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Abstract. The incentive of this article is to continue discovering more interesting results and concepts
related to the single-valued neutrosophic soft topological spaces. The concept of the single-valued
neutrosophic soft operator ¢ created from a single-valued neutrosophic soft grill (IC",ICT,IC‘S) and
a single-valued neutrosophic soft topological space (B, ff’,fe,f‘g) is presented. Connectedness of
single-valued neutrosophic soft topological spaces with single-valued neutrosophic soft grills is given.
Moreover, the concept of «y-connectedness associated with a single-valued neutrosophic soft operator

7y is extended on the set B.

1. Introduction and Preliminaries

In real life, there are many mathematical tools that are precise, deterministic, and crisp-like for that
of computing, reasoning, and formal modeling in character. On the other hand, others are not, such
as the problems in engineering, social science, economics, environment and medical science, etc. The
inadequacy of the classical parameterization tool in general may be considered to be the reason for these
difficulties. For this and to avoid the above difficulties, Molodtsov (1999) [14] created the concept
of soft set theory as a new mathematical tool for dealing with uncertainties and vagueness. The soft
set theory was applied in several directions, such as game theory, theory of measurement, Riemann
integration, smoothness of functions, and Perron integration by Molodtsov (2001) [15]. Practical

application of soft sets in decision-making problems has been also given by Maji et al. (2002) [13].
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Maji et al. (2001) [12], have also introduced the concept of fuzzy soft set which is a more generalized
concept and a combination of fuzzy set (Zadeh 1965) [30] and soft set (Molodtsov 1999) [14] and
also studied some of its properties. Later, some researchers studied the concept of fuzzy soft sets
(Acharjee and Tripathy [4]; Ahmad and Kharal (2009) [5]; Kharal and Ahmad (2009) [11], Tanay and
Kandemir (2011) [26]; Aygiinoglu et al. (2014) [8]; Cetkin et al. (2014) [9]; Abbas et al. (2016,
2018) [1,2]; Gunduz and Bayramov (2013) [10]).

Smarandache [24] initiated the neutrosophic set as a generalization of an intuitionistic fuzzy set.
Salama et al [23] set up the notion of neutrosophic crisp set. Correspondingly, Salama and Alblowi [22],
introduced neutrosophic topology as they claimed a number of its characteristics. The single-valued
neutrosophic set concept was given by Wang et al [27]. The concept of fuzzy ideal topological spaces,
single-valued neutrosophic ideal, single-valued neutrosophic ideal open local function, connectedness
in single-valued neutrosophic topological spaces (£,—T’U,—T’§,:F5) and compactness in single-valued
neutrosophic ideal topological spaces and studied the basic notions by following Sostak's [25] fuzzy
topological spaces were obtained by Saber et al [3,6,7,16-21,31, 32].

This article aims to explore and define the properties and characterizations of the single-valued
neutrosophic soft operator © in single-valued neutrosophic soft grill topological spaces. Also, an
r-single-valued neutrosophic soft grill connectedness which has relations with an r-single-valued neu-
trosophic soft connectedness and some basic definitions and theorems about it have been given and
investigated. Moreover, the r-single-valued neutrosophic soft N-connectedness and r-fuzzy soft N-
disconnectedness related to a single-valued neutrosophic soft operator N on the set B is introduced.

Throughout this work, B denotes the initial universe, €2 is the collection of all single-valued neu-
trosophic sets (simply, svns) on B (where, £ = [0,1],& = (0,1] and &, = [0,1)) and & is the set of
each parameters on B.

All characterizations and concepts of svns are originate in Smarandache [24], Wang et al. [27],
Yang et al. [28], Ye et al. [29].

fi_ is a single-valued neutrosophic soft set [17] (simply, svnfs) on B where, h, : E — £5; ie.,
h,=h(é)isasvnson B, forall €€ zand fi(é) =(0,1,1), if & L.

The svns fi(€) is termed as an element of the svnfs fi_. Thus, a svnfs fig on B it can be defined as:

(hE) ={(&n(&))|&cE n)eeb}
= {(&.(0n(&), (&), 6n(8))) | & € E, N(&) € £°},

where oy : E — & (o4 is termed as a membership function), 74 : E — & (74 is termed as indeterminacy
function), and 65 : E — £ (05 is termed as a non-membership function) of svnf set. (?SVE) refers to
the collection of all svnfss on B and is termed svnfs-universe.

A svnfs fi, on B is termed as a null svnfs (simply, @), if o5(€) = 0, 75(€) = 1 and 6x(€) = 1, for

any é € E.
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A svnf set fig on B is termed as an absolute svnf set (simply, E), if o4(8) = 1,74(€) = 0 and
on(€) =0, for any &€ € E.

A svnf set fig on B is termed as an t-absolute svnf set (simply, Et), if 0,(€) = t, Th(€) = 0 and
0r(8) =0, forany € Eand t € £.

For h,, 1, € (B,E), h,Al, = ¢ if h, T/, and n,Al =, (l) otherwise.

Definition 1.1. [17] Let h,, |, be svnf sets over B. The union of svnf sets h,, |, is a svnf set g,
where x = zUy and for any &€ € x and o4 : E = £ (04 called truth-membership) T4 : E — £ (T4 called
indeterminacy), dq : E — & (04 called falsity-membership) of g, are as next:
one) (@), if écz—y,
Iy (@) = | 0ye) (), if é€z—y,

(One) (@) Uoye(w), if é€zUy.

O'ﬁ(é)(@), lf éEZ—y,
Ty(e)(@) = oz (@), if eez—y,

(one) (@) Noyey(w), if E€zny.

