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Abstract. This paper aims to examine the expansion of periodic functions using wavelet bases. M. Skopina [8] obtained

a Wavelet analog of the classical Jackson’s theorem for trigonometric approximation. Our result generalizes the result

of M. Skopina [8] and V. Karanjgaokar et al. [15].

1. Introduction

Wavelets were initially introduced by A. Grossman and J. Morlet [6] as functions that possess

the ability to be translated and dilated, thereby enabling their utilization for expansions in L2(R).

The introduction of wavelet analysis was initially aimed in improving seismic signal processing by

replacement of short-time Fourier analysis with new better algorithms that can effectively identify

and analyze abrupt changes in signals. The application of wavelet approximation has emerged

as a novel tool in the fields of Mathematics, Physics, and Engineering. From the standpoint of

approximation theory and harmonic analysis, the wavelet theory holds substantial significance

on various aspects. This approach provides straightforward and refined unconditional wavelet
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bases for various function spaces, such as Lebesgue, Sobolev, Besov, and others. A recent advance-

ment in approximation theory involves the approximation of any given function through wavelet

polynomials.

The Wavelet Approximation technique is a contemporary tool that is utilized for the identifica-

tion and examination of sudden alterations in seismic signal processing. The Haar Wavelet has

been determined to be an effective method for Wavelet Approximation studied by Devore [11],

Debnath [6], Meyer [18], Morlet [4] and Lal and Kumar [12]. The present study aims to investigate

the expansions of periodic functions with respect to Wavelet bases. To achieve this, we introduce a

general monotonically decreasing function Pn(x) and generalize the results of M. Skopina [8] and

V. Karanjgaokar et al.
In this paper the section 2 contains some definitions and preliminaries. Section 3 consists of

Theorems and Lemmas which are used in the proof the main theorems. Section 4 contains the

two main theorems of our paper and the proof of these theorems are given in section 5. Section

6 includes some corollaries of our main theorems, and lastly, the references used to support the

content of this paper have been included.

2. Definitions and Preliminaries

2.1. Periodic Multiresolution Analysis (PMRA) (V. Karanjgaokar et al. [15]). The concept of

PMRA had been defined and used in Deng Feng and Si Long [2], Prestin and Selig [5] and M.

Skopina [9]. Let φ ∈ L2(R) and ψ ∈ L2(R) be scaling function of MRA and wavelet function

respectively given by

φ̂(x) = m0

(
x
2

)
φ̂

(
x
2

)
(2.1)

and

ψ̂(x) = m0

(
x + 1

2

)
φ̂

(
x
2

)
eiπx (2.2)

where m0 ∈ L2(T) is a low pass filter. The normalized integer shifts and scales of ψ given by

ψ j,n(x) = 2
j
2ψ(2 jx + n), j, n ∈ Z

constitute an orthonormal basis in L2(R). If both the functions φ and ψ have sufficient decay,

then the functions

Φ j,n(x) = 2
j
2

∑
l∈Z

φ(2 jx + 2 jl + n) (2.3)

and

Ψ j,n(x) = 2
j
2

∑
l∈Z

ψ(2 jx + 2 jl + n) (2.4)

are in L2(T) and the systems {Φ j,n}
2 j
−1

n=0 and {Ψ j,n}
2 j
−1

n=0 are orthonormal for each j = 0, 1, 2, . . . The

spaces

V j = span{Φ j,n, n = 0, 1, 2, . . . , 2 j
− 1}
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and

W j = span{Ψ j,n, n = 0, 1, 2, . . . , 2 j
− 1}

satisfy the properties:

V0 = {const}, V j ⊂ V j+1, V j+1 = V j ⊕W j, for all j = 0, 1, 2, . . . ,

and

∪
∞

j=0V j = L2(T).

The collection {V j}
∞

j=0 is called a periodic multiresolution analysis generated by Φ.

2.2. Decay of wavelet function and scaling function (V. Karanjgaokar et al. [15]). The scaling

function φ and wavelet function ψ in (2.3) and (2.4) have sufficient decay, if they satisfy

max{|φ(x)|, |ψ(x)|} ≤ C/(1 + |x|1+ε) (ε > 0), (2.5)

with the mother function ψ ∈ L2 (R) and φ ∈ L2(R) are given by equations (2.1) and (2.2).

