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Abstract. The incentive of this article is to continue discovering more interesting results and concepts

related to the single-valued neutrosophic soft topological spaces. The concept of the single-valued

neutrosophic soft operator φ created from a single-valued neutrosophic soft grill (Kσ,Kτ ,Kδ) and

a single-valued neutrosophic soft topological space (B, >̃σ̃, >̃ς̃ , >̃δ̃) is presented. Connectedness of

single-valued neutrosophic soft topological spaces with single-valued neutrosophic soft grills is given.

Moreover, the concept of γ-connectedness associated with a single-valued neutrosophic soft operator

γ is extended on the set B.

1. Introduction and Preliminaries

In real life, there are many mathematical tools that are precise, deterministic, and crisp-like for that

of computing, reasoning, and formal modeling in character. On the other hand, others are not, such

as the problems in engineering, social science, economics, environment and medical science, etc. The

inadequacy of the classical parameterization tool in general may be considered to be the reason for these

difficulties. For this and to avoid the above difficulties, Molodtsov (1999) [14] created the concept

of soft set theory as a new mathematical tool for dealing with uncertainties and vagueness. The soft

set theory was applied in several directions, such as game theory, theory of measurement, Riemann

integration, smoothness of functions, and Perron integration by Molodtsov (2001) [15]. Practical

application of soft sets in decision-making problems has been also given by Maji et al. (2002) [13].
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Maji et al. (2001) [12], have also introduced the concept of fuzzy soft set which is a more generalized

concept and a combination of fuzzy set (Zadeh 1965) [30] and soft set (Molodtsov 1999) [14] and

also studied some of its properties. Later, some researchers studied the concept of fuzzy soft sets

(Acharjee and Tripathy [4]; Ahmad and Kharal (2009) [5]; Kharal and Ahmad (2009) [11], Tanay and

Kandemir (2011) [26]; Aygünoglu et al. (2014) [8]; Çetkin et al. (2014) [9]; Abbas et al. (2016,

2018) [1, 2]; Gunduz and Bayramov (2013) [10]).

Smarandache [24] initiated the neutrosophic set as a generalization of an intuitionistic fuzzy set.

Salama et al [23] set up the notion of neutrosophic crisp set. Correspondingly, Salama and Alblowi [22],

introduced neutrosophic topology as they claimed a number of its characteristics. The single-valued

neutrosophic set concept was given by Wang et al [27]. The concept of fuzzy ideal topological spaces,

single-valued neutrosophic ideal, single-valued neutrosophic ideal open local function, connectedness

in single-valued neutrosophic topological spaces (£, >̃σ, >̃ς , >̃δ) and compactness in single-valued

neutrosophic ideal topological spaces and studied the basic notions by following Šostak’s [25] fuzzy

topological spaces were obtained by Saber et al [3, 6, 7, 16–21,31,32].

This article aims to explore and define the properties and characterizations of the single-valued

neutrosophic soft operator Θ in single-valued neutrosophic soft grill topological spaces. Also, an

r -single-valued neutrosophic soft grill connectedness which has relations with an r -single-valued neu-

trosophic soft connectedness and some basic definitions and theorems about it have been given and

investigated. Moreover, the r -single-valued neutrosophic soft ℵ-connectedness and r -fuzzy soft ℵ-
disconnectedness related to a single-valued neutrosophic soft operator ℵ on the set B is introduced.

Throughout this work, B denotes the initial universe, ξB is the collection of all single-valued neu-

trosophic sets (simply, svns) on B (where, ξ = [0, 1], ξ0 = (0, 1] and ξ1 = [0, 1)) and E is the set of

each parameters on B.
All characterizations and concepts of svns are originate in Smarandache [24], Wang et al. [27],

Yang et al. [28], Ye et al. [29].

~z is a single-valued neutrosophic soft set [17] (simply, svnfs) on B where, ~z : E → ξB; i.e.,

~e ∼= ~(ẽ) is a svns on B, for all ẽ ∈ z and ~(ẽ) = 〈0, 1, 1〉, if ẽ 6∈ `.
The svns ~(ẽ) is termed as an element of the svnfs ~z . Thus, a svnfs ~E on B it can be defined as:

(~,E) =
{

(ẽ, ~(ẽ)) | ẽ ∈ E, ~(ẽ) ∈ ξB
}

=
{

(ẽ, 〈σ~(ẽ), τ~(ẽ), δ~(ẽ)〉) | ẽ ∈ E, ~(ẽ) ∈ ξB
}
,

where σ~ : E→ ξ (σ~ is termed as a membership function), τ~ : E→ ξ (τ~ is termed as indeterminacy

function), and δ~ : E → ξ (δ~ is termed as a non-membership function) of svnf set. (̃B,E) refers to

the collection of all svnfss on B and is termed svnfs-universe.

A svnfs ~z on B is termed as a null svnfs (simply, φ), if σ~(ẽ) = 0, τ~(ẽ) = 1 and δ~(ẽ) = 1, for

any ẽ ∈ E.
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A svnf set ~E on B is termed as an absolute svnf set (simply, Ẽ), if σ~(ẽ) = 1, τ~(ẽ) = 0 and

δ~(ẽ) = 0, for any ẽ ∈ E.

A svnf set ~E on B is termed as an t-absolute svnf set (simply, Ẽt), if σ~(ẽ) = t, τ~(ẽ) = 0 and

δ~(ẽ) = 0, for any ẽ ∈ E and t ∈ ξ.
For ~z , ly ∈ (B̃,E), ~z ∧̄ly = φ if ~z v ly and ~z ∧̄ly = ~z u (ly )c otherwise.

Definition 1.1. [17] Let ~z , ly be svnf sets over B. The union of svnf sets ~z , ly is a svnf set gx ,

where x = z ∪ y and for any ẽ ∈ x and σg : E→ ξ (σg called truth-membership) τg : E→ ξ (τg called

indeterminacy), δg : E→ ξ (δg called falsity-membership) of gx are as next:

σg(ẽ)($) =


σ~(ẽ)($), if ẽ ∈ z − y ,

σl(ẽ)($), if ẽ ∈ z − y ,

σ~(ẽ)($) ∪ σl(ẽ)($), if ẽ ∈ z ∪ y .

τg(ẽ)($) =


σ~(ẽ)($), if ẽ ∈ z − y ,

σl(ẽ)($), if ẽ ∈ z − y ,

σ~(ẽ)($) ∩ σl(ẽ)($), if ẽ ∈ z ∩ y .

δg(ẽ)($) =


σ~(ẽ)($), if ẽ ∈ z − y ,

σl(ẽ)($), if ẽ ∈ z − y ,

σ~(ẽ)($) ∩ σl(ẽ)($), if ẽ ∈ z ∩ y .
Definition 1.2. [17] The intersection of svnf sets ~z , ly is a svnf set gx , where x = z ∩ y and for any

ẽ ∈ C, gẽ = ~ẽ∩̃lẽ . We write as next:

σg(ẽ)($) =


σ~(ẽ)($), if ẽ ∈ z − y ,

σl(ẽ)($), if ẽ ∈ z − y ,

σ~(ẽ)($) ∩ σl(ẽ)($), if ẽ ∈ z ∩ y .

τg(ẽ)($) =


σ~(ẽ)($), if ẽ ∈ z − y ,

σl(ẽ)($), if ẽ ∈ z − y ,

σ~(ẽ)($) ∪ σl(ẽ)($), if ẽ ∈ z ∪ y .