/

one) (@), if é€z—y,

Og(2) (@) = { 0y(e) (), if é€z—y,

one (@) Noye(w), if é€zny.
Definition 1.2. [17] The intersection of svnf sets hh,, 1, is a svnf set g, where x = zN y and for any

8 c C, gs = haNls. We write as next:

;

one) (@), if E€z—y,
4(8)(@) = { o)) (@), if é€z—y,

one (@) Noye(w), if E€zny.
o) (@), if e€z—y,
To(e) (@) = oy (@), if E€z—y,
Uh(é)(’w) U 0/(@)(w), if eé€ezUy.
one) (@), if é€z—y,

dg() (@) = 4 0y (), if 6cz—y,

one) (@) Uoye(w), if E€zUy.
Definition 1.3. [17] Let ,,1, € (B,E). Then,
(1) h; is a svnf subset of I, (simply, hzily) iff for every é € E,

on(€) <o,(&), Tn(€)=T7(E)., 0n(€)=4,(é).
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2) The complement of t, (simply, hS) [where h¢ : E — £€8] is given by:
z

hz = {(& (6n(&), The (&), on(€))) | €€ E}.

Theorem 1.1. [17] Let f,,1,,9, € (B,E) and (h,); = (1;),, (1); = (|;), € (B,E) j €T, where T is
called the index set. Then

(1) hynl, =1, mh, and h,Ul, =1 LH,.

(2) h,u(l,ug,)=(hul)ug, and h,1(l,MNg,)=(h,11)Mg,.

(3) h, U(Merlh];) = Mjer(h, L1,).

(4) h, 1 (Wjerlh]j) = Wjer (A, 11,).

(5) [he)e = he.

(6) IFNf. T 1, then h C /.

(7) h.Nh =h andh UK =Hh,.

(8) ¢ <h CE.

(9) Uierlh])e = Myerlnlf.
Definition 1.4. [17] A single-valued neutrosophic soft topological space is ordered as (B, 79,77, T9)
where 79, T7, T0 . E — 5(5'\'5) is a mapping that satisfies the following axioms, for every fi_, |, € (lg,\é)
and é € E:
(T1) T2(¢) = TZ(E) =1 and TZ(¢) = TZ(E) = T4(¢) = TL(E) =0,
(T2) T&(h, M1,) > TE(R)NTE(W,),  TE(h ML) < TH(N,)U

T4, m1,) < T3, U T,
(T3) TeUjer 1) = Nier TZARL), TEUWern]) < Uiea TER1).
TeUjerln.]) < Ujea THALY.

The svnft is termed to be stratified if it satisfies the following conditions:
(T%) TZ(EY) =1, TL(EY) =0 and TY(E?) =0

The Quadruple (B, To TS, T9 ) is known as a single-valued neutrosophic soft topological space
(svnft-space), representing the degree of openness (T2(h,)), the degree of indeterminacy (TZ(h,)),
and the degree of non-openness (T&(h,)); of a svnfs h, with respect to the parameter & € E

respectively.

Occasionally, (T?,T7, T%) is written as T here into avoid ambiguity.

2. Single-Valued Neutrosophic Soft Grill

Definition 2.1. A mapping K°, K™, K% : E — £(B'VE) is called single-valued neutrosophic soft grill on
B (abbreviated, svnf-grill) if it satisfies the following conditions ¥ h,, 1, € (ETE) and é € E:
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(K1) Kg(¢) =0, KZ(¢) = 1, K&(¢) =1 and KZ(E) = 1, KI(E) = 0, K(E) = 0,
(K2) If 0, £ 1, then Kg(h,) < KZ(1,), KZ(h,) = KZ(l,) and K§(h,) = KL(1,),

(K3) Kg(h,ul) < KZ(h,)VKSE(l,), KZ(h,ul)>KI(h)AKZ(I,) and K&(h,Ul) > K3(h,) AKE(L).

Let KZ™0 and K™ be svnf-grills on B, we say KZ™ is finer than K™ (K™ is coarser than
KgT ) denoted by KZ™° C Ko™ if

KZ(h,) < KZ(h,), Ki(n)>Ki(n), Ki(h)>K3(H,), Vh € (BE) écE.

The triple (B, "T"E“s, ICET‘S) is termed the single-valued neutrosophic soft grill topological space (ab-

breviated, svnfgt-space).

Definition 2.2. Let (B, 7270, KZ™0) be svnfgt-space, & € E, r € & and h, € (B,E). We define

¢ : Ex (B,E) x & — (B, E), indicated by ©(&, h,,r) or P rgrs oy (8. M., 1) and called the svnf-
E "VE

operator related to (K, K™, K?%) and (T°, T™, T%) can be defined as follows:

©(&h,,r)= 1{l, € (BE)| KZ(MAL) < r,KE(MAL) > 1—r, K&AAL) >1—r

and TH([)) = r T <1-r T <11,

Sometimes in this pape, we will write (me(é, h,,r) or w(éh,,r) for ¢ (é,h,,r), and
E

(f—gﬂ'é ) ;Ccéﬂ'é )

also, sometimes, we will write ¢, (& 1,,r), ¢ (&, r), ¢ (&éh,, r) for Olyo ez’ Tiogr @z

(o5 (& ) respectively.

If we take KZ™0 = (K§™)g, then (&, h,,r) = Cs0rs(&,h,, 1) for any &€ E, 1, € (B,E), r € (0.

Theorem 2.1. Let (B, 'T"ET‘S) be svnft-space and KZ™°, K™ be two svnf-grills on B. Therefore,
for every €€ E, 1,1 € (EVE) reép:

(1) Ifh, T 1, then ¢, (& h,,r) < (& 1,.r), ¢ v(EN, r) = ¢.(&l,r) and ¢ (&h,r) >
o (&1, r).

