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Abstract. In the present work the stability of Hyers-Ulam mixed type of quadratic-quartic Cauchy functional equation

g(2x + y) + g(2x− y) = 4g(x + y) + 4g(x− y) + 2g(2x) − 8g(x) − 6g(y)

has been proved over Non-Archimedean normed space.

1. Introduction

The stability of functional equations arose in 1940 from a question by Ulam [18] on the stability

of group homomorphisms.

Given two groups H1 and H2 with the metric d(., .) on H2 and for ε > 0, does there exist δ > 0

such that if a mapping G : H1 → H2 satisfies the inequality d(G(a, b), G(a)G(b)) < δ for all a, b ∈ H1,

then there exist a homomorphism G′ : H1 → H2 with d(G(a), G′(a)) < ε for every a ∈ H1?

Hyers [12] gave the very first positive response to Ulam’s question for Banach spaces such that

‖g(x + y) − g(x) − g(y)‖ ≤ δ (1.1)

for all x, y ∈ E and for some δ > 0. Then there is a unique additive mapping > : E→ E′ such that

‖g(x) −>(x)‖ ≤ δ (1.2)

for all x ∈ E. Furthermore, if g(tx) is continuous at t ∈ R for any fixed x ∈ E, then > is linear (For

instance [3]).
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For the quadratic functional equation

g(x + y) + g(x− y) = 2g(x) + 2g(y), (1.3)

we note that the quadratic function g(x) = x2 is a solution of (1.3). So one usually calls the above

functional equation is quadratic and every solution of (1.3) is said to be a quadratic mapping.

Aoki [1] generalized the Hyers theorem for additive mappings. Hyers theorem was generalized

by Rassias [16] by allowing the Cauchy difference to be unbounded. Gajada [7] responded to the

question for the case p > 1, posed by Rassias. Moslehian and Rassias [14] proved generalized HUS

of the Cauchy functional equation and the Q2F equation in NAN spaces.

In this present article, to the best of our knowledge there is no discussion so far concerning the

HUS of the following Q2-Q4F equation.

g(2x + y) + g(2x− y) = 4g(x + y) + 4g(x− y) + 2g(2x) − 8g(x) − 6g(y) (1.4)

in NAN space. It is easy to show that the function f (x) = ax2 + bx4 is a solution of the functional

equation (1.4), which is called a mixed type Q2-Q4F equation. For more detailed definitions of

mixed type functional equations, we can refer to [4–6, 8–10, 13, 15].

Throughout this article, assume that G is an additive group, X is a complete NAN space and

V1, V2 are vector spaces. Denote the Q2 −Q4F equation as given below.

Qg(x, y) = g(2x+ y) + g(2x− y)− 4g(x+ y)− 4g(x− y)− 2g(2x) + 8g(x) + 6g(y) f or every x, y ∈ G.

(1.5)

Consider this functional inequality

‖Qg(x, y)‖ ≤ ϕ(x, y) (1.6)

for an upper bound a function ϕ from G2
→ [0,∞).

2. Preliminaries

In 1897, Hensel [11] has introduced a normed space which does not have the Archimedean

property. It turnout that Non-Archimedean spaces have many nice applications [17,19]. The basic

definition and properties of Non-Archimedean space are as follows.

Definition 2.1. [2] A Non-Archimedean field is a field K equipped with a function (valuation) |.| from K

into [0,∞) such that |r| = 0 if and only if r = 0, |rs| = |r||s|, and |r + s| ≤ max{|r|, |s|} for all r, s ∈ K.
Clearly |1| = | − 1| = 1 and |η| ≤ 1 for all η ∈ N .

Definition 2.2. Let X be a linear space over a Non-Archimedean field K with a non-trivial valuation |.|. A
function norm from X to R is a Non-Archimedean norm if it satisfies the following conditions:

(NA1) ‖r‖ ≥ 0 and = 0 iff r = 0,
(NA2) ‖αr‖ = |α|‖r‖,α ∈ K, r ∈ X,
(NA3) ‖r + s‖ ≤ max{‖r‖, ‖s‖}, r, s ∈ X.

