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Abstract. In this paper, an iterative approach based on the use of fuzzy parametric functions is proposed to find the

best preferred optimal solution to a fuzzy multiobjective linear fractional optimization problem. From this approach,

the decision-maker imposes tolerance values or termination conditions for each parametric objective function. Indeed,

the fuzzy parametric values are computed iteratively, and each fuzzy fractional objective is transformed into a fuzzy

non-fractional parametric function using these values of parameters. The core value of fuzzy numbers is used to

transform the fuzzy multiobjective non-fractional problem into a deterministic multiobjective non-fractional problem,

and the ε-constraint approach is employed to obtain a linear single objective optimization problem. Finally, by setting

the value of parameter ε, the Dangtzig simplex method is used to obtain an optimal solution. Therefore, the number

of solutions is equal to the number of used values, and the optimal solution is chosen according to the preference of

the decision-maker. We have provided a didactic example to highlight the step of our approach and its numerical

performances.

1. Introduction

Fuzzy multiobjective linear fractional optimization problems occurs when there are several

ratios of fuzzy quantities to be optimized simultaneously. It has a variety of important uses of this

model in the solving of real-world decision problems. For instance for the practical applications,

it is useful in corporate and financial planning (profit/investment ratios, debt/equity), production

planning (output/employee ratios, investment/sales), hospital planning and healthcare planning

(nurses/patients,costs/patients) and university planning (student/teacher, placement/admission,

research output/teacher) or the quantities, which are used to measure the performance of any

system, and so on. In general, the objective functions are conflicting, and it is not possible to obtain

a unique solution that optimizes simultaneously these objective functions. Many solutions can be
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found by using the concept of Pareto optimality [7,23]. For this set of solutions, we cannot choose

a better one without adding some criteria of preference. Unfortunately, there is no successful and

universal method available in the literature that can help decision-makers solve these kinds of

problems. Usually, each method is used for a particular type of model.

Indeed, Fuzzy multiobjective linear fractional optimization problems have attracted consider-

able research interest since recent few years. Several methods have been proposed in this context

for the determination of the optimal solutions in the single objective case or the Pareto optimal

solution in the multiple objective case. Here are some works on this topic: solving multiobjective

fuzzy fractional programming problem was proposed by P. Durga et al. [1]; fuzzy solution of fully

fuzzy multiobjective linear fractional programming problems was proposed by T. Loganathan et

al. [2]; fuzzy mathematical programming for multiobjective linear fractional programming prob-

lems was proposed by M. Chakraborty et al. [3]; solving linear fractional programming problem

under fuzzy environment: numerical approach was proposed by C. Veeramani et al. [4]; Taylor

series approach to fuzzy multiobjective linear fractional programming was proposed by M. Du-

ran [5]; An approach for solving fuzzy multiobjective linear fractional programming problems

was proposed by F. A. Pramy [10]; A note on fuzzy multiobjective linear fractional programming

problem was proposed by M. Deb et al. [14]; Interactive decision making for multiobjective linear

fractional programming problem with fuzzy parameters was proposed by M. Sakawa et al. [21];

and so on. But most of these existing methods provide a unique solution without taking into

account the preference of the decision-maker. And yet, the solutions must consider the waiting of

the decision-maker.

In this work, we have proposed an iterative approach to solve a fuzzy multiobjective linear frac-

tional optimization problem using the concept of fuzzy parametric functions and the ε-constraint

approach simultaneously. It converts the fuzzy multiobjective linear fractional optimization prob-

lem into an equivalent fuzzy multiobjective linear optimization problem with certain fuzzy pa-

rameters. The deffuzziffication of the problem is done by the core value function. It consists of

transforming the problem into a deterministic multiobjective linear problem. And at this stage,

we have used the ε-constraint approach to aggregate multiple objective functions into one. The

use of Dantzig simplex allows us to obtain the solutions. The choice of the best compromise is

subject to the termination conditions, which are imposed on all parametric objectives functions by

the decision-makers. To facilitate the explanation in practice, we will use triangular fuzzy num-

bers, and a didactic example will be done in order to show clearly the main step of the method.