(2) IFKZ(h,) < r, KL(hs) > 1—r, K&(h,) > 1—r, then (& h,,r) = ¢. Furthermore, p(& ¢, r) = .

(3) If K70 C KL, then ¢, (& h,r) < @ .(&N,r), ¢.(&Hh,r) > ¢ (&h,r) and
0 (B0 1) = 0 (61,0

(4) (& h,nl,r)Ep(&h, r)NeEl,r).

(5) (& h,ul,r) 3 p(&h, r)Uep&l,r).

(6) @(&.1,,r) =Csors (& (& N, 1), r) = Crors (€1, 1).

(7) (&, (e, h ,r),r)Ep(e h,,r).

Proof. (1) Let

0o (B 1) £ 0 (Bl 1), 0 (Bt r) 2 0u (@), @ (&0 1) 2 (51
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Then, thereis g, € (EVE) with K£Z(/,Ag,) < r.KZ(I,Ag,) > 1—r, ’Cg(/y/_\gx) >1—rand f%([gxlc) 2
rTE([9.09) < 1= T4(9.]) < 1 - . such that

0o (&Nh,r)>g9, >0.&1.r), o.,E&h,.r)<g, <o.(&l,r),
(pKé(é' ﬁz' r) S gx S (plCa(é’ /y' r)'

On another side, since ¢, (& 1,,r) > 9,, ¢~ v(& 1, r) <g,, ¢ (& 1,r) <g, and h, T/, we obtain
h,Ag, E I,Ag,. So,

K&(h.Rg,) < KZ(,Ag,) < r, KI(hAg,) = KE(l,Ag,) > 1 —r, K3(h,Ag,) = K&(L,Ag,) > 1 —r.
Hence, ¢, (& 0,.r) <9, ¢, (&N, r) = g,, and ¢ (& N,,r) = g,. A contradiction. Thus,
o En,r)<e (&l.r), o (&N, r=e.ElL.r), ¢ &nh,r)=e,&l.r).
(2) Since h,Al, C h, we get
KZ(hAL) <KZ(h) <r, KI(hAL)>KI(h)>1—r, Ki(hAL)>K3(N)>1-r,

for each /, € (g,VE). Thus based on the concept of ¢ and if Kg(h,) < r, KI(hs) > 1—r, K3(h,) >
1—r, then (& h,,r)=¢.
(3) Assume that,

O (&0, 1) Lo (&0,,1), @ (&N, r)Z 0. (&N, ),

(&N, r)Z2 ¢ (&N, r)
Then, there is g, € (B,E) with K57(m,Ag,) < r,Ki"(M.Ag,) > 1 —r KP(h,Ag,) > 1 —r and
T4([9,09) = . TZ([9,]9) < 1= T¥([9,]) < 1 - r, such that
(p]cd(é' hz’ r) > gx Z (p}C*U(é’ ﬁz’ r)' (pKT(é' hZ’ r) < gx S (pjc*T(é’ ﬁz' r)’

(plcé(é’ hz' r) < gx S (pK*é(é' hz' r)

Since .o (E 1, 1) <9, 0 (&N, 1) 29, 0 (&N, r)>9, and KI8T KT8, we get
K&(h.Ag,) <KF(h.Ag,) <r. Ki(h.Ag,) = KZ (hAg,)>1-r,

K&(h,Ag,) > K (h,Ag,) >1—r.
Hence, ¢, (& h,.r) < 9, ¢ (&N,.r) > g, ¢,(&N,r) = g,. A contradiction. Thus,
Vo (€N, 1) <00 (&N, 1), @ (N, 1) = ¢ (€N, r)and @ (&N, r) > (&h,r).

(4) Since, h, N/, € h, and h, M/, £ /. So, from (1), we get (& h, M/, r) E @(é h,, r) and
w(& n,nl, r)E (&l r). Therefore,

p& nnil,r)Ee(en, r)nel&l, r).

(5) In a similar vein, we can demonstrate through a parallel line of reasoning that.
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(6) From the concept of @(& h,,r), C+ors(& (& N,, 1), r) = @(& h,,r). Now we will just verify
@(&,1,,r) E Csors(&, 1,,r). For each svns-grill K27 we have K27 C K279, so by (3), we have

Therefore,

Prrs (&1, 1) E @ o5 (8N, 1) =Cr0rs(E, h,, 1)

©(& N, r) ECxors(& h,,r).

(7) Likewise, we can establish through a similar line of reasoning that.

0

Example 2.1. Assume that, B = {x1,x2} be a universal set, E = {é;, &} be a set of parameters.

Define svnf-topology (T‘ET‘S) and svnf-grill (KZ™) as follow, for every & € E

Then {(&,(0.7,0.7,0.7)), (&, (0.4,0.4,0.4))} = (& E*° 1) # ©(&, o(& E”

Theorem 2.2. Let (B, "T"I’_ET‘S, TZ™) be svnfgt-space, {(h,); € (YSVE) ciel}, é€E, reé. Then:

—T—g(hE) =

Kg(hE) =

Kg(hE) =

Icg(hE) =

O NI~ =

= e O

= e O

1,

0.7,

0.2,

if hy=¢orE,
if otherwise,
if h,=¢orE,
if otherwise,
if h,=¢orE,
if otherwise,

if {(&,(1,0,0)),(&,(0.L,1)} EA, CE

e &
if {(81,(0.5,0,0)),(&,(0.50,0)}Ch, CE,

if otherwise,

if {(81,(1,0,0)),(6,(0,1, 1)} Ch, C B

if hy,={(&,(0.3,0.3,0.3)), (&, (0.6,0.6,0.6))},

if h,={(8,(0.3,0.3,0.3)), (&, (0.6,0.6,0.6))},

L if hy={(&,(0.3,0.3,0.3)), (&, (0.6,0.6,0.6))},

i {(21.(05,0,0), (&, (0.5,0,0))} C 5, C B,

if otherwise,

if {(8.,(1,0,0)), (&, (0,1, 1))} Ch, CE

if otherwise.