2.3. Wavelet Fourier Series (M. Skopina [8]). If f ∈ L2(T).Then

< f , Φ0,0 > Φ0,0 +
∞∑

j=0

2 j
−1∑

n=0

< f , Ψ j,n > Ψ j,n (2.6)

is called Wavelet Fourier series . The double sum in (2.6) can be transformed in single sum by

redenoting periodic wavelets as

w0 = Φ0,0 , w2 j+L = Ψ j,L 0 ≤ L ≤ 2 j
− 1,

and the series (2.6) can be rewritten as

∞∑
k=0

< f , wk > wk. (2.7)

Let SN( f ) denote the Nth partial sum of (2.7), with N = 2 j + L, 0 ≤ L < 2 j
− 1 and S2 j−1( f ) is an

orthogonal projection of f onto V j with {Φ j,n}
2 j
−1

n=0 as orthonormal basis in V j, then

S2 j−1( f ) =
2 j
−1∑

n=0

< f , Φ j,n > Φ j,n, (2.8)

SN( f ) =
2 j
−1∑

n=0

< f , Φ j,n > Φ j,n +
L∑

n=0

< f , Ψ j,n > Ψ j,n. (2.9)
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Set f = w0 = 1 in (2.7) and since < f , wk >= δ0,k, we have SN( f ) = 1 for all N, j = 0, 1, 2, · · · ,

Hence ∫ 1

0

N∑
k=0

wk(x)wk(t)dt ≡ 1,
∫ 1

0

2 j
−1∑

k=0

Φ j,k(x)Φ j,k(t)dt ≡ 1. (2.10)

2.4. Modulus of Smoothness (V. Karanjgaokar et al. [15]). For details about modulus of continu-

ity w( f , h), integral modulus of continuity wr( f , h) and integral modulus of smoothness w2
r ( f , h)

one can refer L.N. Mishra ( [7], [17]) and P. Chandra [10].

The Smoothness of a function is measured by the order of the derivative of the function which

are continuous. The rth modulus of smoothness is given by

wr( f , h)p = sup
|t|≤h
||∆r

t f ||p. (2.11)

The error of best approximation of order N, is given by

EN( f )p = in f || f − T||p, (2.12)

where infimum is taken over all "wavelet polynomials"

T =
N∑

k=0

akwk.

3. Theorems and Lemmas

In 2000, M. Skopina [8] , proved the following theorem, which is a wavelet analog of Classical

Jackson theorem for trigonometric approximation:

Theorem 3.1. (M. Skopina [8]):Let φ satisfies (2.5), ψ ∈ Cm(R) with ψ(l) bounded for l ≤ m,

|ψ(x)| ≤ C/(1 + |x|n) n > m + 1, (3.1)

p ∈ [1,∞). Then

EN( f ) ≤ || f − SN( f )||p ≤ C(p, n, m)wr( f , 1/N)p N = 1, 2, 3... (3.2)

for all f ∈ Lp(T) ( f ∈ C(T) f or p = ∞) and for all positive integers r,
r ≤ m + 1 ,r < n− 1.

Theorem 3.2. (M. Skopina [8]):Let φ ∈ C(m)(R) satisfy (2.5) and |φ(m)
| ≤

C
(1+|x|1+ε) , ε > 0, p ∈ [1,∞] .

Then

|| f m
||p ≤ C(p, m) 2mj

|| f ||p, (3.3)

for all f ∈ V j, j = 0, 1.....

This theorem is a wavelet analog of Bernstein’s inequality for trigonometric polynomials.
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Theorem 3.3. (V. Karanjgaokar et al. [15]) : Let φ, ψ ∈ L2 (R) and n > 1 such that.

|φ(x)|, |ψ(x)| ≤ C/(1 + |x|)n, (3.4)

and if f (x) = 0 ∀x ∈ [x0 − δ, x0 + δ], where 0 < δ < 1/2, x0 ∈ R and C is a constant , then

SN( f , x0) = O(N1−n) as N→∞. (3.5)

Theorem 3.4. (V. Karanjgaokar et al. [15]) : Let f ∈ Lp(T), 1 ≤ p ≤ ∞. ( f ∈ C(T) for p = ∞),
ψ ∈ Cm(R) with ψ(l) bounded for l ≤ m and satisfy

|ψ(x)| ≤ C/(1 + |x|)n n > m + 1. (3.6)

Also φ satisfy

max|φ(x)| ≤ C/(1 + |x|)n n > 1. (3.7)

Then
in f || f − T||p ≤ || f − SN f ||p ≤ C(p, n, m)wr( f , 1/N)p N = 1, 2, · · · . (3.8)

for all wavelet polynomials T =
∑N

k=0 akwk and wr( f , 1/N)p denotes rth modulus of smooth-
ness, r is a positive integer with r ≤ m + 1 , r < n− 1.

