.1)

Here for each prime p the sum 1 + app
s + ap2p

−2s + · · · is absolutely convergent, and hence we may

multiply termwise with (1− app−s + pαp−2s) to get

(1 + app
−s + ap2p

−2s + · · · )(1− app−s + pαp−2s)

= 1− app−s + app
−2s +

∞∑
k=2

(apk − apapk−1 + pαapk−2)p
−ks

= 1 + 0 +

∞∑
k=2

0p−ks = 1,

where we used our assumption about {an}. Hence for each prime p (and our fixed s with σ > A+1)

we have

1 + app
−s + ap2p

−2s + · · · =
1

1− app−s + pαp−2s
, (4.2)

and hence from (4.1) we get
∞∑
n=1

ann
−s =

∏
p

1

1− app−s + pαp−2s
.

5. Proof of Theorem 1.2

To prove Theorem 1.2, we need the help of the following well known lemma.

Lemma 5.1. Let f : Z+ → C be a multiplicative function which is not identically zero and assume

that the product ∏
p

(1 + |f (p)|+
∣∣f (p2)

∣∣+ · · · )

is absolutely convergent (in particular we assume that each sum 1+|f (p)|+
∣∣f (p2)

∣∣+· · · is convergent).
Then also the sum

∑∞
n=1 f (n) is absolutely convergent, and hence by Theorem 3.1 we have

∞∑
n=1

f (n) =
∏
p

(1 + |f (p)|+
∣∣f (p2)

∣∣+ · · · ).

Proof. It follows from the assumption in the lemma that

X =
∏
p

(1 + |f (p)|+
∣∣f (p2)

∣∣+ · · · )

is a finite real number (X > 1). We will prove the absolute convergence of Σ∞n=1 |f (n)| by proving

Σ∞n=1 |f (n)| 6 X. To prove this it suffices to prove that ΣN
n=1 |f (n)| 6 X for each N ∈ Z+.
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Let N be given, and let p1, p2, . . . , pM be all prime numbers 6 N. Then

M∏
k=1

(1 + |f (pk)|+
∣∣f (p2k)

∣∣+ · · ·) 6
∏
p

(1 + |f (p)|+
∣∣f (p2)

∣∣+) 6 X.

On the other hand, by Cauchy’s theorem, the finite product ΠMk=1(1 + |f (pk)| +
∣∣f (p2k)

∣∣ + · · · ) may

be multiplied out as

M∏
k=1

(1 + |f (pk)|+
∣∣f (p2k)

∣∣+ · · ·) =

∞∑
v1

∞∑
v2

· · ·
∞∑
vM

∣∣f (pv11 p
v2
2 · · · p

vM
M )
∣∣.

In the last sum, pv11 p
v2
2 · · · p

vM
M runs through exactly those positive integers which only have prime

factors p1p2, . . . , pM (or a subset of these) in their prime factorization. In particular pv11 p
v2
2 · · · p

vM
M

visits all the numbers 1, 2, . . . , N. Hence

N∑
n=1

|f (n)| 6
M∏
k=1

(1 + |f (pk)|+
∣∣f (p2k)

∣∣+ · · ·) 6 X.

This concludes the proof.

P roof of Theorem 1.2. We have already proved that (i) =⇒ (ii) (any B > A + 1 works), cf.

Theorem 1.1. We now prove (ii) =⇒ (i). Assume that (ii) holds. Then
∑∞
n=1 ann

−s has abscissa of

convergence 6 B and hence as in the proof of Theorem 2.2 ([11, Proposition 3.9]) we know that

|an| � nB+ε for any fixed |an| 6 CnB+1 and all n ∈ Z+; in particular there is a constant C > 1

such that |an| 6 CnB+1 for all n ∈ Z+. Now fix a real constant B0 so large that 2B0−B−1 > 2C,

(thus B0 > B + 1) and 2B0 − 2 > Reα. Then for all n > 2 we have CnB+1 < 1
2n
B0 , since

nB0+B−1 > 2B0+B−1 > 2C; hence

|an| 6
1

2
nB0 , ∀n > 2 (5.1)

Now let us define a new sequence b1, b2, b3, . . . by the following recipe: Set b1; for each prime p set

bp := ap, and define bp2 , bp3 , . . . recursively by bpk+1 = bpbpk − pαbpk−1 for k = 1, 2, . . . , and finally

define bn for composite n in the unique way which makes bn multiplicative. We intend to prove that

bn = an for all n, this will clearly complete the proof that (i) holds. For each prime p, note that the

recursion formula gives for bp2 , using (5.1):∣∣bp2∣∣ =
∣∣b2p − pαb1∣∣ 6 ∣∣b2p∣∣+ pReα |b1| 6

1

4
p2B0 + pReα.