6

(1) (U(p(& (M) r): i€l E(w(&Uh,)ir):ieTl).
(2) (p(e,n(h,)j,r):iel)C(M(w(é (h)ir) iel).

if {(&,(0.5,0,0)),(&,(0.50,0)}Ch,CE,

3)3) =0
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Proof. (1) Since ((h,); T U(h,);, ¥V i € T), so by theorem 2.1 (1), we have, @(é, (h,); r) C
w(& U(h,)i,r). Hence, U(p(&, (h,)i,r)) Ew(é U(h)ir), YViel

(2) Since (N(h,); € (h,);, V i € I), so by theorem 2.1 (1), we have, M(p(&, (h,); r)) C
@(& (N, )i r). Thus, (& N(n,);, r) EN(e(é (h,);r)), Viel O

—_~—

Definition 2.3. Let (B, TZ™, IC‘”é) be svnfgt-space, Then for all h, € (B,E), & € E and r € &o we
define a mapping C* - E x (B.E) x £g — 5(5 B) as next:

C*(& h,,r)="nUp(é hs,r).

Clear that
("T’,C*a)~(h )= \/{rlc (&ns r)=n}.
(Ten)a(h,) = N{1—r|C* (& h5,1—r)=h}.
(Tm) = N\{1-rlC (&n1-r)=n}.

is a supra single-valued neutrosophic Soft topology generated by C* and —T'ET‘S C (—T’,*C”‘S)E. If ICgT‘S =
ICS"T‘S, therefor for any h, € (B,E), é € E and r € £y, we have,

C (& h,,r)=nU@(&h, r)="hnUCroms(& N, r)=Csems(& N, r).
o hi R %o T6
Thus in this case, TZ™ C (TK‘OT )e-
Theorem 2.3. Foreveryé € E, reyandh,, |, € (B’TE) the operator C* fulfills the next conditions:

(1) C (&, r) =
(2) h, TC*(& h,, r) =Cxors(& N, r).

(3) Ifh, C 1, thenC*(& h,, r) EC*(&1,r).
(4) c*(e,n, N, r)EC(&h,, r)NC* (&l r).
(5) c*(é.n,ul, r)y3ac(en, ryuC(&l,r).
(6) C*(é,h,,r)CC*(&C*(&nh,,r)r).

Proof. (1) C*(&,¢,r) =L w(E ¢, r)=d U= ¢.
(2) From the concept of C*, we get than i, C f, U @(é h,,r) = C*(& hy,r). Since h, C

Csors(&,1,,r) and by Theorem 2.1 (6), we obtain @(&, h,,r) C Cx.rs (&, 1, r) implies that
U8 hy,r)=C* (&N, r) C Croms(8. . 1).
Therefore, h, T C*(&,h,,r) = Csors(& N, 1).

(3) Because fi, C /, and by Theorem 2.1 (1), we obtain ¢(& h;,r) E @(& 1, r). Therefore,

y

h,U@(& h,,r)El Ue(él, r). Thus, C*(& h,,r) EC*(& I, r).
(4) From (3), we get that C*(é,h, M/, r) CC*(& h,,r) and C*(é h, M/, r) EC*(&, 1, r) implies

C*(&h, M1, r)CC (& n, r)NC (&1,r).

(5) Similarly, we can affirm through a corresponding argument that.
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(6) From (2) and (5) we obtain C*(&é,h,,r) CC*(& C* (& h,,r),r). O

—~—

Theorem 2.4. Let (B, T2, TZ7) be svnfgt-space, h, € (B,E), 8 € E, r € &. Then:
(1) Ifh, C Cror(&. 1, 1), then

Crors(E, 1, 1) =C" (& h,,r) =Cr0rs(& @(& Nz, 1), r) = (& hy,r).
(2) IFTE([01) = r TE([RA) < 1= r, TY([A) < 1= r, then @(& hz, 1) E .
Proof. (1) Because fi, C Ctors(€ h,,r) and ©(&, h,, r) C Crors (€, hi,, r), so we obtain,
h,Up(é hy,,r)=C"(&h, r)CCrors(& h,,r).
In view of Theorem 2.1 (6), we get,
©(& hy,r) =Crors(€,0(& Ny r), r) CECrons(E,N,,r).

Because, 1, C (& h,, r) we have Crors (€, h,, r) C CrorsCrors (€, @(€, Nz, r), r) and since (&, h,,r) C
cl*(é, h,,r). Hence,

Crors(8, 1, r) =C"(& h,,r) =Crors(& @(& Ny, r), r) = (& hy,r).

(2) Form Theorem 2.3 (2), we have

©(& hy,r) =Crors (& @(& fiy,r),r) CC*(E h,,r)CCrors(E, h,,r)=h,.

3. Connectedness in Single-Valued Neutrosophic Soft Grill Topological Spaces

In this unit, we familiarize the r-single-valued neutrosophic grill connectedness (for short, r-svnfg-
connectedness) of a svnfgt-space (B, 7270, KZ7). Recall that, the svnfs f,, I, € (E,VE) are called
r-single-valued neutrosophic separated (for short, r-svnf-separated) if fi, and /, satisfy the following
condition

Crors(& 1, r)1l, =¢="n0,MCrors(€,1,,r), E€E, reé.