δg(ẽ)($) =


σ~(ẽ)($), if ẽ ∈ z − y ,

σl(ẽ)($), if ẽ ∈ z − y ,

σ~(ẽ)($) ∪ σl(ẽ)($), if ẽ ∈ z ∪ y .
Definition 1.3. [17] Let ~z , ly ∈ (B̃,E). Then,

(1) ~z is a svnf subset of ly (simply, ~z ⊆̃ly ) iff for every ẽ ∈ E,

σ~(ẽ) ≤ σ
l
(ẽ), τ~(ẽ) ≥ τ

l
(ẽ), δ~(ẽ) ≥ δ

l
(ẽ).
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(2) The complement of ~z (simply, ~cz ) [where ~c : E→ ξB] is given by:

~cz = {(ẽ, 〈δ~(ẽ), τ~c (ẽ), σ~(ẽ)〉) | ẽ ∈ E} .
Theorem 1.1. [17] Let ~z , ly , gx ∈ (B̃,E) and (~z )j = (~j)z , (ly )j = (lj)y ∈ (B̃,E) j ∈ Γ, where Γ is

called the index set. Then

(1) ~z u ly = ly u ~z and ~z t ly = ly t ~z .
(2) ~z t (ly t gx ) = (~z t ly ) t gx and ~z u (ly u gx ) = (~z u ly ) u gx .

(3) ~z t (uj∈Γ[ly ]j) = uj∈Γ(~z t ly ).

(4) ~z u (tj∈Γ[ly ]j) = tj∈Γ(~z u ly ).

(5) [~c
z

]c = ~c
z
.

(6) If ~fz v ly , then ~cz v l
c
y
.

(7) ~z u ~z = ~z and ~z t ~z = ~z .
(8) φ ≤ ~z v Ẽ.

(9) (tj∈Γ[~z ]j)
c = uj∈Γ[~z ]cj .

Definition 1.4. [17] A single-valued neutrosophic soft topological space is ordered as (B, >̃σ, >̃τ , >̃δ)
where >̃σ, >̃τ , >̃δ : E→ ξ(B̂,E) is a mapping that satisfies the following axioms, for every ~z , lz ∈ (B̃,E)

and ẽ ∈ E:

(>1) >̃σẽ (φ) = >̃σẽ (Ẽ) = 1 and >̃τẽ (φ) = >̃τẽ (Ẽ) = >̃δẽ(φ) = >̃δẽ(Ẽ) = 0,

(>2) >̃σẽ (~z u ly ) ≥ >̃σẽ (~z ) ∩ >̃σẽ (ly ), >̃τẽ (~z u ly ) ≤ >̃τẽ (~z ) ∪ >̃τẽ (ly ),

>̃δẽ(~z u ly ) ≤ >̃δẽ(~
Z

) ∪ >̃δẽ(ly ),

(>3) >̃σẽ (
⊔
j∈Γ[~z ]j) ≥

⋂
j∈Γ >̃σ̃ẽ ([~z ]j), >̃τẽ (

⊔
j∈Γ[~z ]j) ≤

⋃
i∈4 >̃τ̃ẽ ([~z ]j),

>̃δẽ(
⊔
j∈Γ[~z ]j) ≤

⋃
j∈4 >̃δẽ([~z ]j).

The svnft is termed to be stratified if it satisfies the following conditions:

(>s1) >̃σẽ (Ẽt) = 1, >̃τẽ (Ẽt) = 0 and >̃δẽ(Ẽt) = 0.

The Quadruple (B, >̃σ, >̃ς , >̃δ) is known as a single-valued neutrosophic soft topological space

(svnft-space), representing the degree of openness (>̃σẽ (~z )), the degree of indeterminacy (>̃τẽ (~z )),

and the degree of non-openness (>̃δẽ(~z )); of a svnfs ~
A
with respect to the parameter ẽ ∈ E

respectively.

Occasionally, (>̃σ, >̃τ , >̃δ) is written as >̃στδ here into avoid ambiguity.

2. Single-Valued Neutrosophic Soft Grill

Definition 2.1. A mapping Kσ,Kτ ,Kδ : E → ξ(B̃,E) is called single-valued neutrosophic soft grill on

B (abbreviated, svnf-grill) if it satisfies the following conditions ∀ ~z , ly ∈ (B̃,E) and ẽ ∈ E:
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(K1) Kσẽ (φ) = 0, Kτẽ (φ) = 1, Kδẽ(φ) = 1 and Kσẽ (Ẽ) = 1, Kτẽ (Ẽ) = 0, Kδẽ(Ẽ) = 0,

(K2) If ~z v ly , then Kσẽ (~z ) ≤ Kσẽ (ly ), Kτẽ (~z ) ≥ Kτẽ (ly ) and Kδẽ(~z ) ≥ Kδẽ(ly ),

(K3) Kσẽ (~z t ly ) ≤ Kσẽ (~z )∨Kσẽ (ly ), Kτẽ (~z t ly ) ≥ Kτẽ (~z )∧Kτẽ (ly ) and Kδẽ(~z t ly ) ≥ Kδẽ(~z )∧Kδẽ(ly ).

Let KστδE and K?στδE be svnf-grills on B, we say KστδE is finer than K?στδE (K?στδE is coarser than

KστδE ) denoted by KστδE v K?στδE if

Kσẽ (~z ) ≤ Kσẽ (~z ), Kςẽ(~z ) ≥ Kςẽ(~z ), Kδẽ(~z ) ≥ Kδẽ(~z ), ∀ ~z ∈ (B̃,E), ẽ ∈ E.

The triple (B, >̃στδE ,KστδE ) is termed the single-valued neutrosophic soft grill topological space (ab-

breviated, svnfgt-space).

Definition 2.2. Let (B, >̃στδE ,KστδE ) be svnfgt-space, ẽ ∈ E, r ∈ ξ0 and ~z ∈ (B̃,E). We define

ϕ : E × (B̃,E) × ξ0 → (B̃,E), indicated by ϕ(ẽ, ~z , r) or ϕ
(>̃στδE ,Kσ̃ς̃δ̃E )

(ẽ, ~z , r) and called the svnf-

operator related to (Kσ,Kτ ,Kδ) and (>σ,>τ ,>δ) can be defined as follows:

ϕ(ẽ, ~z , r) = u{ly ∈ (B̃,E) | Kσẽ (~z ∧̄ly ) < r,Kτẽ (~z ∧̄ly ) > 1− r,Kδẽ(~z ∧̄ly ) > 1− r

and >̃σẽ ([ly ]c) ≥ r, >̃τẽ ([ly ]c) ≤ 1− r, >̃δẽ([ly ]c) ≤ 1− r}.

Sometimes in this pape, we will write ϕ
KστδE

(ẽ, ~z , r) or ϕ(ẽ, ~z , r) for ϕ
(>̃στδE ,KστδE )

(ẽ, ~z , r), and

also, sometimes, we will write ϕKσ (ẽ, ~z , r), ϕKτ (ẽ, ~z , r), ϕ
Kδ

(ẽ, ~z , r) for σ
[ϕKσ (ẽ,~z ,r)]

, τ
[ϕKτ (ẽ,~z ,r)]

,

δ
[ϕ
Kδ

(ẽ,~z ,r)]
respectively.

If we take KστδE = (Kστδ0 )E, then ϕ(ẽ, ~z , r) = C>̃στδ(ẽ, ~z , r) for any ẽ ∈ E, ~z ∈ (B̃,E), r ∈ ζ0.

Theorem 2.1. Let (B, >̃στδE ) be svnft-space and KστδE , K?στδE be two svnf-grills on B. Therefore,
for every ẽ ∈ E, ~z , ly ∈ (B̃,E), r ∈ ξ0:

(1) If ~z v ly , then ϕKσ (ẽ, ~z , r) ≤ ϕKσ (ẽ, ly , r), ϕKτ v(ẽ, ~z , r) ≥ ϕKτ (ẽ, ly , r) and ϕ
Kδ

(ẽ, ~z , r) ≥
ϕ
Kδ

(ẽ, ly , r).