Then (X, ‖.‖) is called a Non-Archimedean normed space.
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Because of this,

‖xp − xq‖ ≤ max{‖xr+1 − xr‖ : q ≤ r ≤ p− 1} (p > q)
A sequence {xp} is Cauchy iff {xp+1 − xp} converges to zero in a NAN space. By a complete NAN

space every Cauchy sequence is convergent.

The most important examples of Non-Archimedean spaces are p-adic numbers. A key property

of p-adic numbers is that they do not satisfy the Archimedean axiom: for x, y > 0, there exists

η ∈ N such that x < ηy.

3. Main Results

In this section, using the direct method, we investigate the HUS for the quadratic-quartic

(Q2Q4) functional equation (1.4) in Non-Archimedean normed space. We start this section with

the following lemma.

Lemma 3.1. [9] If a function g from V1 to V2 satisfies (1.4), then g is quadratic-quartic.

Theorem 3.1. Let a function ϕ from G2
→ [0,∞) be such that

lim
η→∞

1
|2|2η

ϕ(2η+1x, 2η+1y) = 0 = lim
n→∞

1
|2|2η

ϕ̄(2ηx) f or every x, y ∈ G. (3.1)

Let g be an even function from G to X that satisfies (1.6) and g(0) = 0.
Then, uniqueness of quadratic function Q2 f rom G → X exists and

‖g(2x) − 16g(x) −Q2(x)‖ ≤
1
|2|2

ψq2(x) f or each x ∈ G. (3.2)

where

ψq2(x) = lim
η→∞

max

 1
|2|2 

ϕ̄(2 x) : 0 ≤  < η

 (3.3)

and

ϕ̄(x) =max

|4|ϕ(x, x),ϕ(x, 2x)

 exists f or each x ∈ G. (3.4)

Proof. Putting y by x in (1.6), we get

‖g(3x) − 6g(2x) + 15g(x)‖ ≤ ϕ(x, x)

‖4g(3x) − 24g(2x) + 60g(x)‖ ≤ |4| ϕ(x, x) (3.5)

In equation (1.6) substituting y = 2x, we obtain

‖g(4x) − 4g(3x) + 4g(2x) + 4g(x)‖ ≤ ϕ(x, 2x) (3.6)

Using (3.5) it follows that,

‖g(4x) − 20g(2x) + 64g(x)‖ ≤ ϕ̄(x) f or each x ∈ G. (3.7)
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Let h1 be a mapping from G into X defined by h1(x) = g(2x) − 16g(x) for each x ∈ G. we

conclude this (3.7) as

‖h1(2x) − 4h1(x)‖ ≤ ϕ̄(x) f or each x ∈ G. (3.8)

Replacing x by 2η−1x in (3.8), we arrive∥∥∥∥∥∥∥h1(2ηx)
22η −

h1(2η−1x)
22(η−1)

∥∥∥∥∥∥∥ ≤ 1
|2|2η

ϕ̄(2η−1x) f or each x ∈ G. (3.9)

It follows from (3.1) and (3.9) the sequence
{

h1(2ηx)
22η

}
is Cauchy. Since X is complete, we conclude{

h1(2ηx)
22η

}
is convergent.

Let Q2(x) = lim
η→∞

h1(2ηx)
22η f or each x ∈ G. (3.10)

From (3.8) and (3.9) it follows by induction that∥∥∥∥h1(2ηx)
22η − h1(x)

∥∥∥∥ ≤ max

 1
|2|2η ϕ̄(2

η−1x) . . . 1
|2|2 ϕ̄(2

0x)


∥∥∥∥ h1(2ηx)

22η − h1(x)
∥∥∥∥ ≤

1
|2|2 max

 1
|2|2  ϕ̄(2

x) : 0 ≤  < η

 (3.11)

for each η ∈ N and for all x ∈ G. As η →∞ in (3.11) and using (3.3), we get (3.2). Now to prove