Lemma 3.1. (V. Karanjgaokar and N. Shrivastav [14]) Let g and h be functions defined on R, with

max(|g(x)|, |h(x)|) = O(Pn(x))

where Pn(x) is a function of x for each fixed positive integer n and is a positive monotonic decreasing function
of |x|, with the series

∑
∞

k=0 Pn(x) converges for fixed n > 1. Then∫ 1

0
f (t)

L∑
k=0

∑
l′∈Z

g(2 jx + 2 jl′ + k)
∑
l∈Z

h(2 jt + 2 jl + k)dt =
∫
∞

−∞

f (t)
∑

v∈Z( j,L)

g(2 jx + v)h(2 jt + v)dt,

where Z( j, L) = {v ∈ Z : v = 2 jl + k, l ∈ Z, k = 0, 1, . . . , L}. The proof of this lemma is trivial and one
can see the lemma for Pn(x) = C

1+|x|n , n > 1 in M. Skopina [8] .

Lemma 3.2. (Kelly et al. [13]): Let µ be a bounded decreasing and integrable function in [0,∞). Then for
all x, y ∈ R, ∑

k∈Z

|µ(x + k)||µ(y + k)| ≤ Cµ
(
|x− y|

4

)
where C is the constant depending only on µ.
The proof of this lemma is simple, it’s proof can be seen in M. Skopina [9] and Kelly et al. [13]. The proof
of this lemma for µ(x) = 1

(1+|x|)1+ε , can be seen in V. Karanjgaokar [16].

Lemma 3.3. (M. Skopina [8]) If g, h satisfy the hypothesis of Lemma 3.1 , then

2 j
∫ 1

0

∣∣∣∣ L∑
k=0

∑
l′∈Z

g(2 jx + 2 jl′ + k)
∑
l∈Z

h(2 jt + 2 jl + k)
∣∣∣∣dt ≤ C, (3.9)

where C is a constant depending only on the functions g, h and µ.
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To prove (3.9), we should apply Lemma 3.1 for f ≡ 1 and Lemma 3.2.

4. Main Theorem

Theorem 4.1. Let f ∈ Lp(T), 1 ≤ p < ∞. ( f ∈ C(T) for p = ∞),ψ ∈ Cm(R) with ψ(l) bounded for l ≤ m
and satisfy

|ψ(x)| = O(Pn(x)) n > m + 1, (4.1)

and φ satisfy

max|φ(x)| = O(Pn(x)) n > 1.

Where, for each fixed positive integer n, Pn(x) is a function of x, which is positive and monotonic
decreasing with x. For n > 1 and a positive integer r with r < n− 1 & r ≤ n + 1,∫

∞

−∞

|x|rPn(x)dx. (4.2)

is convergent and integrable on R.
Then

in f || f − T||p ≤ || f − SN f ||p ≤ C(p, n, m)wr( f , 1/N)p N = 1, 2, · · · . (4.3)

for all wavelet polynomials T =
∑N

k=0 akwk and wr( f , 1/N)p denotes rth modulus of
smoothness.

Note: This result generalizes the result of M. Skopina [8] for Pn(x) = C
1+|x|n , n > 1 and V.

Karanjgaokar et al. [15] for Pn(x) = C
(1+|x|)n , n ≥ 1.

Theorem 4.2. Let f ∈ V j ⊆ L2(T) , φ ∈ Cm(R) and for m ≥ 0

|φ(m)(x)| = O(Pn(x))

Where, for each fixed positive integer n. Pn(x) is a positive and monotonic decreasing function of x with
n ≥ 1 and a positive integer r with r < n− 1 & r ≤ m + 1, satisfy (4.2). Then

|| f m
||p ≤ 2mj C(p, r, n) || f ||p (4.4)

for all f ∈ V j, j = 0, 1, .....and p ∈ [1,∞].

5. Proof of the Theorem

5.1. Proof of the Theorem 4.1. We shall prove the following inequality for the trigonometric

polynomial f

|| f − SN( f )||p ≤ C(p, r, n)|| f r
||p/Nr, (5.1)

and then we will get (3.8) using Theorem 3.3.

By the definition of S2 j−1 , (2.6), (2.7) and (2.8), for 2 j
≤ N ≤ 2 j+1 ,we have

lim
k→∞
|| f − S2k−1||p = 0,
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Therefore, we can write

f − SN( f ) = (S2 j−1( f ) − SN( f )) +
∞∑

i= j

(S2 j+1−1( f ) − S2i−1( f )). (5.2)

Thus in order to prove (5.1), it is sufficient to prove that

||S2 j+L( f ) − S2 j−1( f )||p ≤ C(p, r, n) 2− jr
|| f r
||p, (5.3)

for all j = 0, 1, · · · , L = 0, · · · , 2 j
− 1. We use Lemma 3.1 , Taylor’s formula

f (t) =
r−1∑
k=0

f (k)(x)
k!