(2) If Kσẽ (~z ) < r , Kτẽ (~ẽ) ≥ 1− r , Kδẽ(~z ) ≥ 1− r , then ϕ(ẽ, ~z , r) = φ. Furthermore, ϕ(ẽ, φ, r) = φ.

(3) If Kστδẽ v K?στδẽ , then ϕKσ (ẽ, ~z , r) ≤ ϕK?σ (ẽ, ~z , r), ϕKτ (ẽ, ~z , r) ≥ ϕK?τ (ẽ, ~z , r) and

ϕ
Kδ

(ẽ, ~z , r) ≥ ϕ
K?δ

(ẽ, ~z , r).

(4) ϕ(ẽ, ~z u ly , r) v ϕ(ẽ, ~z , r) u ϕ(ẽ, ly , r).

(5) ϕ(ẽ, ~z t ly , r) w ϕ(ẽ, ~z , r) t ϕ(ẽ, ly , r).

(6) ϕ(ẽ, ~z , r) = C>̃στδ(ẽ, ϕ(ẽ, ~z , r), r) = C>̃στδ(ẽ, ~z , r).

(7) ϕ(ẽ, ϕ(ẽ, ~z , r), r) v ϕ(ẽ, ~z , r).

Proof. (1) Let

ϕKσ (ẽ, ~z , r) 6≤ ϕKσ (ẽ, ly , r), ϕKτ (ẽ, ~z , r) 6≥ ϕKτ (ẽ, ly , r), ϕ
Kδ

(ẽ, ~z , r) 6≥ ϕ
Kδ

(ẽ, ly , r)
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Then, there is gx ∈ (B̃,E) with Kσẽ (ly ∧̄gx ) < r,Kτẽ (ly ∧̄gx ) > 1− r,Kδẽ(ly ∧̄gx ) > 1− r and >̃σẽ ([gx ]c) ≥
r , >̃τẽ ([gx ]c) ≤ 1− r, >̃δẽ([gx ]c) ≤ 1− r , such that

ϕKσ (ẽ, ~z , r) ≥ gx ≥ ϕKσ (ẽ, ly , r), ϕKτ (ẽ, ~z , r) ≤ gx ≤ ϕKτ (ẽ, ly , r),

ϕ
Kδ

(ẽ, ~z , r) ≤ gx ≤ ϕKδ (ẽ, ly , r).

On another side, since ϕKσ (ẽ, ly , r) ≥ gx , ϕKτ v(ẽ, ly , r) ≤ gx , ϕKδ (ẽ, ly , r) ≤ gx and ~z v ly we obtain

~z ∧̄gx v ly ∧̄gx . So,

Kσẽ (~z ∧̄gx ) ≤ Kσẽ (ly ∧̄gx ) < r, Kτ̃ẽ (~z ∧̄gx ) ≥ Kτẽ (ly ∧̄gx ) > 1− r, Kδẽ(~z ∧̄gx ) ≥ Kδẽ(ly ∧̄gx ) > 1− r.

Hence, ϕKσ (ẽ, ~z , r) ≤ gx , ϕKτ (ẽ, ~z , r) ≥ gx , and ϕKδ (ẽ, ~z , r) ≥ gx . A contradiction. Thus,

ϕ
Kδ

(ẽ, ~z , r) ≤ ϕ
Kδ

(ẽ, ly , r), ϕKτ (ẽ, ~z , r) ≥ ϕKτ (ẽ, ly , r), ϕ
Kδ

(ẽ, ~z , r) ≥ ϕ
Kδ

(ẽ, ly , r).

(2) Since ~z ∧̄ly v ~z we get

Kσẽ (~z ∧̄ly ) ≤ Kσẽ (~z ) < r, Kτẽ (~z ∧̄ly ) ≥ Kτẽ (~z ) > 1− r, Kδẽ(~z ∧̄ly ) ≥ Kδẽ(~z ) > 1− r,

for each ly ∈ (B̃,E). Thus based on the concept of ϕ and if Kσẽ (~z ) < r , Kτẽ (~ẽ) ≥ 1− r , Kδẽ(~z ) ≥
1− r , then ϕ(ẽ, ~z , r) = φ.

(3) Assume that,

ϕKσ (ẽ, ~z , r) 6≤ ϕK?σ (ẽ, ~z , r), ϕKτ (ẽ, ~z , r) 6≥ ϕK?τ (ẽ, ~z , r),

ϕ
Kδ

(ẽ, ~z , r) 6≥ ϕ
K?δ

(ẽ, ~z , r)

Then, there is gx ∈ (B̃,E) with K?σẽ (~z ∧̄gx ) < r,K?τẽ (~z ∧̄gx ) > 1 − r,K?δẽ (~z ∧̄gx ) > 1 − r and

>̃σẽ ([gx ]c) ≥ r , >̃τẽ ([gx ]c) ≤ 1− r, >̃δẽ([gx ]c) ≤ 1− r , such that

ϕKσ (ẽ, ~z , r) > gx ≥ ϕK?σ (ẽ, ~z , r), ϕKτ (ẽ, ~z , r) < gx ≤ ϕK?τ (ẽ, ~z , r),

ϕ
Kδ

(ẽ, ~z , r) < gx ≤ ϕK?δ (ẽ, ~z , r).

Since ϕK?σ (ẽ, ~z , r) ≤ gx , ϕK?τ (ẽ, ~z , r) ≥ gx , ϕK?δ (ẽ, ~z , r) ≥ gx and Kστδẽ v K?στδẽ , we get

Kσẽ (~z ∧̄gx ) ≤ K?σẽ (~z ∧̄gx ) < r, Kτẽ (~z ∧̄gx ) ≥ K?τẽ (~z ∧̄gx ) > 1− r,

Kδẽ(~z ∧̄gx ) ≥ K?δẽ (~z ∧̄gx ) > 1− r.

Hence, ϕKσ (ẽ, ~z , r) ≤ gx , ϕKτ (ẽ, ~z , r) ≥ gx , ϕKδ (ẽ, ~z , r) ≥ gx . A contradiction. Thus,

ϕKσ (ẽ, ~z , r) ≤ ϕK?σ (ẽ, ~z , r), ϕKτ (ẽ, ~z , r) ≥ ϕK?τ (ẽ, ~z , r) and ϕ
Kδ

(ẽ, ~z , r) ≥ ϕ
K?δ

(ẽ, ~z , r).

(4) Since, ~z u ly v ~z and ~z u ly v ly . So, from (1), we get ϕ(ẽ, ~z u ly , r) v ϕ(ẽ, ~z , r) and

ϕ(ẽ, ~z u ly , r) v ϕ(ẽ, lB , r). Therefore,

ϕ(ẽ, ~z u ly , r) v ϕ(ẽ, ~z , r) u ϕ(ẽ, ly , r).

(5) In a similar vein, we can demonstrate through a parallel line of reasoning that.
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(6) From the concept of ϕ(ẽ, ~z , r), C>̃στδ(ẽ, ϕ(ẽ, ~z , r), r) = ϕ(ẽ, ~z , r). Now we will just verify

ϕ(ẽ, ~z , r) v C>̃στδ(ẽ, ~z , r). For each svns-grill Kστδ
E

we have Kστδ
E
v K0στδ

E
, so by (3), we have

ϕ
Kστδ

(ẽ, ~z , r) v ϕ
K0στδ

(ẽ, ~z , r) = C>̃στδ(ẽ, ~z , r).

Therefore,

ϕ(ẽ, ~z , r) v C>̃στδ(ẽ, ~z , r).