Q2 is quadratic. It follows from (3.1), (3.9) and (3.10) we obtain

‖Q2(2x) − 4Q2(x)‖ = lim
η→∞

∥∥∥∥ h1(2η2x)
22η − 22 h1(2ηx)

22η

∥∥∥∥
≤ |2|2 lim

η→∞

1
|2|2(η+1) ϕ̄(2ηx)

= lim
n→∞

1
|2|2η ϕ̄(2

ηx)

= 0 f or each x ∈ G.

Hence,

Q2(2x) = 4Q2(x) f or each x ∈ G. (3.12)

On the other hand (1.6), (3.1) and (3.10) implies that

‖QQ2(x, y)‖ =
∥∥∥∥ lim
η→∞

Qh1(2ηx,2ηy)
22η

∥∥∥∥
= lim

η→∞

1
|2|2η

∥∥∥∥Qh1(2ηx, 2ηy)
∥∥∥∥
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= lim
η→∞

1
|2|2η

∥∥∥∥Qg(2η+1x, 2η+1y) − 16Qg(2ηx, 2ηy)
∥∥∥∥

≤ lim
η→∞

1
|2|2η max

{
ϕ(2η+1x, 2η+1y), |16|ϕ(2ηx, 2ηy)

}
= 0 f or each x ∈ G.

Therefore, Q2 satisfies (1.4). By Lemma (3.1), |Q2(2x) − 16Q2(x)| is quadratic. Therefore, Q2 is

quadratic.

Uniqueness: Let there exist another quadratic function Q′2

‖Q2(x) −Q′2(x)‖ = lim
ι→∞

∥∥∥∥∥∥∥Q2(2ιx)
22ι −

Q′2(2
ιx)

22ι

∥∥∥∥∥∥∥
≤ lim

ι→∞

1
|2|2ι max

{∥∥∥∥Q2(2ιx) − h1(2ιx)‖, ‖h1(2ιx) −Q′2(2
ιx)

∥∥∥∥}

‖Q2(x) −Q′2(x)‖ ≤
1
|2|2 lim

ι→∞
lim
η→∞

max

 1
|2|2  ϕ̄(2

x) : ι ≤  < η+ ι


= 0 f or each x ∈ G.

Therefore Q2(x) = Q′2(x). �

Theorem 3.2. Let a function ϕ from G2
→ [0,∞) be such that

lim
η→∞
|2|2ηϕ

( x
2η+1

,
y

2η+1

)
= 0 = lim

η→∞
|2|2ηϕ̄

( x
2η

)
f or every x, y ∈ G.

Let g be an even function from G to X that satisfies (1.6) and g(0) = 0.
Then, uniqueness of quadratic function Q2 from G → X exists and

‖g(2x) − 16g(x) −Q2(x)‖ ≤ |2|2ψq2(x) f or each x ∈ G.

where

ψq2(x) = lim
η→∞

max

|2|2 ϕ̄( x
2 

)
: 0 ≤  < η


and

ϕ̄(x) =max

|4|ϕ(x, x),ϕ(x, 2x)

 exists f or each x ∈ G.

Proof. The proof is similar to Theorem (3.1). �
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Corollary 3.1. Let r, s and δ are positive real numbers. Define a function g from G to X and if a quadratic
mapping satisfying the inequality

‖Qg(x, y)‖ ≤ δ(‖x‖r+s + ‖y‖r+s + ‖x‖r‖y‖s) f or all x, y ∈ G.