According to the obtained solutions, we have demonstrated the effectiveness of our method.

For a better presentation of this work, we will present some preliminaries in Section 2. Section

3 will be dedicated to the presentation of the results and discussion. Section 4 will be devoted to

presenting the conclusion.
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2. Preliminaries

2.1. Fuzzy number. This part presents the notion of fuzzy numbers and some arithmetic opera-

tions.

Definition 2.1. [4, 8, 10–12]. Let X be a set. A fuzzy subset ã of X is characterized by a membership
function µã : X → [0, 1] and represented by a set of ordered pairs defined as follows:

ã = {(x,µã(x))/x ∈ X}. (2.1)

The value µã(x) ∈ [0, 1] represents the degree of membership of x to the fuzzy set and is interpreted as the
extent to which x belongs to ã.

Definition 2.2. [4,8,10–12]. Let ã be a fuzzy set on X and α ∈ [0, 1]. The α− level set of ã is the classical
set noted ãα and is defined by:

ãα = {x ∈ X,µã(x) ≥ α}. (2.2)

In the following, we will identify X to R.

Definition 2.3. [18–20]. Let ã a fuzzy subset of R. Then, ã is called a fuzzy number if the following
conditions are satisfied:

(i) ã is normal, i.e, µã(x) = 1 for some x ∈ R;
(ii) ã is convex, i.e., the membership function µã(x) is quasi-concave;

(iii) µã(x) is upper semicontinuous, i.e., ãα is a closed subset of R for some α ∈ R;
(vi) the 0-level set ã0, is a compact subset of R.

We note by L(R), the set of all fuzzy numbers. Indeed, if ã ∈ L(R), the α-level set of ã is a

compact and convex subset of R. Then ãα is a closed interval, denoted ãα = [ãL(α), ãU(α)] for

α ∈ [0, 1].

We say that ã is a crisp number with value m if its membership function is given by

µã(r) =

 1, if r = m
0, otherwise.

(2.3)

We also use the notation 1̃m to represent the crisp number with value m. So, we see that
(
1̃m

)L
(α) =(

1̃m
)U

(α) = m for all α ∈ [0, 1]. Let us remark that a real number m can be regarded as a crisp

number 1̃m.

Definition 2.4. [4, 8, 15–17]. A triangular fuzzy number ã can be defined by a triple (aL, a, aU) whose
membership function µã(x) given below:

µã(x) =


x− aL

a− aL , if aL
≤ x < a;

aU
− x

aU − a
, if a ≤ x < aU;

0, else.
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Then, the α-level set ã is
ãα =

[
(1− α)aL + αa, (1− α)aU + αa

]
(2.4)

such as,
ãL(α) = (1− α)aL + αa and ãU(α) = (1− α)aU + αa

Definition 2.5. [4,8]. A triangular fuzzy number ã = (aL, a, aU), is assumed to be non negative triangular
fuzzy number if and only if aL

≥ 0.

Definition 2.6. [24]. Let ã = (aL, a, aU) and b̃ = (bL, b, bU) be any two triangular fuzzy numbers, then
the arithmetic operations are as follows:

(i) addition : ã⊕ b̃ = (aL + bL, a + b, aU + bU),
(ii) subtraction: ã	 b̃ = (aL

− bU, a− b, aU
− bL),

(iii) multiplication: b̃ to be nonnegative

ã⊗ b̃ =


(aLbL, ab, aUbU), si aL

≥ 0,

(aLbU, ab, aUbU), si aL < 0, aU
≥ 0,

(aLbU, ab, aUbL), si aU < 0,

and

kã =


(kaL, ka, kaU) i f k ≥ 0,

(kaU; ka; kaL) i f k < 0,

(iv) division: ã� b̃ = (
aL

bU ;
a
b

;
aU

bL ).

