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Abstract. In the present work the stability of Hyers-Ulam mixed type of quadratic-quartic Cauchy functional equation
0(2x +y) +a(2x—y) = 48(x +y) +48(x — y) + 20(2x) — 8g(x) ~ 6a(y)

has been proved over Non-Archimedean normed space.

1. INTRODUCTION

The stability of functional equations arose in 1940 from a question by Ulam [18] on the stability
of group homomorphisms.
Given two groups H; and H, with the metric d(.,.) on H, and for ¢ > 0, does there exist 6 > 0
such that if a mapping G : Hy — H; satisfies the inequality d(G(a,b), G(a)G(b)) < 6 foralla,b € Hy,
then there exist a homomorphism G’ : H; — Hp with d(G(a), G'(a)) < ¢ for every a € H;?

Hyers [12] gave the very first positive response to Ulam’s question for Banach spaces such that

la(x+y) —a(x) —a(y)l <6 (1.1)
for all x, y € E and for some 6 > 0. Then there is a unique additive mapping T : E — E’ such that
lla(x) = T ()l <6 (1.2)

for all x € E. Furthermore, if g(fx) is continuous at ¢ € R for any fixed x € E, then T is linear (For

instance [3]).
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For the quadratic functional equation

g(x+y) +9(x—y) =2g(x) +28(y), (1.3)

we note that the quadratic function g(x) = x?

is a solution of (1.3). So one usually calls the above
functional equation is quadratic and every solution of (1.3) is said to be a quadratic mapping.
Aoki [1] generalized the Hyers theorem for additive mappings. Hyers theorem was generalized
by Rassias [16] by allowing the Cauchy difference to be unbounded. Gajada [7] responded to the
question for the case p > 1, posed by Rassias. Moslehian and Rassias [14] proved generalized HUS
of the Cauchy functional equation and the Q>F equation in NAN spaces.
In this present article, to the best of our knowledge there is no discussion so far concerning the

HUS of the following Q>-Q4F equation.

9(2x+y) +9(2x —y) = 4g(x + y) + 4g(x — y) + 2g(2x) — 8g(x) — 6a(y) (1.4)

in NAN space. It is easy to show that the function f(x) = ax* 4 bx* is a solution of the functional
equation (1.4), which is called a mixed type Q>-Q4F equation. For more detailed definitions of
mixed type functional equations, we can refer to [4-6,8-10,13,15].

Throughout this article, assume that G is an additive group, X is a complete NAN space and

V1, V, are vector spaces. Denote the Q, — Q4F equation as given below.

Qs(x,y) = a(2x+vy) +9(2x —y) —4a(x + v) —4a(x — v) —20(2x) + 8g(x) + 6g(y) foreveryx,y € G.
(1.5)
Consider this functional inequality

IQs(x, y)Il < p(x,y) (1.6)

for an upper bound a function ¢ from G — [0, o).

2. PRELIMINARIES

In 1897, Hensel [11] has introduced a normed space which does not have the Archimedean
property. It turnout that Non-Archimedean spaces have many nice applications [17,19]. The basic

definition and properties of Non-Archimedean space are as follows.

Definition 2.1. [2] A Non-Archimedean field is a field X equipped with a function (valuation) |.| from K
into [0, c0) such that |[r| = 0 if and only if r = 0, |rs| = [|rlls|, and |r + s| < max{|#|,s|} for all r,s € K.
Clearly |1l = |-1|=1and n| < 1 foralln e N.

Definition 2.2. Let X be a linear space over a Non-Archimedean field X with a non-trivial valuation |.|. A
function norm from X to R is a Non-Archimedean norm if it satisfies the following conditions:

(NA1) Irl = 0and =0iffr =0,

(NA2) llar|| = |allifl, a € K, r € X,

(NA3) |[Ir + sl < max{|l7ll, lIsll}, 7, s € X.