‖g(2x) − 16g(x) −Q2(x)‖ ≤
1
|2|2

ψq2(x) f or each x ∈ G.

where

ψq2(x) = δ(1 + |2|r+s + |2|s)‖x‖r+s

Then,

(i) For r + s > 2, there is a unique quadratic mapping Q2(x) : G → X such that

‖g(2x) − 16g(x) −Q2(x)‖ ≤
δ

|2|2
(1 + |2|r+s + |2|s)‖x‖r+s

(ii) For r + s < 2, there is a unique quadratic mapping Q2(x) : G → X such that

‖g(2x) − 16g(x) −Q2(x)‖ ≤ |2|2δ(1 + |2|r+s + |2|s)‖x‖r+s f or each x ∈ G.

For the case r + s = 2, we have the following counter example.

Example 3.1. Let p > 2, be a prime number and g : Qp → Qp be defined by g(x) = x2 + 1. Since |2η| = 1

for all η ∈ N . Then for all δ > 0,

‖Qg(x, y)‖ = 6 ≤ δ(‖x‖r+s + ‖y‖r+s + ‖x‖r‖y‖s) f or all x, y ∈ G.

and ∥∥∥∥∥∥∥h1(2ηx)
22η −

h1(2η−1x)
22(η−1)

∥∥∥∥∥∥∥ = |3|2.|5| , 0.

Hence
{
2−2ηh1(2ηx)

}
is not a Cauchy sequence. Where h1(x) = g(2x) − 16g(x).

Theorem 3.3. Let a function ϕ from G2
→ [0,∞) be such that

lim
η→∞

1
|2|4η

ϕ(2η+1x, 2η+1y) = 0 = lim
η→∞

1
|2|4η

ϕ̄(2ηx) f or each x ∈ G (3.13)

Let g be an even function from G to X that satisfies (1.6) and g(0) = 0.
Then, uniqueness of quartic function Q4 from G → X exists and

‖g(2x) − 4g(x) −Q4(x)‖ ≤
1
|2|4

ψq4(x) f or each x ∈ G. (3.14)

where

ψq4(x) = lim
η→∞

max
{ 1
|2|4 

ϕ̄(2 x) : 0 ≤  < η
}

(3.15)

and ϕ̄(x) follows as in (3.4) for all x ∈ G.
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Proof. The proof of this theorem is similar to Theorem (3.1), we get

‖g(4x) − 20g(2x) + 64g(x)‖ ≤ ϕ̄(x) f or each x ∈ G. (3.16)

Let h2 mapping from G into X defined by h2(x) = g(2x) − 4g(x) for each x ∈ G.

we conclude this (3.16), we obtain

‖h2(2x) − 16h2(x)‖ ≤ ϕ̄(x) f or each x ∈ G. (3.17)

Replacing x by 2η−1x in (3.17), we get∥∥∥∥∥∥∥h2(2ηx)
24η

−
h2(2η−1x)

24(η−1)

∥∥∥∥∥∥∥ ≤ 1
|2|4η

ϕ̄(2η−1x) f or each x ∈ G. (3.18)

It follows from (3.13) and (3.18) the sequence
{

h2(2ηx)
24η

}
is Cauchy. SinceX is complete, we conclude{

h2(2ηx)
24η

}
is convergent.

Let Q4(x) = lim
η→∞

h2(2ηx)
24η

f or each x ∈ G. (3.19)

From (3.17) and (3.18) it follows by induction that

∥∥∥∥ h2(2ηx)
24η − h2(x)

∥∥∥∥ ≤ max

 1
|2|4( +1) ϕ̄(2

x) : 0 ≤  < η


∥∥∥∥ h2(2ηx)

24η − h2(x)
∥∥∥∥ ≤

1
|2|4 max

 1
|2|4  ϕ̄(2

x) : 0 ≤  < η

 (3.20)

for each η ∈ N and for all x ∈ G. As η→∞ in (3.20) and using (3.15), we get (3.14). Now to prove

Q4 is quartic. It follows from (3.13), (3.18) and (3.19) we obtain

‖Q4(2x) − 16Q4(x)‖ = lim
η→∞

∥∥∥∥ h2(2η2x)
24η − 24 h2(2ηx)

24η

∥∥∥∥
≤ |2|4 lim

η→∞

1
|2|4(η+1) ϕ̄(2ηx)

= lim
η→∞

1
|2|4η ϕ̄(2

ηx)

= 0 f or each x ∈ G.