2.2. Defuzzification function. A deffuzziffication function is an operator that transforms fuzzy

data into a deterministic data. Let ã be a fuzzy subset of R. The core set of ã is defined as

CORE(ã) = {x ∈ R/µã(x) = 1}. (2.5)

Indeed, if ã ∈ L(R), then, by the definition of normality CORE(ã) , ∅. In addition, CORE(ã) =

[ãL(1), ãU(1)], the 1-level set of ã. We can further define the core value of ã, denoted by core(ã), as

the mean value of the core set CORE(ã) by

core(ã) =
ãL(1) + ãU(1)

2
. (2.6)

This core value will be considered as the defuzzification of a fuzzy number in the fuzzy optimization

problem.

Remark 2.1. If 1̃m is a crisp number with value m, then core(1̃m) = m.

Proposition 2.1. [13]. Let ã, b̃ be fuzzy numbers and 1̃m, 1̃m1 , 1̃m2 be crisp some numbers with values m,
m1 and m2 respectively. Then, the following properties hold true:

(i) core(ã⊕ b̃) = core(ã) + core(b̃),
(ii) core(ã⊗ 1̃m) = m.core(ã),

(iii) core
(
(ã⊗ 1̃m1) ⊕ (b̃⊗ 1̃m2)

)
= m1.core(ã) + m2.core(b̃).
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2.3. Fuzzy multiobjective linear fractional optimization problem. A fuzzy multiobjective linear

fractional optimization problem is defined as follows:

min
x∈Ω

f̃ (x) =
(

f̃1(x), f̃2(x), ..., f̃p(x)
)

(2.7)

where

� Ω =
{
x ∈ Rn : g̃k(x) � 0̃

}
, k = 1, ..., m

� f̃i(x) =

∑n
j=1 c̃i jx j ⊕ α̃i∑n
j=1 d̃i jx j ⊕ β̃i

=
P̃i(x)
Q̃i(x)

, i = 1, p;

with c̃i j, d̃i j, α̃i, β̃i ∈ L(R) and Q̃i(x) � 0̃.

In the following, we will assume that Ω is the non-empty compact feasible region in which g̃k are

linear functions with fuzzy coefficients.

Definition 2.7. [2, 22]. A feasible solution x is said to be Pareto optimal solution of the (2.7) if there does
not exist another feasible solution x ∈ Ω such as f̃i(x) � f̃i(x) for all i and f̃ j(x) ≺ f̃ j(x) at least one j.

Definition 2.8. [2, 22]. x ∈ Ω is a weakly Pareto optimal solution of (2.7) if there does not exist another
feasible solution x ∈ Ω such that f̃i(x) ≺ f̃i(x) for all i.

Definition 2.9. [2,22]. λ̃ is called an ideal objective vector when its coordinates are obtained by evaluating
the values of objective functions at their respective individual minimum points. In other words

λ̃i = min
x∈Ω

f̃i, i = 1, 2, · · · , p.

3. Results and Discussion

3.1. New approach. Our method is an iterative approach to solving some decision problems that

give a fuzzy multiobjective fractional optimization program. The main steps can be summarized

as follows.

Step 1 : Linearization.

It consists of the transformation the fuzzy multiobjective fractional linear optimization

problem into a fuzzy multiobjective linear optimization problem. We have proposed a

fuzzy version of the Dinkelback theorem in order to do this operation.

Theorem 3.1. . Let us consider the problem (2.7). Let us assume that x∗ be a Pareto optimal

solution of the problem (2.7). Then, λ̃∗i =
P̃i(x∗)
Q̃i(x∗)

= min
{ P̃i(x)
Q̃i(x)

, x ∈ Ω̃
}

if and only if min
{
P̃i(x)−

λ̃∗i Q̃i(x), x ∈ Ω
}
≈ 0̃.

Proof. Let x∗ be a Pareto optimal solution of Problem (2.7). We have

∀x ∈ Ω̃, λ̃∗i =
P̃i(x∗)
Q̃i(x∗)

�
P̃i(x)
Q̃i(x)

f or all i and

λ̃∗j =
P̃ j(x∗)

Q̃ j(x∗)
≺

P̃ j(x)

Q̃ j(x)
at least one j.
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Hence

P̃i(x) − λ̃∗i Q̃i(x) � 0̃ f or all i and (3.1)

P̃i(x) − λ̃∗i Q̃i(x) � 0̃ at east one j. (3.2)

Form (3.2), we have min{P̃i(x) − λ̃∗i Q̃i(x)} ≈ 0̃.