Then (X, ||.|l) is called a Non-Archimedean normed space.
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Because of this,

Iy = Il < max{lxy1 — %/l : g <7 <p-1} (p>q)

A sequence {x,} is Cauchy iff {x, 11 — x,} converges to zero in a NAN space. By a complete NAN

space every Cauchy sequence is convergent.

The most important examples of Non-Archimedean spaces are p-adic numbers. A key property

of p-adic numbers is that they do not satisfy the Archimedean axiom: for x,y > 0, there exists

n € N such that x < ny.

3. Main ResuLts

In this section, using the direct method, we investigate the HUS for the quadratic-quartic

(QQy4) functional equation (1.4) in Non-Archimedean normed space. We start this section with

the following lemma.

Lemma 3.1. [9] If a function g from Vi to V; satisfies (1.4), then g is quadratic-quartic.

Theorem 3.1. Let a function ¢ from G* — [0, 00) be such that
lim L
n—oc0 |2|2’7

Let g be an even function from G to X that satisfies (1.6) and g(0) = 0.

Then, uniqueness of quadratic function @, from G — X exists and

n—oo |2|2’7

llg(2x) — 16g(x) — Qa2 (x)|l < #%2 (x) foreachx € G.

where

. 1
Vg, (x) = lim max{@(p(ﬂx) 0y < n}

1]—)00

and
@(x) =max {|4|q0(x, x), p(x, 2x)} exists foreach x € G.

Proof. Putting y by x in (1.6), we get
lla(3x) — 6g(2x) + 15g(x)|| < @(x, x)

ll4g(3x) — 24g(2x) + 60g(x)I| < 4] ¢(x, x)

In equation (1.6) substituting y = 2x, we obtain

lla(4x) — 4g(3x) +4g(2x) + 4g(x)|| < @(x, 2x)

Using (3.5) it follows that,

llg(4x) —20g(2x) + 64g(x)|| < ¢(x) foreachx € G.

go(2’7+1x, 2n+1y) =0= lim 1 p(2x) forevery x,y € G.

(3.1)

(3.2)

(3.4)

(3.5)

(3.6)
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Let 111 be a mapping from G into X defined by h;(x) = g(2x) — 16g(x) for each x € G. we
conclude this (3.7) as
lIh1 (2x) — 4hy (x)|| < @(x) foreach x € G. (3.8)

Replacing x by 271-1x in (3.8), we arrive

1

h (qu) h (2’7‘1x) <
T 2P

2 T 20D @27 ) foreachx € G. (3.9)

It follows from (3.1) and (3.9) the sequence {hl (qu)} is Cauchy. Since X is complete, we conclude

221
I (2"x)
221

} is convergent.

]’ll (2'736)
2

Let @y (x) = T}l_r& foreachx € G. (3.10)

From (3.8) and (3.9) it follows by induction that

Iy (2% _
1§§,,)—h1<x)|’ < max{|2|z,,(P( ). Lz(P( )}

foreachnn € N and forallx € G. As 1 — oo in (3.11) and using (3.3), we get (3.2). Now to prove
Q; is quadratic. It follows from (3.1), (3.9) and (3.10) we obtain

T (21
1%}() —h (X)H = |21|2 max{|2|2](P(2 x) :0<)< 77} (3.11)

1Q2(2) =4l = limm |52 222
S |2|2 hm |2|2 11+1 (p( )

= hm |2|2” @(2x)

= 0 foreachx € G.

Hence,
Qx(2x) = 4Qx(x) foreach x € G. (3.12)
On the other hand (1.6), (3.1) and (3.10) implies that
Qi (21x,21y)
”QQz(x/y)“ = “n_)oo : 223; y) ||
= Jim gl |@n (21, 21y)|
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= lim 5 Qo (271, 27+y) - 16Qs(2"x, 21y

IA

%1_{%10 57 Mmax {(p(2’7+1x, 211y), 116]p(21x, 2’7y)}
= 0 foreachx e G.
Therefore, Q; satisfies (1.4). By Lemma (3.1), |Q(2x) — 16Q(x)| is quadratic. Therefore, Q; is

quadratic.