Hence,

Q4(2x) = 16Q4(x) f or each x ∈ G. (3.21)
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On the other hand (1.6), (3.13) and (3.19) implies that

‖QQ4(x, y)‖ =
∥∥∥∥ lim
η→∞

Qh2(2ηx,2ηy)
24η

∥∥∥∥
= lim

η→∞

1
|2|4η

∥∥∥∥Qh2(2ηx, 2ηy)
∥∥∥∥

= lim
η→∞

1
|2|4η

∥∥∥∥Qg(2η+1x, 2η+1y) − 4Qg(2ηx, 2ηy)
∥∥∥∥

≤ lim
η→∞

1
|2|4η max

{
ϕ(2η+1x, 2η+1y), |4|ϕ(2ηx, 2ηy)

}
= 0. f or each x ∈ G.

Therefore, Q4 satisfies (1.4). By Lemma (3.1), |Q4(2x) − 4Q4(x)| is quartic.

Therefore, Q4 is quartic.

Uniqueness: Let there exist another quartic function Q′4

‖Q4(x) −Q′4(x)‖ = lim
ι→∞

∥∥∥∥∥∥∥Q4(2ιx)
24ι −

Q′4(2
ιx)

24ι

∥∥∥∥∥∥∥
≤ lim

ι→∞

1
|2|4ι max

{∥∥∥∥Q4(2ιx) − h2(2ιx)‖, ‖h2(2ιx) −Q′4(2
ιx)

∥∥∥∥}

‖Q4(x) −Q′4(x)‖ ≤
1
|2|4 lim

ι→∞
lim
η→∞

max

 1
|2|4  ϕ̄(2

ηx) : ι ≤  < η+ ι


= 0 f or each x ∈ G.

Therefore, Q4(x) = Q′4(x). �

Theorem 3.4. Let a function ϕ from G2
→ [0,∞) be such that

lim
η→∞
|2|4ηϕ

( x
2η+1

,
y

2η+1

)
= 0 = lim

η→∞
|2|4ηϕ̄

( x
2η

)
f or every x, y ∈ G.

Let g be an even function from G to X that satisfies (1.6) and g(0) = 0.
Then, uniqueness of quartic function Q4 from G → X exists and

‖g(2x) − 4g(x) −Q4(x)‖ ≤ |2|4ψq4(x) f or each x ∈ G.

where

ψq4(x) = lim
η→∞

max

|2|4 ϕ̄( x
2 

)
: 0 ≤  < η


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and

ϕ̄(x) =max

|4|ϕ(x, x),ϕ(x, 2x)

 exists f or each x ∈ G.

Proof. The proof is similar to Theorem (3.3). �

Corollary 3.2. Let r, s and δ are positive real numbers. Define a function g from G to X and if a quartic
mapping satisfies the inequality

‖Qg(x, y)‖ ≤ δ(‖x‖r+s + ‖y‖r+s + ‖x‖r‖y‖s) f or all x, y ∈ G.

‖g(2x) − 4g(x) −Q4(x)‖ ≤
1
|2|4

ψq4(x) f or each x ∈ G.

where

ψq4(x) = δ(1 + |2|r+s + |2|s)‖x‖r+s

Then,

(i) For r + s > 4, there is a unique quartic mapping Q4(x) : G → X such that

‖g(2x) − 4g(x) −Q4(x)‖ ≤
δ

|2|4
(1 + |2|r+s + |2|s)‖x‖r+s

(ii) For r + s < 4, there is a unique quartic mapping Q4(x) : G → X such that

‖g(2x) − 4g(x) −Q4(x)‖ ≤ |2|4δ(1 + |2|r+s + |2|s)‖x‖r+s f or each x ∈ G.

For the case r + s = 4, we have the following counter example.