(7) Likewise, we can establish through a similar line of reasoning that. �

Example 2.1. Assume that, B = {x1, x2} be a universal set, E = {ẽ1, ẽ2} be a set of parameters.

Define svnf-topology (>̃στδE ) and svnf-grill (KστδE ) as follow, for every ẽ ∈ E

>̃σe (~E) =


1, if ~E = φ or Ẽ,
1
2 , if ~E = {(ẽ1, 〈0.3, 0.3, 0.3〉), (ẽ2, 〈0.6, 0.6, 0.6〉)},
0, if otherwise,

>̃τe (~E) =


0, if ~E = φ or Ẽ,
1
2 , if ~E = {(ẽ1, 〈0.3, 0.3, 0.3〉), (ẽ2, 〈0.6, 0.6, 0.6〉)},
1, if otherwise,

>̃δe(~E) =


0, if ~E = φ or Ẽ,
1
2 , if ~E = {(ẽ1, 〈0.3, 0.3, 0.3〉), (ẽ2, 〈0.6, 0.6, 0.6〉)},
1, if otherwise,

Kσe (~E) =


1, if {(ẽ1, 〈1, 0, 0〉), (ẽ2, 〈0, 1, 1〉)} v ~E v Ẽ,

0.7, if {(ẽ1, 〈0.5, 0, 0〉), (ẽ2, 〈0.5, 0, 0〉)} v ~E v Ẽ,

0, if otherwise,

Kτe (~E) =


0, if {(ẽ1, 〈1, 0, 0〉), (ẽ2, 〈0, 1, 1〉)} v ~E v Ẽ,

0.3, if {(ẽ1, 〈0.5, 0, 0〉), (ẽ2, 〈0.5, 0, 0〉)} v ~E v Ẽ,

1, if otherwise,

Kδe(~E) =


0, if {(ẽ1, 〈1, 0, 0〉), (ẽ2, 〈0, 1, 1〉)} v ~E v Ẽ,

0.2, if {(ẽ1, 〈0.5, 0, 0〉), (ẽ2, 〈0.5, 0, 0〉)} v ~E v Ẽ,

1, if otherwise.

Then {(ẽ1, 〈0.7, 0.7, 0.7〉), (ẽ2, 〈0.4, 0.4, 0.4〉)} = ϕ(ẽ, Ẽ0.6
, 1

2 ) 6= ϕ(ẽ, ϕ(ẽ, Ẽ0.6
, 1

2 ), 1
2 ) = φ

Theorem 2.2. Let (B, >̃στδE ,Υστδ
E ) be svnfgt-space, {(~z )i ∈ (̃B,E) : i ∈ Γ}, ẽ ∈ E, r ∈ ξ0. Then:

(1) (t(ϕ(ẽ, (~z )i , r)) : i ∈ Γ) v (ϕ(ẽ,t(~z )i , r) : i ∈ Γ).

(2) (ϕ(ẽ,u(~z )i , r) : i ∈ Γ) v (u(ϕ(ẽ, (~z )i , r)) : i ∈ Γ).
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Proof. (1) Since ((~z )i v t(~z )i , ∀ i ∈ Γ), so by theorem 2.1 (1), we have, ϕ(ẽ, (~z )i , r) v
ϕ(ẽ,t(~z )i , r). Hence, t(ϕ(ẽ, (~z )i , r)) v ϕ(ẽ,t(~z )i , r), ∀ i ∈ Γ

(2) Since (u(~z )i v (~z )i , ∀ i ∈ Γ), so by theorem 2.1 (1), we have, u(ϕ(ẽ, (~z )i , r)) v
ϕ(ẽ,u(~A)i , r). Thus, ϕ(ẽ,u(~z )i , r) v u(ϕ(ẽ, (~z )i , r)), ∀ i ∈ Γ �

Definition 2.3. Let (B, >̃στδE ,KστδE ) be svnfgt-space, Then for all ~z ∈ (̃B,E), ẽ ∈ E and r ∈ ξ0 we

define a mapping C? : E× (̃B,E)× ξ0 −→ ξ(̃B,E) as next:

C?(ẽ, ~z , r) = ~z t ϕ(ẽ, ~z , r).

Clear that

(>̃K?σ)ẽ(~z ) =
∨
{r | C?(ẽ, ~c

z
, r) = ~c

z
}.

(>̃K?τ )ẽ(~z ) =
∧
{1− r | C?(ẽ, ~c

z
, 1− r) = ~c

z
}.

(>̃K?δ)ẽ(~z ) =
∧
{1− r | C?(ẽ, ~c

z
, 1− r) = ~c

z
}.

is a supra single-valued neutrosophic Soft topology generated by C? and >̃στδE v (>̃?στδK )E. If KστδE
=

K0στδ
E

, therefor for any ~z ∈ (̃B,E), ẽ ∈ E and r ∈ ξ0, we have,

C?(ẽ, ~z , r) = ~z t ϕ(ẽ, ~z , r) = ~z t C>̃στδ(ẽ, ~z , r) = C>̃στδ(ẽ, ~z , r).

Thus in this case, >̃στδ
E
v (>̃?στδ

K0
)E .

Theorem 2.3. For every ẽ ∈ E, r ∈ ξ0 and ~z , ly ∈ (B̃,E), the operator C? fulfills the next conditions:
(1) C?(ẽ, φ, r) = φ.

(2) ~z v C?(ẽ, ~z , r) = C>̃στδ(ẽ, ~z , r).

(3) If ~z v ly , then C?(ẽ, ~z , r) v C?(ẽ, ly , r).

(4) C?(ẽ, ~z u ly , r) v C?(ẽ, ~z , r) u C?(ẽ, lB , r).

(5) C?(ẽ, ~z t ly , r) w C?(ẽ, ~z , r) t C?(ẽ, ly , r).

(6) C?(ẽ, ~z , r) v C?(ẽ, C?(ẽ, ~z , r), r).

Proof. (1) C?(ẽ, φ, r) = φ t ϕ(ẽ, φ, r) = φ t φ = φ.

(2) From the concept of C?, we get than ~z v ~z t ϕ(ẽ, ~z , r) = C?(ẽ, ~z , r). Since ~z v
C>̃στδ(ẽ, ~z , r) and by Theorem 2.1 (6), we obtain ϕ(ẽ, ~z , r) v C>̃στδ(ẽ, ~z , r) implies that

~z t ϕ(ẽ, ~z , r) = C?(ẽ, ~z , r) v C>̃στδ(ẽ, ~z , r).

Therefore, ~z v C?(ẽ, ~z , r) = C>̃στδ(ẽ, ~z , r).

(3) Because ~z v ly and by Theorem 2.1 (1), we obtain ϕ(ẽ, ~z , r) v ϕ(ẽ, ly , r). Therefore,

~z t ϕ(ẽ, ~z , r) v ly t ϕ(ẽ, ly , r). Thus, C?(ẽ, ~z , r) v C?(ẽ, lB , r).

(4) From (3), we get that C?(ẽ, ~z u ly , r) v C?(ẽ, ~z , r) and C?(ẽ, ~z u ly , r) v C?(ẽ, ly , r) implies

C?(ẽ, ~z u ly , r) v C?(ẽ, ~z , r) u C?(ẽ, ly , r).

(5) Similarly, we can affirm through a corresponding argument that.
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(6) From (2) and (5) we obtain C?(ẽ, ~z , r) v C?(ẽ, C?(ẽ, ~z , r), r). �

Theorem 2.4. Let (B, >̃στδE ,Υστδ
E ) be svnfgt-space, ~z ∈ (̃B,E), ẽ ∈ E, r ∈ ξ0. Then:

(1) If ~z v C>̃στδ(ẽ, ~z , r), then

C>̃στδ(ẽ, ~z , r) = C?(ẽ, ~z , r) = C>̃στδ(ẽ, ϕ(ẽ, ~z , r), r) = ϕ(ẽ, ~z , r).