(t− x)k +
1

(r− 1)!

∫ t

x
f r(τ)(t− τ)r−1dτ,

and the fact that all the moments of ψ ∈ L2(R) upto order m are zero i.e.∫
∞

−∞

xlψ(x)dx = 0, l = 0, 1, · · · , m. (5.4)

see Daubechies ( [3], ch.5). Thus we get

S2 j+L( f , x) − S2 j−1( f , x) = 2 j
∫ 1

0
f (t)

L∑
k=0

∑
l′∈Z

ψ(2 jx + 2 jl′ + k)
∑
l∈Z

ψ(2 jt + 2 jl + k) dt

= 2 j
∫
∞

−∞

f (t)
∑

v∈Z( j,L)

ψ(2 jx + v)ψ(2 jt + v) dt

=
(
2 j/(r− 1)!

) ∫ ∞

−∞

∫ t

x
f (r)(τ)(t− τ)r−1dτ

∑
v∈Z( j,L)

ψ(2 jx + v) ψ(2 jt + v)dt.

Thus using Lemma 3.2 and the condition (4.1) on ψ , we will get

|

∑
v∈Z( j,L)

ψ(2 jx + v)ψ(2 jt + v)| ≤ CPn(2 j(t− x)),

and hence

|S2 j+L( f , x) − S2 j−1( f , x)| ≤ 2 jC
∫
∞

−∞

∣∣∣∣ ∫ t

x
f (r)(τ)(t− τ)r−1dτ

∣∣∣∣Pn(2 j(t− x)) dt

= 2 jC
∫
∞

−∞

∫ x+t

x
| f (r)(τ)||t + x− τ|r−1dτ Pn(2 jt)dt (5.5)

Using Jensen’s inequality for p < ∞ , we obtain

‖ S2 j+L( f ) − S2 j−1( f ) ‖p (5.6)

≤ 2 j
∫
∞

−∞

dt Pn(2 jt)
( ∫ 1

0

∣∣∣∣ ∫ x+t

x
| f (r)(τ)| |x + t− τ|r−1dτ

∣∣∣∣pdx
)1/p

≤ C(p, r, n) 2 j
∫
∞

−∞

dtPn(2 jt)
( ∫ 1

0
|t|r(p−1)

∫ x+t

x
| f (r)(τ)|p|x + t− τ|r−1dτ dx

)1/p
.

Now three cases arise (i) |t| ≥ 1 , (ii) 0 ≤ t < 1, (iii) −1 < t < 0.

Case(i) |t| ≥ 1. As f (r) is periodic we have
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∫ x+t

x
| f (r)(τ)|p|x + t− τ|r−1dτ ≤ |t|r−1

∫ x+t

x
| f (r)(τ)|pdτ

≤ 2|t|r|| f (r)||pp.

Thus in (5.6)

∫ 1

0
dx

∫ x+t

x
| f (r)(τ)|p|x + t− τ|r−1dτ ≤ C(r)|t|r|| f (r)||pp. (5.7)

Case (ii) 0 ≤ t < 1. using change of order of integration∫ 1

0
dx

∫ x+t

x
| f (r)(τ)|p|x + t− τ|r−1dτ ≤

∫ t+1

0
| f (r)(τ)|pdτ

∫ τ

τ−t
(t + x− τ)r−1dx

≤ (2/r)|| f (r)||pp tr.

Therefore (5.7) holds in both the cases.

Case (iii) If −1 < t < 0, then∣∣∣∣ ∫ x+t

x
| f (r)(τ)|p|x + t− τ|r−1dτ

∣∣∣∣ ≤ ∫ 1

t
| f (r)(τ)|pdτ

∫ τ−t

τ
(τ− x− t)r−1dx

≤ (2/r)|| f (r)||pp |t|
r.

Therefore (5.7) holds for every value of t. Thus substituting from (5.7) to (5.6), we get

||S2 j+L( f ) − S2 j−1( f )||p ≤ C(p, r, n)|| f (r)||p 2 j
∫
∞

−∞

(
|t|rPn(2 jt)

)
dt,

for p < ∞ and for p = ∞, from (5.3) it follows that

||S2 j+L( f ) − S2 j−1( f )||∞ ≤ C(p, r, n)|| f (r)||∞ 2 j
∫
∞

−∞

(
|t|rPn(2 jt)

)
dt.

||S2 j+L( f ) − S2 j−1( f )||∞ ≤ C(p, r, n)|| f (r)||∞ 2− jr
∫
∞

−∞

(
|x|rPn(x)

)
dx.