Uniqueness: Let there exist another quadratic function @,

Q(2x)  Q5(2w)

22t 22

IQ(x) Q) = lim

[—00

hm

IA

n g max {[@(21%) ~ I )l s (2) - @ (29)

|2|2 [—00 1—>00

1Q(x) - (x)ll < lim lim max{p}z]@(zfx) <<+ L}

= 0 foreachx€@G.
Therefore @ (x) = Q(x). o

Theorem 3.2. Let a function ¢ from G* — [0, 0) be such that

2 Y \Y_no 2
%1_%10 2] 'kp(szrl 2n+1) 0= hm 2] ”(p( )for every x,y € G.

Let g be an even function from G to X that satisfies (1.6) and §(0) = 0.

Then, uniqueness of quadratic function @, from G — X exists and

llg(2x) — 16g(x) — Qo (x)Il < 1214y, (x) for each x € G.

where
Vg, (%) :nh_{{}o max {|2|2]§5(%) 0<)< 17}
and
@(x) =max {|4|(p(x, x), p(x, 2x)} exists foreach x € G.

Proof. The proof is similar to Theorem (3.1). O
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Corollary 3.1. Let r,s and 6 are positive real numbers. Define a function g from G to X and if a quadratic
mapping satisfying the inequality

1Qa(x, )1l < S(Ilxl™ + Iyl + lIxl"lyll) forall x,y € G.

llg(2x) — 16g(x) — Q2 (x)|| < #qu (x) foreachx € G.
where
Vg () = (1 4 125 + 2P 1l

Then,

(i) For r 4+ s > 2, there is a unique quadratic mapping Qu(x) : G — X such that

0
llg(2x) - 16g(x) — Q2 (x)Il < W(l + 2175 12 el

(ii) For r + s < 2, there is a unique quadratic mapping Qx(x) : G — X such that
lla(2x) — 16g(x) = Qx ()] < [2176(1 + 21" + [2])lx|** for each x € G.
For the case r 4 s = 2, we have the following counter example.

Example 3.1. Let p > 2, be a prime number and g : Q, — Q, be defined by g(x) = x* + 1. Since |27 = 1
foralln € N. Then for all 6 > 0,

1Qa(x, y)Il = 6 < 5(Ilxl™ + Iyl + IxIllyll°) forallx,y € G.

and

h (an) 3 h (2’7‘1x)

_ 1712
2 2o || T 13[7.15] # 0.

Hence {2‘2'7h1 (2’7x)} is not a Cauchy sequence. Where hy(x) = g(2x) — 16g(x).

Theorem 3.3. Let a function ¢ from G* — [0, 0) be such that

1 1
lim ——@ (2" 1y, 2171y) = 0 = lim ——@(2"x) for each x € 3.13
Jim, D y) Jim, o P2 f G (3.13)

Let g be an even function from G to X that satisfies (1.6) and g(0) = 0.

Then, uniqueness of quartic function Qq from G — X exists and

lla(2x) — 4g(x) — Qu(x)|] < #yb% (x) foreachx € G. (3.14)
where
Yg,(x) = lim max{L p(2x):0< )< } (3.15)
q4 00 |2|4](P U=7<7 .

and @(x) follows as in (3.4) for all x € G.
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Proof. The proof of this theorem is similar to Theorem (3.1), we get
llg(4x) —20g(2x) 4 64g(x)|l < @(x) foreach x € G. (3.16)

Let i, mapping from G into X defined by hy(x) = g(2x) — 4g(x) foreach x € G.
we conclude this (3.16), we obtain

llh2(2x) — 16ha (x)|| < @(x) foreach x € G. (3.17)
Replacing x by 27 1x in (3.17), we get

ho (2773() ha (2'7_13()
241 - 24(n-1)

1
[2p

@(2’7_1x) foreachx € G. (3.18)

It follows from (3.13) and (3.18) the sequence {h ;i,, )} is Cauchy. Since X is complete, we conclude
{hz(z x)

24n

} is convergent.