Conversely, let x? be a solution of problem

min
x∈Ω̃

(
P̃i(x) − λ̃∗i Q̃i(x)

)
, i = 1, ..., p (3.3)

where

λ̃∗i =
P̃i(x∗)
Q̃i(x∗)

such that P̃i(x∗) − λ̃∗i Q̃i(x∗) ≈ 0̃.

The definition of (3.3) implies that f or all x ∈ Ω̃

P̃i(x∗) − λ̃∗i Q̃i(x∗) � P̃i(x) − λ̃∗i Q̃i(x). (3.4)

Hence,

P̃i(x) − λ̃∗i Q̃i(x) � 0̃ f or all x ∈ Ω̃. (3.5)

This implies that

λ̃∗i �
P̃i(x)
Q̃i(x)

(3.6)

for all x ∈ Ω̃, i = 1, ..., p. From (3.6), λ̃∗i , i = 1, ..., p is a minimum of problem (2.7),

consequently λ̃∗i =
P̃i(x∗)
Q̃i(x∗)

= min
{

P̃i(x)
Q̃i(x)

}
for x ∈ Ω̃. �

In the rest of the work, we will build the sequence
(
λ̃(k)i , i = 1, · · · , p

)
k∈N∗

, by posing for

k > 1 with λ̃k
i =

P̃i(X
(k−1)

)

Q̃i(X
(k−1)

)
where X

(k−1)
= arg min

(
P̃i(x) − λ̃

(k−1)
i Q̃i(x)

)
.

For k = 1, we calculate λ̃(1)i as follows:

λ̃(1)i =
P̃i(X

(0)
)

Q̃i(X
(0)
)

,

where X
(0)

=

p∑
i=1

ωiXi,
p∑

i=1

ωi = 1, ωi > 0 and Xi are the individual minimal solutions of

the objectives of problem (2.7).
Now, let us consider the kth iteration, then the problem can be formulate as follows:

min
x∈Ω̃

(
P̃i(x) − λ̃

(k)
1 Q̃i(x)

)
, i = 1, p (3.7)

Theorem 3.2. x is Pareto optimal solution of problem (2.7) if and only if x is Pareto optimal solution
of (3.7).



Int. J. Anal. Appl. (2024), 22:11 7

Proof. Consider the following notations for convenience of the proof, Ĩi(x) =
P̃i(x)
Q̃i(x)

and

J̃i(x) =
{

P̃i(x) − λ̃
(k)
i Q̃i(x)

}
with λ̃

(k)
i =

P̃i(x)
Q̃i(x)

, i = 1, ..., p at the kth step.

Let x is a Pareto optimal solution of the problem (2.7). Suppose on contrary, x is not Pareto

optimal for problem (3.7), i.e, by definition, ∃x Ω̃ such that, J̃i(x) � J̃i(x), ∀i = 1, ..., p and

J̃i(x) ≺ J̃i(x) for at least one j ∈ {1, ..., p}. Otherwise P̃i(x) − λ̃
(k)
i Q̃i(x) � P̃i(x) − λ̃

(k)
i Q̃i(x)

∀i and P̃i(x) − λ̃
(k)
i Q̃i(x) ≺ P̃i(x) − λ̃

(k)
i Q̃i(x) for at least one j. Since λ̃

(k)
i =

P̃i(x)
P̃i(x)

, we have

P̃i(x) − λ̃
(k)
i Q̃i(x) ≈ 0̃, i.e

P̃i(x) − λ̃
(k)
i Q̃i(x) � 0̃ and P̃i(x) − λ̃

(k)
i Q̃i(x) ≺ 0̃ for at least one j. Which implies

P̃i(x)
Q̃i(x)

�

P̃i(x)
Q̃i(x)

∀i and
P̃i(x)
Q̃i(x)