(2) If >̃σẽ ([~z ]c) ≥ r, >̃τẽ ([~z ]c) ≤ 1− r , >̃δẽ([~z ]c) ≤ 1− r , then ϕ(ẽ, ~z , r) v ~z .

Proof. (1) Because ~z v C>στδ(ẽ, ~z , r) and ϕ(ẽ, ~z , r) v C>στδ(ẽ, ~z , r), so we obtain,

~z t ϕ(ẽ, ~z , r) = C?(ẽ, ~z , r) v C>στδ(ẽ, ~z , r).

In view of Theorem 2.1 (6), we get,

ϕ(ẽ, ~z , r) = C>στδ(ẽ, ϕ(ẽ, ~z , r), r) v C>στδ(ẽ, ~z , r).

Because, ~z v ϕ(ẽ, ~z , r) we have C>στδ(ẽ, ~z , r) v C>στδC>στδ(ẽ, ϕ(ẽ, ~z , r), r) and since ϕ(ẽ, ~z , r) v
cl?(ẽ, ~z , r). Hence,

C>στδ(ẽ, ~A , r) = C?(ẽ, ~z , r) = C>στδ(ẽ, ϕ(ẽ, ~z , r), r) = ϕ(ẽ, ~z , r).

(2) Form Theorem 2.3 (2), we have

ϕ(ẽ, ~z , r) = C>στδ(ẽ, ϕ(ẽ, ~z , r), r) v C?(ẽ, ~z , r) v C>στδ(ẽ, ~z , r) = ~z .

�

3. Connectedness in Single-Valued Neutrosophic Soft Grill Topological Spaces

In this unit, we familiarize the r-single-valued neutrosophic grill connectedness (for short, r-svnfg-

connectedness) of a svnfgt-space (B, >̃στδE ,KστδE ). Recall that, the svnfs ~z , ly ∈ (B̃,E) are called

r-single-valued neutrosophic separated (for short, r-svnf-separated) if ~z and ly satisfy the following

condition

C>στδ(ẽ, ~z , r) u ly = φ = ~z u C>στδ(ẽ, ly , r), ẽ ∈ E, r ∈ ξ0.

Definition 3.1. Let (B, >̃στδE ,KστδE ) be r-svnfgt-space. Then,

(1) the svnfs ~z , ly ∈ (B̃,E) are called r-single-valued neutrosophic grill separated (r-svnfg-separated)

if ~z and ly satisfy the following condition

C?(ẽ, ~z , r) u ly = φ = ~z u cl?(ẽ, ly , r), ẽ ∈ E, r ∈ i0.

(2) (B, >̃στδE ,KστδE ) r-single-valued neutrosophic grill connected (abbreviated r-svnfg-connected space)

if it could not be found two r-svnfg-separated sets ~z , ly ∈ (B̃,E), ~z 6= φ, ly 6= φ such that ~z t ly = Ẽ.

That is, there do not exist r-svnfg-separated sets ~z , ly ∈ (B̃,E), ~z 6= φ except ~z = φ, ly = φ.
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Remark 3.1. Any two r-svnf-separated sets are r-svnfg-separated sets. That is from

C?(ẽ, gx , r) v C>στδ(ẽ, gx , r), ∀ gx ∈ (̃B,E), ẽ ∈ E, r ∈ ξ0.

However, the converse is not true in general, as shown in the following example.

Example 3.1. Assume that, B = {x1, x2} be a universal set, E = {ẽ1, ẽ2} be a set of parameters.

Define svnf-topology >̃στδE and svnf-grill KστδE as follow, for every ẽ ∈ E

>̃σe (~E) =


1, if ~E = φ or Ẽ,
1
2 , if ~E = {(ẽ1, 〈1, 0.4, 0.4〉), (ẽ2, 〈0.5, 1, 1〉)},
0, if otherwise,

>̃τe (~E) =


0, if ~E = φ or Ẽ,
1
2 , if ~E = {(ẽ1, 〈1, 0.4, 0.4〉), (ẽ2, 〈0.5, 1, 1〉)},
1, if otherwise,

>̃δe(~E) =


0, if ~E = φ or Ẽ,
1
2 , if ~E = {(ẽ1, 〈1, 0.4, 0.4〉), (ẽ2, 〈0.5, 1, 1〉)},
1, if otherwise,

K̃σe (~E) =


1, if {(ẽ1, 〈1, 0, 0〉), (ẽ2, 〈0, 1, 1〉)} v ~E v Ẽ,

0.5, if {(ẽ1, 〈0, 0.3, 0.3〉), (ẽ2, 〈0, 1, 1〉)} v ~E v Ẽ,

0, if otherwise,

K̃τe (~E) =


0, if {(ẽ1, 〈1, 0, 0〉), (ẽ2, 〈0, 1, 1〉)} v ~E v Ẽ,

0.5, if {(ẽ1, 〈0, 0.3, 0.3〉), (ẽ2, 〈0, 1, 1〉)} v ~E v Ẽ,

1, if otherwise,

K̃δe(~E) =


0, if {(ẽ1, 〈1, 0, 0〉), (ẽ2, 〈0, 1, 1〉)} v ~E v Ẽ,

0.25, if {(ẽ1, 〈0, 0.3, 0.3〉), (ẽ2, 〈0, 1, 1〉)} v ~E v Ẽ,

1, if otherwise.

Let lE = {(ẽ1, 〈0.8, 0, 0〉), (ẽ2, 〈0, 0.5, 0.5〉)} and gE = {(ẽ1, 〈0, 0, 0.2〉), (ẽ2, 〈0.5, 0.5, 0〉)}. Since

Kσẽ (lE) < 1
2 , K

τ
ẽ (lE) ≥ 1− 1

2 , K
δ
ẽ(lE) ≥ 1− 1

2 and Kσẽ (gE) < 1
2 , K

τ
ẽ (gE) ≥ 1− 1

2 , K
δ
ẽ(gE) ≥ 1− 1

2 , we

have ϕ(ẽ, lE ,
1
2 ) = ϕ(ẽ, gE ,

1
2 ) = φ. So, cl?(ẽ, lE ,

1
2 ) = lE and cl?(ẽ, gE ,

1
2 ) = gE . Thus,

cl?(ẽ, lE ,
1

2
) u gE = lE u gE = lE u cl?(ẽ, gE ,

1

2
) = φ.

Hence, lE and gE are r-svnfg-separated sets. However, lE and gE are not r-svnf-separated sets where

C>στδ(ẽ, lE ,
1
2 ) = Ẽ and thus C>στδ(ẽ, lE ,

1
2 ) u gE 6= φ.
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Definition 3.2. Let (B, >̃στδE ,Υστδ
E ) be r-svnfgt-space, and let ~z , ly ∈ (B̃,E) be nonempty svnf sets,

such that

(1) ~z , ly are r-svnfg-separated with ~z t ly = Ẽ. Therefore, (B, >̃στδE ,KστδE ) is termed r-single-valued

neutrosophic grill disconnected (abbreviated r-svnfg-disconnected space).

(2) ~z , ly are r-svnfg-separated with ~z t ly = gx . Therefore, gx is termed r-svnfg-disconnected on

(B, >̃στδE ,KστδE ).

Theorem 3.1. Let (B, >̃στδE ,KστδE ) be r-svnfgt-space. Therefore, the following statements are equiv-

alent.

(1) (B, >̃στδE ,KστδE ) is r-svnfg-connected.