These relations gives (5.3) and finally (5.1).

This gives (4.3) for trigonometric polynomial. Our aim is to show (4.3) for an arbitrary function

f ∈ L(p)(T) ( f or p = ∞, f ∈ C(T)). For this we approximate f in the norm by a trigonometric

polynomial and as (4.3) holds for each trigonometric polynomial and we use

||SN( f )||p ≤ C(p)|| f ||p

and

wr( f , 1/N) ≤ C(r)|| f ||p.

Finally we prove (4.3) for each f ∈ Lp(T) (C(T) f or p = ∞). This completes the proof of the

Theorem.
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5.2. Proof of the Theorem 4.2. Let f ∈ V j ⊆ L2(T), since f = S2 j−1( f ) by (2.8) , we have

f (x) = 2 j
∫ 1

0
f (t)

2 j
−1∑

k=0

∑
l′∈Z

φ(2 jx + 2 jl′ + k)
∑
l∈Z

φ(2 jt + 2 jl + k) dt. (5.8)

Hence

f m(x) = 2 j(m+1)
∫ 1

0
f (t)K j(x, t) dt. (5.9)

Where

K j(x, t) =
2 j
−1∑

k=0

∑
l′∈Z

φm(2 jx + 2 jl′ + k)
∑
l∈Z

φ(2 jt + 2 jl + k). (5.10)

For p = ∞ (4.4) follow from (5.10) immediately, due to Lemma (3.3) with g = φ, h = φm. For

p < ∞. Using by Jensen’s Inequality, (5.9) implies

f m(x) = 2 j(m+1)
∫ 1

0
f (t)

2 j
−1∑

k=0

∑
l′∈Z

φm(2 jx + 2 jl′ + k)
∑
l∈Z

φ(2 jt + 2 jl + k) dt.

= 2 j(m+1)
∫
∞

−∞

f (t) |h(2 jx + v)g(2 jt + v)| dt

f m(x) ≤ 2 j(m+1)
∫
∞

−∞

f (t)CPn(2 j(t− x))dt

|| f m(x)||p ≤ 2 j(m+1)C(p, r, n)|| f r
||p 2 j

∫
∞

−∞

(|t|rPn(2 jt))dt (5.11)

|| f m(x)||p ≤ 2 j(m+1)C(p, r, n)|| f r
||p 2− jr

∫
∞

−∞

(|x|rPn(x))dx. (5.12)

Finally using (4.2), we obtain

|| f m(x)||p ≤ C(p, r, n)2mj
|| f ||p (5.13)

for j = 0, 1, 2...

6. Corollaries of Theorem 4.1 and Theorem 4.2

Corollary 6.1. In our theorem if we take Pn(x) = e−nx,

Then ∫
∞

−∞

(
|x|re−nx

)
dx.

is convergent and integrable on R.

Proof: If Pn(x) = e−nx ∫
∞

−∞

(
|x|rPn(x)

)
dx =

∫
∞

−∞

(
|x|re−nx

)
dx

is convergent for r− n + 1 < 0 and integrable on R.
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Corollary 6.2. In our theorem if we take Pn(x) = x−n(log x)−n,
Then ∫

∞

−∞

(
|x|rx−n(log x)−n

)
dx.

is convergent and integrable on R.

Proof: If Pn(x) = x−n(log x)−n∫
∞

−∞

(
|x|rPn(x)

)
dx =

∫
∞

−∞

(
|x|rx−n(log x)−n

)
dx

=

∫
∞

−∞

(
|x|r−n x

x(log x)n

)
dx

=

∫
∞

−∞

(
|x|r−n+1 1

x(log x)n

)
dx.

is convergent for r− n + 1 < 0 and integrable on R.

Corollary 6.3. In our theorem if we take Pn(x) = 1
xn log(1 + n

x ),
Then ∫

∞

−∞

(
|x|r

1
xn log

(
1 +

n
x

))
dx.

is convergent and integrable on R.

Proof : If Pn(x) = 1
xn log(1 + n

x )∫
∞

−∞

(
|x|rPn(x)

)
dx =

∫
∞

−∞

(
|x|r

1
xn log(1 +

n
x
)
)
dx

=

∫
∞

−∞

(
|x|r−n log(1 +

n
x
)
)
dx.∫

∞

−∞

(
|x|rPn(x)

)
dx ≤

∫
∞

−∞

(
|x|r−n(1 +

n
x
)
)
dx. log x < x

is convergent for r− n + 1 < 0 and integrable on R.
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