Using 2B0 − 2 > Reα we see that this is∣∣bp2∣∣ 6 1

4
p2B0 + p2B0−2 6

1

4
p2B0 +

1

4
p2B0 =

1

2
p2B0 .

Similarly one proves by induction that (Similarly we prove by induction that)∣∣bpk ∣∣ 6 1

2
pB0k , ∀k > 1. (5.2)
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Note that already done for k = 1, 2, . . .. Now take k > 3 and assume that the inequality is true for

k − 1 and k − 2. By the recursion formula we have∣∣bpk ∣∣ =
∣∣bpbpk−1 − pαbpk−2∣∣ 6 1

4
pB0+B0(k−1) +

1

2
pReαpB0(k−2)

<
1

4
pB0k +

1

2
p2B0−2pB0(k−2) 6

1

2
pB0k .

It follows from (5.2) that

1 +
∣∣bpp−s ∣∣+

∣∣bp2p−2s ∣∣+
∣∣bp3p−3s ∣∣+ · · · <∞

for all s with σ > B0, and in fact if σ > B0 + 1, then
∞∑
k=1

∣∣bpkp−ks ∣∣ 6 1

2

∞∑
k=1

p(B0−σ)k =
1

2

pB0−σ

1− pB0−σ <
1

2

pB0−σ

1− 2−1
= pB0−σ,

and thus for σ > B0 + 1 the product∏
p

(
1 +

∣∣bpp−s ∣∣+
∣∣bp2p−2s ∣∣+

∣∣bp3p−3s ∣∣+ . . .
)

is absolutely convergent. Hence by Lemma 5.1 we have∏
p

(
1 + bpp

−s + bp2p
−2s + bp3p

−3s + . . .
)

=

∞∑
n=1

bnn
−s

for all s with σ > B0 + 1 (the right hand side also being absolutely convergent for these s). But

on the other hand, because of the recursion formula for bpk , we have for each prime p (by the same

computation as in the proof to Theorem 1.1):

1 + bpp
−s + bp2p

−2s + bp3p
−3s + . . . =

1

1− bpp−s + pαp−2s
=

1

1− app−s + pαp−2s
.

Hence, using now our assumption that (ii) holds, we get

∞∑
n=1

bnn
−s =

∏
p

(
1 + bpp

−s + bp2p
−2s + bp3p

−3s + . . .
)

=
∏
p

1

1− app−s + pαp−2s
=

∞∑
n=1

ann
−s

for all s with σ > B0 + 1. Hence by Theorem 2.3 we have an = bn for all n ∈ Z+.

Remark 3.1 From the relations in (i) above one can derive the following general multiplication formula:

aman =
∑

d |(m,n)

dαamn/d2 , ∀m, n ∈ Z+.

Remark 3.2 Note that for any α ∈ C, the sequence an = σα(n) satisfies conditions (i)⇐⇒ (ii) above,

by Remark 3.3 below. However, as already mentioned, similar types of L-functions also arise from

more advanced sources, e.g. modular forms, elliptic curves and Galois representations.

Remark 3.3 We have used the following result.
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Theorem 5.1. Let d(n) be the number of divisors of n, for each n ∈ Z+. Then for σ > 1, we

have
∑∞
n=1 d(n)n−s = ζ(s)2. More generalization for any α ∈ C if we set σα(n) =

∑
d |n d

α, then∑∞
n=1 σα(n)n−s = ζ(s)ζ(s − α) when σ > max(1, 1 + Reα).

Proof. Note that d(n) = σ0(n); hence the first part of the theorem follows as a special case of the

second one.

When σ > max(1, 1 + Reα) we have ζ(s) =
∑∞
k=1 k

−s and ζ(s − α) =
∑∞
m=1m

α−s , with both

sums being absolutely convergent. Hence we may multiply the two sums termwise to get an absolutely

convergent double sum:

ζ(s)ζ(s − α) =

∞∑
k=1

∞∑
m=1

k−smα−s =

∞∑
k=1

∞∑
m=1

mα(km)−s .

Here substitute n = km; then we get

ζ(s)ζ(s − α) =

∞∑
n=1

∑
m|n

mα

 n−s =

∞∑
n=1

σα(n)n−s .

�

6. Conclusion

Using some well-known and classical results of basic analytic number theory, we have proved that

the Dirichlet series
∑
n ann

−s has a Euler’s product (Theorem 1.1). In dead, we have motivated the

study comes from number theory, modular functions, elliptic curves etc. We have considered the

following condition: apapk = apk+1 + pαapk−1 with p is prime, k > 1 and α is a fixed complex number.

Then Theorem 1.1 and 1.2 holds for sequences satisfying this condition.
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