(2) If ~z t ly = Ẽ and ~z u ly = φ with >̃σẽ (~z) ≥ r , >̃τẽ (~z) ≤ 1− r >̃δẽ(~z) ≤ 1− r and >̃σẽ (ly ) ≥ r ,
>̃τẽ (ly ) ≤ 1− r >̃δẽ(ly ) ≤ 1− r , ẽ ∈ E, r ∈ ζ0, then ~z = φ or ly = φ.

(3) If ~z t ly = Ẽ and ~z u ly = φ with >̃σẽ ([~z ]c) ≥ r, >̃τẽ ([~z ]c) ≤ 1 − r , >̃δẽ([~z ]c) ≤ 1 − r and

>̃σẽ ([ly ]c) ≥ r , >̃τ̃ẽ ([ly ]c) ≤ 1− r , >̃δẽ([ly ]c) ≤ 1− r , ẽ ∈ E, r ∈ ζ0, then ~z = φ or ly = φ.

Proof. (1)=⇒(2) Suppose there exist ~z , ly ∈ (B̃,E) with >̃σẽ (~z) ≥ r , >̃τẽ (~z) ≤ 1−r >̃δẽ(~z) ≤ 1−r ,
>̃σẽ (ly ) ≥ r, >̃τẽ (ly ) ≤ 1 − r >̃δẽ(ly ) ≤ 1 − r , such that ~z t ly = Ẽ and ~z t ly = φ, which implies

~z = [ly ]c and ly = [~A ]c . Then, by Theorem 2.3 (2) and Theorem 2.4 (2) we have;

C?(ẽ, [ly ]c , r) u [~z ]c v C>στδ(ẽ, [ly ]c , r) u [~z ]c = [ly ]c u [~z ]c = ~z u ly = φ,

and

C?(ẽ, [~z ]c , r) u [ly ]c v C>στδv(ẽ, [~z ]c , r) u [ly ]c = [~z ]c u [ly ]c = ly u ~z = φ.

Therefore, [ly ]c and [~z ]c are r-svnfg-separated sets with [ly ]ct[~z ]c = ~ztly = Ẽ. But (B, >̃στδE ,KστδE )

is r-svnfg-connected implies [ly ]c = φ or [~z ]c = φ and hence, ly = φ or ~z = φ.

(2)=⇒(3) Clear.

(3)=⇒(1) Let ~z , ly ∈ (B̃,E), ~z 6= φ, ly 6= φ such that ~ztly = Ẽ. Assume that gx = C>στδ(ẽ, ~z , r)

and w
D

= C>στδ(ẽ, ly , r), ẽ ∈ E, r ∈ ξ0, then gx t w
D

= Ẽ with >̃σẽ ([gx ]c) ≥ r, >̃τẽ ([gx ]c) ≤ 1 − r ,
>̃δẽ([gx ]c) ≤ 1 − r , >̃σẽ ([w

D
]c) ≥ r, >̃τẽ ([w

D
]c) ≤ 1 − r , >̃δẽ([w

D
]c) ≤ 1 − r , ẽ ∈ E, r ∈ ξ0. Now,

suppose that (3) is not satisfied. That is, gx 6= φ, w
D
6= φ, gx t w

D
= φ. Thus, by Theorem 2.3 (2),

we obtain,

C?(ẽ, ~z , r) u ly v C>στδ(ẽ, ~z , r), r) u C>στδ(ẽ, ly , r) = gx u w
D

= φ.

and

~z u C?(ẽ, ly , r) v C>στδ(ẽ, ~z , r), r) u C>στδ(ẽ, ly , r) = gc u w
D

= φ.

Therefore, ly and ~z are r-svnfg-separated sets, ly = φ, ~z = φ with ~z t ly = Ẽ. Hence,

(B, >̃στδE ,KστδE ) is not r-svnfg-connected. �

Theorem 3.2. Let (B, >̃στδE ,KστδE ) be r-svnfgt-space and ~z , ly , gc ∈ (B̃,E). If ly and gc are r-svnfg-

separated sets, then ~z u ly , ~z u gx are r-svnfg-separated sets.
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Proof. Let ly and gx be r-svnfg-separated sets, that is,

C?(ẽ, ly , r) u gx = φ = cl?(ẽ, gx , r) u ly ,∀, ẽ ∈ E, r ∈ ξ0.

Then, from Theorem 2.3 (4) we get that

C?(ẽ,u[~z u ly ], r) u [~z u gx ] v [C?(ẽ, ~z , r) u C?(ẽ, ly , r)] u [~z u gx ]

v [C?(ẽ, ~z , r) u ~z ] u [C?(ẽ, ly , r) u gx ]

= ~z u φ = φ

and

C?(ẽ,u[~z u gx ], r) u [~z u ly ] v [C?(ẽ, ~z , r) u C?(ẽ, gx , r)] u [~z u ly ]

v [C?(ẽ, ~z , r) u ~z ] u [C?(ẽ, gc , r) u ly ]

= ~z u φ = φ

Therefore, ~z u ly , ~z u gx are r-svnfg-separated sets. �

Theorem 3.3. Let (B, >̃στδE ,KστδE ) be r-svnfgt-space and ~z ∈ (B̃,E). Therefore, the following

statements are equivalent.

(1) ~z is r-svnfg-connected.
(2) If ly and gx are r-svnfg-separated with ~z v ly t gc , then ~z u ly = φ or ~z u gx = φ

(3) If ly and gx are r-svnfg-separated with ~z v ly t gx , then ~z v ly or ~z v gx .

Proof. (1)=⇒(2) ly and gx are r-svnfg-separated such that ~z v ly tgx . Form Theorem 3.2, ~z u ly and
~z ugx are r-svnfg-separated. So, ~z = ~z u [ly tgx ] = (~z u ly )t(~z ugx ). But ~z is r-svnfg-connected.
Therefore, ~z u ly = φ or ~z u gx = φ.

(2)=⇒(3) If ~z u ly = φ, then ~z = ~z u [lB t gc ] = (~z u ly ) t (~z u gx ) = ~z u gx , and hence,

~z v gx . Similarly, if ~z u gx then ~z v ly .
(3)=⇒(1) Let ly and gx be r-svnfg-separated such that ~z = ly t gx , by (3), we have ~z v ly or

~z v gx .

If ~z v ly and ly , gx are r-svnfg-separated sets, then gx = gx u ~z v gx u ly v gx u C?(ẽ, ly , r) = φ.

Thus, gc = φ.

If ~z v gx , similarly, we have ly = φ. Therefore, ~z is r-svnfg-connected. �

Theorem 3.4. Let (B, >̃στδE ,Υστδ
E ) be svnfgt-space, ~z , ly ∈ (̃B,E), ẽ ∈ E and r ∈ ξ0. If ~z 6= φ is

r-svnfg-connected and ly v ~z v C?(ẽ, ~z , r), then ly is r-svnfg-separated.

Proof. Assume that, ly is not r-svnfg-separated. So, there exist non-empty r-svnfg-separated gx ,

wc ∈ (̃B,E) such that ly = gx t w
D
. that is,

C?(ẽ, gx , r) u w
D

= φ = C?(ẽ,w
D
, r) u gx ,∀, ẽ ∈ E, r ∈ ξ0.
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Because, ~z v ly = gx t w
D
and ~z is r-svnfg-connected, and by Theorem 3.3 (3), we obtain either

~z v gx or ~z v w
D
. Form ly v C?(ẽ, ~z , r), we have

if ~z v gx , then

w
D

= (gx u w
D

) u w
D

= ly u w
D
v C?(ẽ, ~z , r) u w

D
v C?(ẽ, gx , r) u w

D
= φ

which contradicts to w
D
6= φ.