≺
P̃i(x)
Q̃i(x)

for at least one j. It contradicts the Pareto optimality of x for

the problem (2.7). Therefore, x is Pareto optimal solution for problem(3.7). Conversely,

let x is Pareto optimal for problem (3.7). Suppose on contrary, x is not Pareto optimal for

problem(2.7), i.e., ∃x ∈ Ω̃ such that Ĩi(x) � Ĩi(x) ∀i and Ĩ j(x) ≺ Ĩ j(x) for at least one j. After

simplification, we get P̃i(x) − λ̃
(k)
i Q̃i(x) � 0̃ and

P̃i(x) − λ̃
(k)
i Q̃i(x) ≺ 0̃ for at least one j, i.e., J̃i(x) � 0̃, ∀i and

J̃ j(x) ≺ 0̃. But, J̃i(x) = P̃i(x) − λ̃
(k)
i Q̃i(x) ≈ 0̃ ∀i. So, J̃i(x) � J̃i(x) ∀i and J̃ j(x) ≺ J̃ j(x) for

at least one j. It contradicts the Pareto optimality of x for problem(3.7). Thus, x is Pareto

optimal solution of problem(2.7). �

Step 2 : Defuzzification.

It aims to transform the fuzzy multiobjective linear optimization problem into a determin-

istic multiobjective linear optimization problem. Let us consider the problem (3.7). Using

the core value defined below on the fuzzy numbers of the problem (3.7), the objective

functions are written as follows: n∑
j=1

core(c̃i j)x j + core(α̃i)

− core(λ̃(k)i ) ×

 n∑
j=1

core(d̃i j)x j + core(β̃i)

 =
core(P̃i(x)) − core(λ̃(k)i )core(Q̃i(x)) = Pi(x) − λ

(k)
i Qi(x),

and for each constraint function, we have

core(g̃k(x)) = gk(x), ∀k = 1, · · · , m.

For k ∈ {1, 2, · · · , p} So, the problem (3.7) is defuzzified as follows:

min
x∈Ω,i

Ti(x,λ(k)) =
(
Pi(x) − λ

(k)
i Qi(x)

)
(3.8)

The problem (3.8) is a deterministic linear multi-objective parametric optimization problem.

Theorem 3.3. Any Pareto optimal solution of (3.7) is Pareto optimal of (3.8) and vice versa.
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Proof. Let x be a solution of problem (3.7) i.e., T̃i(x, λ̃(k)i ) � T̃i(x, λ̃(k)i ),∀i and T̃ j(x, λ̃(k)j ) ≺

T̃ j(x, λ̃(k)j ) for at least one j = {1, ..., p} with x ∈ Ω̃. This means P̃i(x) − λ̃
(k)
i Q̃i(x) �

P̃i(x) − λ̃
(k)
i Q̃i(x), ∀i and P̃ j(x) − λ̃

(k)
i Q̃ j(x) ≺ P̃ j(x) − λ̃

(k)
j Q̃ j(x) for at least one j. By us-

ing the core of fuzzy number, we have: P̃i(x) − λ̃
(k)
i Q̃i(x) � P̃i(x) − λ̃

(k)
i Q̃i(x)

P̃ j(x) − λ̃
(k)
i Q̃ j(x) ≺ P̃ j(x) − λ̃

(k)
j Q̃ j(x)

⇒ Pi(x) − λ
(k)
i Qi(x) ≤ Pi(x) − λ

(k)
i Qi(x),

P j(x) − λ
(k)
i Q j(x) < P j(x) − λ

(k)
j Q j(x).

So Ti(x,λ(k)i ) ≤ Ti(x,λ(k)i ), ∀i and T j(x,λ(k)j ) <

T j(x,λ(k)j ) for at least one j = {1, ..., p}, with x ∈ Ω. Consequently x is a Pareto optimal of

problem(3.8).

Conversely, let x be a solution of problem (3.8) i.e., Ti(x,λ(k)i ) ≤ Ti(x,λ(k)i ), ∀i and

T j(x,λ(k)j ) < T j(x,λ(k)j ) for at least one j = {1, ..., p}, with x ∈ Ω. By definition of core, then,

we have T̃i(x, λ̃(k)i ) ≤ T̃i(x, λ̃(k)i ), ∀i and T̃ j(x, λ̃(k)j ) < T̃ j(x, λ̃(k)j ) for at least one j = {1, ..., p},

with x ∈ Ω̃. Therefore x is a Pareto solution of problem (3.7). �

Step 3: Aggregation.

t consists of converting the multiple objective functions into a single objective function

using an aggregation function. Here, ε-constraint approach that is used.