Definition 3.1. Let (B, —T'ET‘S, K2&™) be r-svnfgt-space. Then,

(1) the svnfs h,, |, € (1/3\E) are called r-single-valued neutrosophic grill separated (r-svnfg-separated)
if h, and |, satisfy the following condition

C*(&nh,rnNnl, =¢=nnc (&l,r), EcE rci.

(2) (B, "T’ET‘S, KZT) r-single-valued neutrosophic grill connected (abbreviated r-svnfg-connected space)
if it could not be found two r-svnfg-separated sets h,, I, € (B,E), h, # ¢, |, # ¢ such that h,ul, = E.
That is, there do not exist r-svnfg-separated sets h,, |, € (ETE) h, # ¢ except h, = ¢, |, = ¢.
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Remark 3.1. Any two r-svnf-separated sets are r-svnfg-separated sets. That is from

—_—

C*(é,9,,r)CCros(,9,,r), V g €(BE) EcE, reé.
However, the converse is not true in general, as shown in the following example.

Example 3.1. Assume that, B = {x1,xo} be a universal set, E = {é1, &} be a set of parameters.

Define svnf-topology —T—ET‘S and svnf-grill IC‘ETé as follow, for every € € E

1, if hy=¢orE,

TI(h) =4 L if n,=1{(6,(1,04,0.4)), (&, (0.51,1))},
0, if otherwise,
0, if h,=¢orE,

TLh) =14 L if hy={(&,(1,04,04)) (&,(051,1))},
1, if otherwise,
0, if h,=¢orE,

Tohe) =14 L, if h,={(8,(1,04,04)),(&,(0.51,1))},
1, if otherwise,

1, if {(8.(1,0,0)), (&, (0,1, 1))} Ch, CE,
KZ(h) =< 05, if {(&1.(0,0.3,0.3)), (&, (0,1,1))} Ch, C E,

0, if otherwise,

0, if {(81,(1,0,0)),(&,(0,1,1))} C A,
KZ(he) =1 05, if {(&,(0,03,03)) (& (0,1,1)} C

1, if otherwise,

0, i {(&.(1,0,0),(& (0,1, 1))} Ch,CE
Ki(he) =< 0.25, if {(&,(0,0.3,0.3)),(&,(0,1,1))} Eh, CE,

1, if otherwise.

Let | = {(&,(0.8,0,0)),(&,(0,0.5,0.5)} and g. = {(&,(0,0,0.2)), (&,(0.5,0.5,0))}. Since
g(/E) < %' ’Cg(/E) >1- %' ’Cg(/E) >1- % and ’Cg(gE) < %' ,Cg(gE) >1- %' ]Cg(gE) >1- %' we
have (&, I, %) = ¢(&,9¢, %) = ¢. So, cI"(&, 1, 2) = |, and cI*(&, g, 3) = ge. Thus,

. 1 . 1
cl (e’/E’E)rlgE:/El_lgE:/El_ld (e,gE,E):qS.

Hence, I, and g are r-svnfg-separated sets. However, I, and g, are not r-svnf-separated sets where
Crors (8, I, 3) = E and thus Crors(&, I, 3) Mg, # ¢.
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Definition 3.2. Let (B, "T’CE’T‘S, TE™0) be r-svnfgt-space, and let h,, I, € (Z?TE) be nonempty svnf sets,
such that

(1) h,.l, are r-svnfg-separated with h, U |, = E. Therefore, (B, f‘ET‘S, K2m0) is termed r-single-valued
neutrosophic grill disconnected (abbreviated r-svnfg-disconnected space).

(2) h,.1,
(B, Tg0, K27),

are r-svnfg-separated with h, U I, = g,. Therefore, g, is termed r-svnfg-disconnected on

Theorem 3.1. Let (B, TZ™, K2™) be r-svnfgt-space. Therefore, the following statements are equiv-
alent.

(1) (B, T2, K270) is r-svnfg-connected.

(2) Ifh, U |, =Eandh, 0 |, = with T¢(h,) >r, TL(h,) <1—r T8(h,) <1—rand T¢(l,) >r,
TIU)<1-rT3)<1—r E€E reo thenh,=¢orl = ¢.

(3) Ifh,Ul, = E and h, 1, = ¢ with TE([h]) > r, TL([h,]°) < 1 —r, TY([h]) < 1—r and
T = TLI)<1—r, TUULI)<1—r,8€E, relo thenh, =¢orl, = ¢.

Proof. (1)==(2) Suppose there exist 1,, |, € (1/3\75) with T¢(h,) > r, TL(h;) < 1—r T&(h,) < 1-r,
i i ~6 _ fad _ . . .
T¢(L,)>rTZ(,) <1—rT4)<1—r suchthat i, /|, = E and i, U I, = ¢, which implies
h, =[] and I, = [,]°. Then, by Theorem 2.3 (2) and Theorem 2.4 (2) we have;

C*(E.[L]%, 1) M [A)° T Crons (8, [1,]5, ) M [A]° = [1]° M [A]° = h, 11, = 6,

and

Cr (&[] r) M [L]° E Cromsv(& [N]° r) M[L]° =[] T[L]" =1, N, = ¢.
Therefore, [/,] and [fi,]€ are r-svnfg-separated sets with [/ ]“LI[A;]¢ = A U/, = E. But (B, "T’ET‘S, Kgro)
is r-svnfg-connected implies [/,]¢ = ¢ or [h;]° = ¢ and hence, |, = ¢ or h, = ¢.