If ~z v w
D
, then

gx = (w
D
u gx ) u gx = ly u gx v C?(ẽ, ~z , r) u gx v C?(ẽ,w

D
, r) u gx = φ

which contradicts to gx 6= φ. Hence, ly is r-svnfg-separated. �

Theorem 3.5. Let (B, >̃στδE ,KστδE ) be svnfgt-space, ~z , ly ∈ (̃B,E), ẽ ∈ E and r ∈ ξ0. If ~z , ly are

r-svnfg-connected which are not r-svnfg-separated, therefore, ~z t ly is r-svnfg-connected.

Proof. Let w
D
and gx be r-svnfg-connected with ~z t ly = w

D
t gc . Because ~z is r-svnfg-connected

and by theorem 3.3 (3), ~A v gc or ~z v w
D
. Say ~z v w

D
. Assume that ly v gx . Because

(~z t ly ) u w
D

= (~A t w
D

) t (ly u w
D

) = ~z t φ = ~z

and

(~z t lB) u gc = (~z t gc ) t (ly u gx ) = gx t φ = gx .

Form Theorem 7, we obtain, ~z and ly are r-svnfg-connected. Which is a contradiction. Therefore,

ly v w
D
. Thus, ~z t lB v w

D
. In the same way, if ~z v gx , we obtaian that ~z t ly v gx . Therefore by

Theorem 8, we have, ~z t ly is r-svnfg-connected. �

Theorem 3.6. Let (B, >̃στδE ,KστδE ) be svnfgt-space and let £ = {(~z )i ∈ (̃B,E), i ∈ Γ} be a collection
of r-svnfg-connected sets in B, such that no two members of £ are r-svnfg-separated. Then,

⊔
i∈Γ(~z )i

is r-svnfg-connected.

Proof. Put ~z =
⊔
i∈Γ(~z )i and let lB , gx ∈ (̃B,E) be r-svnfg-separated sets such that ~z = ly t gc .

Because every two members (~z )i , (~z )j ∈ £ are not r-svnfg-separated, by Theorem 3.5, (~z )i t (~z )j

is r-svnfg-connected. Form Theorem 3.3 (3), we have (~z )i t (~z )j v ly or (~z )i t (~z )j v gx , say

(~A)i t (~z )j v ly . Thus ~z is r-svnfg-connected. �

Theorem 3.7. Let (B, >̃στδE ,KστδE ) be svnfgt-space and {(~z )i ∈ (̃B,E), i ∈ Γ} be a collection of

r-svnfg-connected sets and ui∈γ(~z )i 6= φ. Then,
⊔
i∈Γ(~z )i is r-svnfg-connected.

Proof. Clear. �

Definition 3.3. Let (B, >̃στδE ,KστδE ) be svnfgt-space. A non empty set ~z ∈ (̃B,E) is r-svnfg-

component if ~z is a maximal r-svnfg-connected set in B, that is if ~z v lB and ly is r-svnfg-connected
set, then ~z = ly .
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Theorem 3.8. Let (B, >̃στδE ,KστδE ) be r-svnfgt-space and ~z , ly ∈ (B̃,E), ẽ ∈ E, r ∈ ξ0. Therefore,

(1) if ~z is r-svnfg-component, then C?(ẽ, ~z , r) = ~z .
(2) If ly and ~z are r-svnfg-components in B with ly u~z = φ, then ly and ~z are r-svnfg-separated sets.

Proof. (1) Because ~z is r-svnfg-connected set and ~z v C?(ẽ, ~z , r), from Theorem 3.4, we

obtain C?(ẽ, ~z , r) is r-svnfg-connected. On the other hand ~z is r-svnfg-component, it implies

~z = C?(ẽ, ~z , r).

(2) Because ly and ~z are r-svnfg-components in B such that ly u ~z = φ. So, Form (1), we obtain

ly = C?(ẽ, lB , r) and ~z = C?(ẽ, ~z , r). Hence

C?(ẽ, ~z , r) u ly = φ = ~z u C?(ẽ, ly , r).

Therefore, ly and ~z are r-svnfg-separated sets. �

4. Single-Valued Neutrosophic Soft γ-Connected Spaces

Here, we present the single-valued neutrosophic soft γ-connected Spaces r-svnf-connected of space

B relative to a r-svnf operator γ. Suppose [with respect to any r-svnft >̃στδE defined on B and clστδ

is the single-valued neutrosophic soft closure operator on (B, >̃στδE )] that:

~z v γ(ẽ, ~z , r) v C>στδ(ẽ, ~z , r) ∀ ~z , ∈ (̃B,E), ẽ ∈ E, r ∈ ξ0.

Also, suppose that γ is a monotone operator, that is, ly v gx implies γ(ẽ, ly , r) v C>στδ(ẽ, gx , r),

ly , gx ∈ (̃B,E), ẽ ∈ E, r ∈ ξ0

Definition 4.1. Let B be a non-nall set and E be a set of parameters. Therefore,

(1) the svnf-sets ~z , ly ∈ (B̃,E) are called r-single-valued neutrosophic γ− separated (abbreviated

r-svnfγ-separated) if ~A and ly satisfy the following condition

γ(ẽ, ~z , r) u ly = φ = ~z u γ(ẽ, ly , r), f or every ẽ ∈ E, r ∈ ξ0.

(2) B is termed r-single-valued neutrosophic γ−connected (abbreviated r-svnfγ-connected space) if

one cannot find two svnf-sets ~A , ly ∈ (̃B,E) ~z 6= φ, ly 6= φ and ~A t ly = Ẽ. That is, there do not

exist r-svnfγ-separated sets ~z , ly ∈ (B̃,E), except ~z = φ, ly = φ.

Definition 4.2. Let ~z , ly ∈ (B̃,E), ~z 6= φ, ly 6= φ, such that:

(1) ~z , ly are r-svnfγ-separated with ~z t ly = Ẽ. Therefore, B is termed r-single-valued neutrosophic

γ−disconnected (abbreviated r-svnfγ-disconnected space).

(2) ~z , ly are r-svnfγ-separated with ~z t ly = gc . Therefore, gx is termed r-svnfγ-disconnected space

in (̃B,E).

For a r-svnfgt-space (B, >̃στδE ,Υστδ
E ).

If γ = C>στδ , then we obtain the r-svnf- connectedness.

If γ = C?>̃στδ , then we obtain the r-svnfg- connectedness
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Example 4.1. Assume that, B = {a, b}, E = {ẽ1, ẽ2} and (~E)1, (~E)2 ∈ (̃B,E) where (~E)1 =

{(ẽ1, 〈1, 1, 0〉), (ẽ2, 〈0, 0, 1〉)} and (~E)2 = {(ẽ1, 〈0, 0, 1〉), (ẽ2, 〈1, 1, 0〉)} for ẽ ∈ E, r ∈ ξ0, we define

the single valued soft operator γ as follows:

γ(ẽ, ~E , r) =


φ, if ~E = φ ∀r ∈ ξ0,

(~E)1, if φ 6= ~E v (~E)1, r ≤ 1
2 ,

(~E)2, if φ 6= ~E v (~E)2, r ≤ 3
5 ,

Ẽ, if otherwise,

Now, let φ 6= ~E = (~E)1, φ 6= gE = (~E)2 and r ≤ 1
3 then we have

γ(ẽ, ~E , r) u gE = φ = ~E u γ(ẽ, gE , r).

Thus, ~E and gE are r-svnfγ-separated sets. At ~E = (~E)1, gE = (~E)2 and r ≤ 1
3 we obtain that ~E

and gE are r-svnfγ-separated with Ẽ = ~E u gE . Therefore, B is r-svnfγ-disconnected.

If r ≥ 1
2 , then B is r-svnfγ-disconnected.