Using the ε-constraint approach, the problem (3.8) is transformed into the following single

objective optimization problem, as follows:
min Tεs (x,λ(k)),

x ∈ Ω,

Ti(x,λ(k)i ) ≤ εi, i = 1, 2, ..., p,

εi ∈ [εL
i , εU

i ], i = 1, 2, ...p,

(3.9)

where εL
i = min{Ti(Xi)|i = 1, ..., p} and εU

i = max{Ti(Xi)|i = 1, ..., p} with Xi(i = 1, ..., p) are

the individual optimal solution of the objectives Ti(x,λ(k)) obtained by minimizing them

individually over the set of constraints Ω.

Theorem 3.4. For a value of ε fixed in [εL
i , εU

i ] if x is an optimal solution of (3.9), then x is the
Pareto optimal solution of (3.8). Conversely, if x is a Pareto optimal solution of (3.8) then there
exists a value of ε in [εL

i , εU
i ] such that x is an optimal solution of (3.9).

Proof. By posing εi = Ti(x,λ(k)), i , s, we have x is then an optimal solution of (3.8) if it is

also a solution of (3.9). �

Step 4: Resolution.

It consists in the determination of the optimal solutions of the problem (3.9) by using

Dantzig simplex method. These solutions are generated for each value of ε that meets the

following two situations:
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� εi ∈ [−σi, σi] for satisfying the termination conditions |Ti(x,λ(k)i )| ≤ σi as Ti(x,λ(k)i ) ≈ εi,

i = 1, ..., s− 1, s + 1, ..., p.

� [−σi, σi] and [εL
i , εU

i ] are disjoint, we choose εi ∈ [εL
i , εU

i ] only.

where the σi(i = 1, ..., p) are positive values and are proposed by the decision-maker. In-

deed, these parameters are also considered as tolerance values acceptable for the objectives

f̃i and their values are chosen next to zero. The objective with the smallest termination

condition will be considered the most important objective function for the ε-constraint

approach.

Srep 5 :: Test of termination conditions.

It is the test that allows you to choose the Pareto optimal solution that meets the termination

conditions that are defined by the following equation:

|Ti(x,λ(k)i )| ≤ σi, i = 1, ..., p (3.10)

In this process, there are two possible cases: when the Pareto optimal solutions satisfy the

termination conditions, and when the termination is not all satisfied. In the first case, the

solution is deemed as the preferred optimal solution. In the second case, we select the

optimal solution with the smallest value of {|Ti(x(k),λ
(k)
i )| − σi} to initialize λ̃k

i in order to go

back to the first step.

We summaries our iterative approach as the following algorithm:
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Algorithm 3.1

Input: Problem (2.7); ωi > 0; σi > 0

Initialisation: Compute

Xi = min
x∈Ω̃

fi, i = 1, ..., p

X
(0)

=
∑p

i=1ωiXi

λ̃(1)i = f̃1(X
0
i ), i = 1, ..., p

Whill: no solution

Compute at the kth iteration

λ̃(k)i = f̃1(X
k−1
i ), i = 1, ..., p

set T̃i(x(k),λ) = P̃i(x(k)) − λ̃(k)Q̃i(x(k), i = 1, ..., p
: Use core value to obtain

min
x∈Ω

Ti(x(k),λ(k)), i = 1, ..., p,

: Find σs = min{σ1, σ2, ..., σp}

choose Ts as a priority function.