(2)=(3) Clear.

(3)=(1) Leth,, I, (lg’\TE) h, # . 1, # ¢ suchthat h,Ul = E. Assume that g, = Crors (&, H, 1)
and w, = Crors(€,1,,r), € € E, r € &, then g, Uw, = E with T’g([gx]c) >, WN'g([gX]C) <1l-r,
—T'g([gx]c) <1l-r, —T—g([WD]C) >, Tg([wD]C) <1l-r, —T'g([WD]C) <1l-—r,é€E reé&. Now,
suppose that (3) is not satisfied. That is, g, # ¢, w, # ¢, 9, Uw, = ¢. Thus, by Theorem 2.3 (2),
we obtain,

C* (& hy,r)nl, ECr, (& hzr), r)NCrors(&,1,,r) =g, Mw, = ¢.
and

h,C* (&, 1, r) E Crors(& Nz, r), r)NCr, (& 1,r)=9g.MNMw, = ¢.
Therefore, |, and h, are r-svnfg-separated sets, |, = ¢, h, = ¢ with i, U [ = E. Hence,
(B, T2, KZ) is not r-svnfg-connected. O

Theorem 3.2. Let (B, TZ™, KZ™) be r-svnfgt-space and h,, l,,9. € (B E). If I, and g, are r-svnfg-

separated sets, then h, 111, h, Mg, are r-svnfg-separated sets.
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Proof. Let [, and g, be r-svnfg-separated sets, that is,
C*(&l,r)Ng, =¢=cl"(&gqg,r)nl. Vv, ecE, recé.
Then, from Theorem 2.3 (4) we get that
crenh, il rninngl E[C(En, r)nC (&1, nNmh mg,]
CC(&n, nnnlnc (&l gl

=nng=¢
and
ci(@nh, gl NN S Eh, Hne g, Nnihni]
Cc7(én, rynn]niC (&g, )]
=hne¢=¢
Therefore, h, 111, h, Mg, are r-svnfg-separated sets. ]

Theorem 3.3. Let (B, 7270 K270) be r-svnfgt-space and h, € (B,E). Therefore, the following
statements are equivalent.

(1) #, is r-svnfg-connected.

(2) Ifl, and g, are r-svnfg-separated with h, C |, L g_, then h,1 1, = ¢ orh, Mg, = ¢

(3) Ifl,and g, are r-svnfg-separated with h, C |, Lig,, then h, T/ orh, Eg,.

y

Proof. (1)==(2) l,and g, are r-svnfg-separated such that fi, C / Lig,. Form Theorem 3.2, f1,1M/, and
h,Mg, are r-svnfg-separated. So, i, = f,M[/,Ug,] = (h,M/,)U(A,Mg,). But A, is r-svnfg-connected.
Therefore, A, M1, =¢or h, Mg, =¢.

(2)=@) Ifh, Nl =¢ thenh, =h Nl Ug]=(hMl)u(nrg,)=hrg, and hence,
h, Cg,. Similarly, if A, T1g, then h, £/ .

(3)==(1) Let /, and g, be r-svnfg-separated such that fi, =/ U g,, by (3), we have i, C |, or
h Cag,.

If n, C/ and /,, g, are r-svnfg-separated sets, then g, =g, Mh, Cg M/l Eg MNC (&, r)=¢.
Thus, g, = ¢.

If i, € g,, similarly, we have |, = ¢. Therefore, 1, is r-svnfg-connected. [l

—_—~—

Theorem 3.4. Let (B, "T’%T‘S, TE™0) be svnfgt-space, h,,l, € (B,E), e € Eandr € &. Ifh, # ¢ is

r-svnfg-connected and |, E h, © C*(&, h,,r), then |, is r-svnfg-separated.

Proof. Assume that, /, is not r-svnfg-separated. So, there exist non-empty r-svnfg-separated g,

—_—~—

w, € (B,E) such that /, = g, Uw,. that s,

C*(é, g, r)Nw, =¢=C"(&w,,r)MNg,V, E€E, rek.
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Because, i, £ /|, = g, Uw, and f1, is r-svnfg-connected, and by Theorem 3.3 (3), we obtain either
h,Eg,orh, Ew,. Form /[ CC*(&h, r), we have
if i, Cg,, then

W, = (9, Mw,)Mw, =/ Mw, EC*(&h,, r)Nw, EC*(&9,,rMNw, =¢

which contradicts to w, # ¢.
If i, C w,, then

gx = (WD I_ng)ﬂgx = /y I_ng EC*(é, hz’r)|_|g>< EC"k(é'WD'r)l_lgx :(b

which contradicts to g, # ¢. Hence, /, is r-svnfg-separated. [l

—_—

Theorem 3.5. Let (B, 7270, KZ70) be svnfgt-space, h,, I, € (BE), cEandreé&. Ifh, I are

r-svnfg-connected which are not r-svnfg-separated, therefore, h, Ul |, is r-svnfg-connected.

Proof. Let w,, and g, be r-svnfg-connected with fi, LI/, = w, LI g_. Because A, is r-svnfg-connected

and by theorem 3.3 (3), hyEg.orh, Ew,. Say h, Ew,. Assume that /, E g,. Because
(h,ul)nw, =(h, Uw,)U(l,NMw,)=h,LU¢=h,

and

(hulg)ng. =MmuUg)u(,Mg)=9 Ud=g,.
Form Theorem 7, we obtain, i, and /, are r-svnfg-connected. Which is a contradiction. Therefore,
[, Ew,. Thus, A, U/, Ew,. In the same way, if i, C g,, we obtaian that fi, U/, C g,. Therefore by

Theorem 8, we have, fi, LI/, is r-svnfg-connected. ]

—_~—

Theorem 3.6. Let (B, TZ™, KZ70) be svnfgt-space and let £ = {(h,); € (B,E), i € '} be a collection
of r-svnfg-connected sets in B, such that no two members of £ are r-svnfg-separated. Then, | |;cr(h,);

Is r-svnfg-connected.