The following theorem is similarly proved, as in Theorem 3.1.

Theorem 4.1. Let (B, >̃στδE ) be r-svnft-space. Therefore, the following statements are equivalent.

(1) (B, >̃στδE ) is r-svnfγ-connected.

(2) If ~z t ly = Ẽ and ~z u ly = φ with >̃σẽ (~z) ≥ r , >̃τẽ (~z) ≤ 1 − r >̃δẽ(~z) ≤ 1 − r , >̃σẽ (ly ) ≥ r ,
>̃τẽ (ly ) ≤ 1− r >̃δẽ(ly ) ≤ 1− r , ẽ ∈ E, r ∈ ξ0, then ~z = φ or ly = φ.

(3) If ~z t ly = Ẽ and ~z u ly = φ with >̃σẽ ([~z ]c) ≥ r, >̃τẽ ([~z ]c) ≤ 1 − r , >̃δẽ([~z ]c) ≤ 1 − r and

>̃σẽ ([ly ]c) ≥ r , >̃τẽ ([ly ]c) ≤ 1− r , >̃δẽ([ly ]c) ≤ 1− r , ẽ ∈ E, r ∈ ζ0, then ~z = φ or ly = φ.

The following theorem is similarly proved, as in Theorem 3.2.

Theorem 4.2. Let B be a non-empty set, E be a set of parameters and ~z , ly , gx ∈ (̃B,E). If ly and

gx are r-svnfγ-separated sets, then ~z u ly , ~z u gx are r-svnfγ-separated sets.

The following theorem is similarly proved, as in Theorem 3.3.

Theorem 4.3. Let ~z ∈ (̃B,E). Then, the following statements are equivalent.

(1) ~z is r-svnfγ-connected.
(2) If ly and gc are r-svnfγ-separated with ~z v lB t gx , then ~z u ly = φ or ~z u gx = φ

(3) If ly and gc are r-svnfγ-separated with ~z v ly t gx , then ~z v ly or ~z v gx .

The following theorem is similarly proved, as in Theorem 3.4.

Theorem 4.4. Let ~z , ly ∈ (̃B,E), r ∈ ξ0. If ~z 6= φ is r-svnfγ-connected and ~z v ly v γ(ẽ, ~z , r),

ẽ ∈ E, then ly is r-svnfγ-connected.

Theorem 4.5. Let ~z , ly ∈ (̃B,E), r ∈ ξ0. If ~A and lB are r-svnfγ-connected which are not r-svnfγ-

separated, then ~z t ly is r-svnfγ-connected.
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Proof. Let gx and w
D
be r-svnfγ-separated, such that, ~z t ly = g

C
t w

D
. Since, ~A is r-svnfγ-

connected, by Theorem 4.3 (3), ~z v gx or ~z v w
D
. Let ~z v w

D
. Suppose ly v gx . Since

(~z t ly ) u w
D

= (~z u w
D

) t (ly u w
D

) = ~z t φ = ~z , by Theorem 4.2, ~A and lB are r-svnfγ-

separated. Which is a contradiction. Hence we have ly v w
D
. Therefore ~z t ly v w

D
. By the same

way, if ~z v gx , we have ~z t ly v gx . Then by Theorem 4.3 (3),r-svnfγ-separated, then ~z t ly is

r-svnfγ-connected. �

The following theorem is similarly proved, as in Theorem 3.6.

Theorem 4.6. Let ζ = {(~z )i ∈ (̃B,E), i ∈ Γ} be a collection of r-svnfγ-connected sets in B such

that no two members of ζ are r-svnfγ-separated. Then,
⊔
i∈Γ(~z )i is r-svnfγ-connected.

The following corollary follows from Theorem 4.6.

Corollary 4.1. Let {(~z )i ∈ (̃B,E), i ∈ Γ} be a family of r-svnfγ-connected sets and ui∈γ(~z )i 6= φ.

Then,
⊔
i∈Γ(~z )i is r-svnfγ-connected.

Theorem 4.7. Let ϑψ : (̃B,E)→ (̃£,F) be a mapping such that,

γ(ẽ, ϑ−1
ψ (ly ), r) v ϑ−1

ψ (θ(ψ(ẽ)), ly , r),∀ ly ∈ (̃£,F), r ∈ ξ0 , ẽ ∈ E,

where γ is a svnfγ-operator on B and θ is a r-svnfγ-operator on £. Then, the set ϑψ(~z ) ∈ (̃£,F) is

r-svnfθ-connected if the set ~z ∈ (̃B,E) is r-svnfγ-connected.

Proof. Let ly 6= φ and gx 6= φ be a r-svnfθ-separated sets in (̃£,F) with ϑψ(~z ) = ly t gx . That is

θ(ψ(ẽ), gx , r) u ly v θ(ψ(ẽ), ly , r) u gx = φ, for all r ∈ ξ0 , ẽ ∈ E, then we have ~z v ϑ−1
ψ (ϑψ(~z )) =

ϑ−1
ψ (ly t gx ) = ϑ−1

ψ (ly ) t ϑ−1
ψ (gx ),

γ(ẽ, ϑ−1
ψ (ly ), r) u ϑ−1

ψ (gx ) v ϑ−1
ψ (θ(ψ(ẽ), ly , r)) u ϑ−1

ψ (gx )

= ϑ−1
ψ (θ(ψ(ẽ), ly , r) u gx )

= ϑ−1
ψ (φ) = φ.

Also

γ(ẽ, ϑ−1
ψ (gx ), r) u ϑ−1

ψ (ly ) v ϑ−1
ψ (θ(ψ(ẽ), gx , r)) u ϑ−1

ψ (ly )

= ϑ−1
ψ (θ(ψ(ẽ), gx , r) u ly )

= ϑ−1
ψ (φ) = φ.

Hence ϑ−1
ψ (ly ) and ϑ−1

ψ (gx ) r-svnfγ-separated sets in B. So that, ~z v ϑ−1
ψ (ly ) t ϑ−1

ψ (gx ). But ~z is
r-svnfγ-connected. by Theorem 3.3 (3), ~z v ϑ−1

ψ (ly ) or ~z v ϑ−1
ψ (gx ), which means, ϑψ(~z ) v ly or

ϑ−1
ψ (~z ) v gx . Hence, by using Theorem 3.3 (3), we have ϑψ(~z ). is r-svnfθ-connected �
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Corollary 4.2. Let (B, >̃στδ
E

) and (£, >̃?στδ
F

) be two svnft-spaces. If ϑψ : (̃B,E)→ (̃£,F) is a svnf-

continuous mapping and ~z ∈ (̃B,E) is r-svnf-connected in B, then ϑψ(~z ) is r-svnfθ-connected in £.

Note, if γ = C>̃στδ and θ = C>̃?στδ . Then, the result follows from Theorem 4.7.

Corollary 4.3. Let (B, >̃στδ
E
, K̃στδ

E
) and (£, >̃?στδ

F
, K̃?στδ

F
) be two svnfgt-spaces and ϑψ : (B, >̃στδ

E
)→

(£, >̃?στδ
F

, K̃?στδ
F

) be a mapping satisfying the condition,

(1) C>̃στδ(ẽ, ϑ
−1
ψ (ly ), r) v ϑ−1

ψ (C?>̃?στδ(ψ(ẽ)), ly , r) ∀ ly ∈ (̃£,F), r ∈ ξ0 , ẽ ∈ E.

Then, the set ϑψ(~z ) ∈ (̃£,F) is r-svnfg-connected if the set ~z ∈ (̃B,E) is r-svnfg-connected.

Proof. Note, if γ = C?>̃στδ and θ = C?>̃?στδ . Then, the result follows from Theorem 4.7. �
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