formulate the problem as follows:
min Tεs (x(k),λ(k)),
x ∈ Ω,

Ti(x(k),λ
(k)
i ) ≤ εi, i = 1, 2, ..., p,

εi ∈ [εL
i , εU

i ], i = 1, 2, ...p,
: For some ε value solve with Dantzig simplex

method for each obtained solution xk

verify if |Ts(x(k),λ
(k)
i )| ≤ σs save it

else

compute
p∑

i=1

{
|Ti(x(k),λ

(k)
i )| − σi

}
solve x(k)m = arg min

p∑
i=1

{
|Ti(x(k),λ

(k)
i )| − σi

}
put X

(k)
= x(k)m

End:
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3.2. Didactic experiment. We have dealt with the didactic example taken from P. Durga et al.’s

works [1] Let us consider the following fuzzy multiobjective linear fractional optimization problem

where: 

max z̃1(x) =
(5.6, 5.7, 6.2)x1 ⊕ (4.7, 4.9, 5.5)x2

(1.7, 1.9, 2.5)x1 ⊕ (6.6, 6.8, 7.2)
and

max z̃2(x) =
(1.6, 1.7, 2.2)x1 ⊕ (2.7, 2.8, 3.1)x2

(0.7, 0.9, 1.5)x1 ⊕ (0.8, 0.9, 1.4)x2 ⊕ (6.7, 6.9, 7.5)
st
(0.8, 0.9, 1.4)x1 ⊕ (1.8, 1.9, 1.4)x2 � (1.8, 1.9, 1.4)

(2.7, 2.9, 3.5)x1 ⊕ (1.7, 1.8, 2.1)x2 � (5.7, 5.8, 6.1)

x1, x2 ≥ 0

with

6̃ = (5.6, 5.7, 6.2), 5̃ = (4.7, 4.9, 5.5), 2̃ = (1.7, 1.9, 2.5), 7̃ = (6.6, 6.8, 7.2),

2̃ = (1.6, 1.7, 2.2), 3̃ = (2.7, 2.8, 3.1), 1̃ = (0.7, 0.9, 1.5), 1̃ = (0.7, 0.8, 1.1),

7̃ = (6.7, 6.9, 7.5), 1̃ = (0.8, 0.9, 1.4), 2̃ = (1.8, 1.9, 1.4), 3̃ = (2.7, 2.8, 3.1),

3̃ = (2.7, 2.9, 3.5), 2̃ = (1.7, 1.8, 2.1), 6̃ = (5.7, 5.8, 6.1). We first formulate the problem as the

following minimization problem: 

min f̃1(x) =
	6̃x1 	 5̃x2

2̃x1 ⊕ 7̃
,

min f̃2(x) =
	2̃x1 	 3̃x2

1̃x1 ⊕ 1̃x2 ⊕ 7̃
st
1̃x1 ⊕ 2̃x2 � 3̃

3̃x1 ⊕ 2̃x2 � 6̃

x1, x2 ≥ 0

(3.11)

Let’s assign equal weights ω1 = ω2 = 1
2 and the termination constants for the two objectives are

defined as (σ1, σ2) = (0.03, 0.05).

Step 1: By defuzzifying and applying, the Charnes and Cooper variable transformation tech-

nique, we obtain X1 = (1.53, 0.74) and X2 = (1.53, 0.74) the individual optimal solutions of

the objectives f̃1 and f̃1 respectively. The starting point of the approach iterative is obtained

as

X
(0)

= ω1X1 +ω2X2 = (1.53, 0.74).

For k = 1, x(1) = (1.53, 0.74) and the initial vectors of parameters are

λ̃(1)1 = (−1.47,−1.27,−1.09)

λ̃(1)2 = (−0.68,−0.52,−0.41).

The fractional objectives can be parametrically linearized as:

T̃1(x(1), λ̃
(1)
1 ) = −(6̃x1 + 5̃x2) − λ̃

(1)
1 (2̃x1 + 7̃)

T̃2(x(1), λ̃
(1)
2 ) = −(2̃x1 + 3̃x2) − λ̃

(1)
2 (1̃x1 + 1̃x2 + 7̃)
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Step 2: Defuzzifying this objectives, we obtain

T1(x(1),λ
(1)
1 ) = −3.287x1 − 4.9x2 + 8.636

T2(x(1),λ
(1)
2 ) = −1.232x1 − 2.384x2 + 3.588.