P

Proof. Put h, = | |;cr(f,); and let /;,g, € (B, E) be r-svnfg-separated sets such that , =/, Lig..
Because every two members (f,); , (f,); € £ are not r-svnfg-separated, by Theorem 3.5, (#,);U(h,);
is r-svnfg-connected. Form Theorem 3.3 (3), we have (h,); U (h,); C /, or (,);U(h,); C g,, say

(h)iu(h,); €1, Thus f, is r-svnfg-connected. O

Theorem 3.7. Let (B, "T’gTé,ICgT‘S) be svnfgt-space and {(h,); € (TS’VE) i € I'} be a collection of

r-svnfg-connected sets and Mjey(h,); # &. Then, | |;c-(h,) is r-svnfg-connected.

Proof. Clear. O

—_—~—

Definition 3.3. Let (B, "T’ET‘S,ICCE’T‘S) be svnfgt-space. A non empty set h, € (B,E) is r-svnfg-
component if 1, is a maximal r-svnfg-connected set in B3, that is if h, C |, and |, is r-svnfg-connected

set, then h, = |,.
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Theorem 3.8. Let (B, "T’ET‘S, KZ™0) be r-svnfgt-space and h,, I, € (EVE) e € E, r € &. Therefore,
(1) if h, is r-svnfg-component, then C*(€, h,,r) = h_.

(2) Ifl, and h, are r-svnfg-components in B with |, h, = ¢, then |, and h, are r-svnfg-separated sets.

Proof. (1) Because h, is r-svnfg-connected set and A, T C*(é, h,,r), from Theorem 3.4, we
obtain C*(&,h,,r) is r-svnfg-connected. On the other hand h, is r-svnfg-component, it implies
h,=C*(éhn,,r).

(2) Because /, and 11, are r-svnfg-components in B such that /, M f, = ¢. So, Form (1), we obtain
I, =C"(& s, r)and h, =C"(& h, r). Hence

C (& nh, Nl =¢=nnC"&l,r).
Therefore, /, and h, are r-svnfg-separated sets. ]

4. Single-Valued Neutrosophic Soft y-Connected Spaces

Here, we present the single-valued neutrosophic soft y-connected Spaces r-svnf-connected of space
B relative to a r-svnf operator «y. Suppose [with respect to any r-svnft 'T"ET‘S defined on B and clyrs

is the single-valued neutrosophic soft closure operator on (B, —T"é“s)] that:

—_—

h,Cv(&éh, r)CCros(&h,r) ¥V h, €(BE), EcE, reé.

Also, suppose that <y is a monotone operator, that is, |, C g, implies y(&,/,,r) T Cyors(€,9,,r),

l,,9, € (B,E), E€E, reé
Definition 4.1. Let B be a non-nall set and E be a set of parameters. Therefore,

(1) the svnf-sets h € (B,E) are called r-single-valued neutrosophic y— separated (abbreviated

/
z'ly
r-svnfy-separated) if h, and |, satisfy the following condition

Y& h,,r)nl, =¢="nn~(&1l. r) foreveryécE, re&.

(2) B is termed r-single-valued neutrosophic y—connected (abbreviated r-svnfy-connected space) if
one cannot find two svnf-sets h,,l, € (B.E) h, # ¢, |, # ¢ and h, U, = E. That is, there do not
exist r-svnfy-separated sets h,, |, € (ﬁ) except h, = ¢, |, = ¢.

Definition 4.2. Let f1,,/, € (EVE) h, # ¢, I, # ¢, such that:
(1) h,,1, are r-svnfy-separated with fi, LI [, = E. Therefore, B is termed r-single-valued neutrosophic
y—disconnected (abbreviated r-svnfy-disconnected space).
(2) h,,1, are r-svnfy-separated with h, U |, = g.. Therefore, g, is termed r-svnfy-disconnected space
n (B/\-E/)
For a r-svnfgt-space (B, TZ", T270).
If v = Ctors, then we obtain the r-svnf- connectedness.

If v =Cz,;, then we obtain the r-svnfg- connectedness
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Example 4.1. Assume that, B = {a, b}, E = {é1, &} and (hg)1, (hg)2 € (73_\/E) where (hg)1 =
{(&1,(1,1,0)), (&,(0,0,1))} and (he)> = {(€1,(0,0,1)),(&,(1,1,0))} for é € E, r € &, we define

the single valued soft operator -y as follows:

¢, if hy=@¢Vre o,
(he)1, if ¢# Ny T (hE)1,r <
(he)z2, if ¢ # hy E (hEg)2, r <
E, if otherwise,

rY(év hE'r) =

allw N~

Now, let ¢ # h. = (hg)1, ¢ # 9. = (he)2 and r < % then we have
V(& Mg, r)Nge = =N MY(E g, r).

Thus, hg and g are r-svnfy-separated sets. At i, = (fig)1, 9 = (fig)2 and r < 1 we obtain that h,
and g are r-svnfy-separated with E= fig M ge. Therefore, B is r-svnfy-disconnected.

Ifr > %, then B is r-svnfy-disconnected.
The following theorem is similarly proved, as in Theorem 3.1.

Theorem 4.1. Let (B, 'T"ET‘S) be r-svnft-space. Therefore, the following statements are equivalent.
(1) (B, 'T"ET‘S) is r-svnfy-connected.