Example 3.2. Let p > 2, be a prime number and g : Qp → Qp be defined by g(x) = x4 + 1. Since |2η| = 1

for all η ∈ N . Then for all δ > 0,

‖Qg(x, y)‖ = 6 ≤ δ(‖x‖r+s + ‖y‖r+s + ‖x‖r‖y‖s) f or all x, y ∈ G.

and ∥∥∥∥∥∥∥h2(2ηx)
24η

−
h2(2η−1x)

24(η−1)

∥∥∥∥∥∥∥ = |3|2.|5| , 0.

Hence
{
2−2ηh1(2ηx)

}
is not a Cauchy sequence. Where h2(x) = g(2x) − 4g(x).

Theorem 3.5. Let a function ϕ from G2
→ [0,∞) be such that

lim
η→∞

1
|2|2η

ϕ(2η+1x, 2η+1y) = 0 = lim
η→∞

1
|2|2η

ϕ̄(2ηx) f or every x, y ∈ G. (3.22)

lim
η→∞

1
|2|4η

ϕ(2η+1x, 2η+1y) = 0 = lim
η→∞

1
|2|4η

ϕ̄(2ηx) f or every x, y ∈ G. (3.23)
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Let g be an even function from G to X that satisfies (1.6) and g(0) = 0.
Then, uniqueness of quadratic function Q2 : G → X and uniqueness of quartic function Q4 : G → X exists
and

‖g(x) −Q2(x) −Q4(x)‖ ≤
1
|192|

max
{
ψq4(x), |4|ψq2

}
f or each x ∈ G. (3.24)

where ψq2(x) is defined in (3.3) and ψq4(x) is defined in (3.15).

Proof. By Theorems (3.1) and (3.3), there exists a quadratic function from G into X and quartic

function from G into X such that

‖g(2x) − 16g(x) −Q2(x)‖ ≤
1
|2|2

ψq2(x) (3.25)

‖g(2x) − 4g(x) −Q4(x)‖ ≤
1
|2|4

ψq4(x) (3.26)

‖g(x) −Q4(x) −Q2(x)‖ ≤ 1
|192| max

{
ψq4(x), |4|ψq2(x)

}
f or each x ∈ G.

So we get (3.24) by setting Q4(x) =
q4(x)

12 and Q2(x) =
−q2(x)

12 f or each x ∈ G.

To show that Q2 and Q4 are unique. Let Q
′

2 , Q
′

4 be another quadratic and quartic functions

respectively satisfying (3.24). Let Q̄2 = Q2 −Q2
′ and Q̄4 = Q4 −Q4

′.

Hence

‖Q̄2(x) + Q̄4(x)‖ ≤ max
{
‖g(x) −Q

′

2(x) −Q
′

4(x)‖, ‖g(x) −Q2(x) −Q4(x)
∥∥∥}

≤ max
{

1
|192| max

{
ψ4(x), |4|ψq2(x)},

1
|192| max

{
ψ4(x), |4|ψq2(x)

}}
≤

1
|192| max

{
ψq4(x), |4|ψq2(x)} f or each x ∈ G.

Since

lim
ι→∞

lim
η→∞

max
{ 1
|2|2( +1)

ϕ̄(2 x) : ι ≤  < η+ ι
}
= 0 f or each x ∈ G.

lim
ι→∞

lim
η→∞

max
{ 1
|2|4( +1)

ϕ̄(2 x) : ι ≤  < η+ ι
}
= 0 f or each x ∈ G. (3.27)

lim
η→∞

1
|2|4η
‖Q̄2(2ηx) + Q̄4(2ηx)‖ = 0 f or every x ∈ G.

Hence, we get Q̄4 = 0 and Q̄2 = 0 and the proof is complete. �

4. Conclusion

Many authors discussed the HUS of mixed type functional equation in NAN space in recent

years. In this article, we have proved HUS for quadratic-quartic functional equation (1.4) in NAN

space with some suitable counter examples.
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