So, we can write the deterministic multi objective non fractional problem at 1 th iteration

as: 

min T1(x(1),λ
(1)
1 ) = −3.287x1 − 4.9x2 + 8.636

min T2(x(1),λ
(1)
2 ) = −1.232x1 − 2.384x2 + 3.588

st
0.9x1 + 1.9x2 ≤ 2.8

2.9x1 + 1.8x2 ≤ 5.8

x1, x2 ≥ 0.

Let Ω be the admissible domain of this problem.

By solving min
x∈Ω

T2(x(1),λ
(1)
2 ), we have [εL

2 , εU
2 ] = [−0.08319794, 3.588]. Also we have

[−σ2, σ2] ⊆ [εL
2 , εU

2 ]. Then, for ε2 ∈ [−0.05, 0.05] we have

|T2(x(1),λ
(1)
2 )| ≤ σ2.

As σ1 < σ2, using the ε-constraint method, the problem is formulated as:

min T1(x(1),λ
(1)
1 ) = −3.287x1 − 4.9x2 + 8.636

st
0.9x1 + 1.9x2 ≤ 2.8

2.9x1 + 1.8x2 ≤ 5.8

−1.232x1 − 2.384x2 + 3.588 ≤ ε2

ε2 ∈ [εL
2 , εU

2 ]

x1, x2 ≥ 0.

Step 4: This final formulation is a linear programming problem. With the Dantzig’s Simplex

method, we find the best Pareto solution for each value of ε2.

Step 5: According to the (σ1, σ2) = (0.03, 0.05) we can notice that it is S1, S2 and S3 that verify

the termination conditions.

The representation of all obtained solutions in the same figure give this allows:

3.3. Discussion. Through the Table 3.2, we can see that the Pareto optimal solutions S1, S2 and S3

satisfy the termination conditions |T1(x(1),λ
(1)
1 )| ≤ σ1. As before, we had |T2(x(1),λ

(1)
2 )| ≤ σ2, then

we choose its solutions as the best preferred optimal solution. In one iteration, we have obtained

the best preferred optimal solution as follows : χE =
{
S1, S2, S3

}
.

The Figure 1 shows a representation of each obtained solution that is on the analytic Pareto front.
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Table 1. Pareto optimal solutions of step-1

ε2 x1 x2 T1(x(1),λ
(1)
1 )

S1 -0.05 1.55000000 0.72500000 -0.01135000

S2 -0.04 1.55383305 0.71882453 0.00631056

S3 -0.03 1.55766610 0.71264906 0.02397112

S4 -0.02 1.56149915 0.70647359 0.77647359

S5 -0.01 1.56533220 0.70029813 0.05929225

S6 0.00 1.56916525 0.69412266 0.07695281

S7 0.01 1.57299830 0.68794719 0.09461337

S8 0.02 1.57683135 0.68177172 0.11227394

S9 0.03 1.58066440 0.67559625 0.12993450

S10 0.04 1.58449744 0.66942078 0.14755906

S11 0.05 1.58833049 0.66324532 0.16525562

Figure 1. Pareto front

Note that the proposed approach starts with an initial solution and converges to the best

preferred optimal solution or best preferred optimal solutions. At each iteration, the admissible

domain changes with the change of εi. Then we have a set of Pareto optimal solutions that are

generated during iterations. The possibility of satisfying the termination conditions in Step (k+ 1)

is greater than that of due to the proceeding at step k because of the selection procedure followed to

determine the compromise solution. Indeed, in the event that we fail to attain the optimal solution

in the various iterations, it is imperative to reshape the termination conditions of the objectives.
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4. Conclusion

We have proposed a new way to solve fuzzy multiobjective linear fractional programming

problems. In this approach, we transform fuzzy fractional objectives into fuzzy non-fractional

form using a vector of fuzzy parameters. Then, the problem has been defuzzified by using

the core value function. After that, the ε-constraint has been used to get a linear single-objective

programming problem, and finally, the Dantzig simplex method has been used to find the solutions.

According to the preference of the decision-maker, a test with termination conditions is conducted

in order to choose the best compromise. The solution obtained for a didactic problem has enabled

us to demonstrate that our approach is a suitable choice for resolving fuzzy multiobjective linear

fractional programming problems.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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