(2 Ifn, U |, =Eandh 0 |, =¢ with TI(h,) >r, TL(h,) <1—r Teh,) <1—r, T¢) >r,
TIU)<1-rT3)<1—r B€E reéy, thenh, =¢orl =¢.

(3) Ifh, Ui, = E and h, 1, = ¢ with TE([M]) > r, TL([A,]€) < 1 —r, TY([M]) < 1—r and
T = TL())<1—r, TULI)<1—r, E€E, relo thenh, =¢ orl, = ¢.

The following theorem is similarly proved, as in Theorem 3.2.

—_

Theorem 4.2. Let B be a non-empty set, E be a set of parameters and h,,1,,9, € (B,E). If |, and

g, are r-svnfy-separated sets, then h, M/ , h, g, are r-svnfy-separated sets.

The following theorem is similarly proved, as in Theorem 3.3.

P

Theorem 4.3. Let i, € (B,E). Then, the following statements are equivalent.

(1) h, is r-svnfy-connected.

(2) Ifl, and g_ are r-svnfy-separated with i, € I, LUg,, then h, M| = ¢ or h,Mg, = ¢
(3) Ifl, and g_ are r-svnfy-separated with h, £ |, L g, then h, T |, orh, Cg,.

The following theorem is similarly proved, as in Theorem 3.4.

P

Theorem 4.4. Let h,,l, € (B,E), r € &. If h, # ¢ is r-svnfy-connected and h, C |, C (& h,,r),

€ € E, then |, is r-svnfy-connected.

—_—

Theorem 4.5. Let h,, |, € (B,E), r € §&. If h, and |, are r-svnfy-connected which are not r-svnfy-

separated, then h, U |, is r-svnfy-connected.
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Proof. Let g, and w, be r-svnfy-separated, such that, h, U/ = g. U w,. Since, h, is r-svnfy-
connected, by Theorem 4.3 (3), A, £ g, or h, C w,. Let i, © w,. Suppose /|, E g,. Since
(h,ul)nw, = (h,Nw,)uU ([, Mw,) =h,U¢ = h,, by Theorem 4.2, i, and I, are r-svnfy-
separated. Which is a contradiction. Hence we have |, £ w,. Therefore i, LI [, € w,. By the same
way, if i, £ g,, we have h, LI/, € g,. Then by Theorem 4.3 (3) r-svnfy-separated, then f, LI /, is

r-svnfy-connected. Il

The following theorem is similarly proved, as in Theorem 3.6.

—_—

Theorem 4.6. Let ( = {(h,); € (B,E), i € T'} be a collection of r-svnfy-connected sets in B such

that no two members of { are r-svnfy-separated. Then, | |;cr-(h,); is r-svnfy-connected.

The following corollary follows from Theorem 4.6.

—_—~—

Corollary 4.1. Let {(h,); € (B,E), i € '} be a family of r-svnfy-connected sets and Mjcy(h,); # .

Then, | lcr(h,); is r-svnfy-connected.

—_~—

Theorem 4.7. Let 9y : (B,E) = (£, F) be a mapping such that,

P

Y(E 0, (), r) E0, 6(w(8). 1, 1)V I, € (£ F),reg, EcE,

—_——

where «y is a svnfy-operator on B and 6 is a r-svnfy-operator on £. Then, the set 9y(h,) € (£,F) is

e~

r-svnfo-connected if the set h, € (B, E) is r-svnfy-connected.

Proof. Let I, # ¢ and g, # ¢ be a r-svnff-separated sets in (.,E/\?) with 94 (h,) = I, Ug,. Thatis
0(¢(€).g,., r)N1, CO(P(E), I, r)Ng, =@, forall re&,écE, then we have h, & 191;1(19,4,(772)) =
951, Ug,) = 951(1,) U, (g,),
Y& 9510, ) 18510,) T 9,1 6(E), 1, ) N954g,)
=9, (6(¥(8).1,,r)Ng,)
=0, (¢) = ¢.
Also

V(& 9,1(9,), ) o,M(,) E9,160(W(E), 9., ) N9, ()
=0, (6(¥(8).9,,r)111,)
=0, () = ¢.
Hence 9,,'(1,) and 9, (g,) r-svnfy-separated sets in B. So that, n, C9,'(/,) U, (g,). But , is

r-svnfy-connected. by Theorem 3.3 (3), 7, £ 9,%(l,) or 1, C¥,,'(g,), which means, ¥ (f,) C I, or

ﬁ;l(hz) C g,. Hence, by using Theorem 3.3 (3), we have ¥y(h,). is r-svnfé-connected O
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e~ e~

Corollary 4.2. Let (B, f‘ETTé) and (£, f:”‘s) be two svnft-spaces. If Oy : (B,E) = (£, F) is a svnf-
continuous mapping and fi, € (B, E) is r-svnf-connected in B, then 94(h,) is r-svnfd-connected in £.

Note, if v = C54rs and 6 = Cx..5. Then, the result follows from Theorem 4.7.

Corollary 4.3. Let (B, T97,K970) and (£, T8, K*°7) be two svnfgt-spaces and Oy : (B, TI70) —
(£, "T’:‘”‘S, Iﬁ:”‘s) be a mapping satisfying the condition,
(1) Ciors (8, 951(1), 1) T O,N(CE s (W(8), 1, r) VI, € (£,F),reé, EcE.

P

Then, the set 94(h,) € (£, F) is r-svnfg-connected if the set fi, € (B, E) is r-svnfg-connected.

Proof. Note, if y =C%_, and 6 = Cx

%.or5- 1hen, the result follows from Theorem 4.7. g
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