Let Q4(x) = lim

n—oo

hy (21
2(4nx) foreachx € G. (3.19)

From (3.17) and (3.18) it follows by induction that

ha (2 _
Zéhx) —hz(x)” < max{|2|4 +1)qo(ZJx) :0<7< 17}

% —hz(x)H < #max{#(p@]x) 0y < r}} (3.20)

for eachn € N and forall x € G. Asn — oo in (3.20) and using (3.15), we get (3.14). Now to prove
Q4 is quartic. It follows from (3.13), (3.18) and (3.19) we obtain

hz (2'7235) 24 hz (qu)
241 241

lQs(2x) —16Q4(x)|l = lim

n—ooo

IA

2 lim e @(27)

= lim 5 (2)

= 0 foreachx e gG.
Hence,

Qu(2x) = 16Qu(x) foreachx € G. (3.21)
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On the other hand (1.6), (3.13) and (3.19) implies that

Qh (2x,2y)
1Qa, (x, )l = LaZx2u|

Qhy(2x,2"y) ”

= hrﬁ‘o 2

= hm |2|4,]

Qg (27 1x, 21+1y) — 4Qqg(21x, 2’7y)'|

IA

lim 5 max {@(2’7“% 2 1y), [4lp(2x, 2”}/)}
= 0. foreachx € G.
Therefore, Q4 satisfies (1.4). By Lemma (3.1), |Q4(2x) — 4Qu(x)]| is quartic.

Therefore, Q4 is quartic.

Uniqueness: Let there exist another quartic function Q]

Qu(2%) _ Q4(2')
24t 24t

IQi(x) ~ Q) = lim

[—00

IA

lim =& max {”Q4(2‘x) = ha(2%)|l, 1h2(2'x) — Q} (2"x) H}

100 |2|4‘

pr lim 0o

1Qu(x) —Q,(x)Il < lim lim max{|2|4]g0(2’ x):r<y<n+ L}

= 0 foreachx€@G.
Therefore, Q4(x) = Q) (x). mi
Theorem 3.4. Let a function ¢ from G* — [0, ) be such that
lim |2|4'7(p( 4 ) =0= l1m |2|4'7(p( )for every x,y € G.

=00 on+17 on+l

Let g be an even function from G to X that satisfies (1.6) and g(0) = 0.

Then, uniqueness of quartic function Qq from G — X exists and

lla(2x) — 4a(x) — Qu(x)Il < 12I*¢g, (x) for each x € G.

where

¢q4( xX) = hm max{|2|47(p( ) 0<< 17}
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and
@(x) =max {|4|q0(x, x), p(x, 2x)} exists for each x € G.

Proof. The proof is similar to Theorem (3.3). m|

Corollary 3.2. Let r,s and 6 are positive real numbers. Define a function g from G to X and if a quartic
mapping satisfies the inequality

1Qa(x, y)Il < S(IIxII"™* + Iyl + IIxl"lIylF) forallx,y € G.

llg(2x) — 4g(x) — Qu(x)]| < égb% (x) foreachx € G.
where
W () = O(1+ 121 + 12F) x|

Then,

(i) For r 4+ s > 4, there is a unique quartic mapping Qu(x) : G — X such that

5
lla(2x) — 4 (x) — Qu(x)| < o (14125 + 12F) [lx]"+

(ii) For r + s < 4, there is a unique quartic mapping Qu(x) : G — X such that

lla(2x) — 4g(x) — Qs (x)|| < 121*6(1 4 |12 + [21°)||x|I"™® for each x € G.

For the case r + s = 4, we have the following counter example.

Example 3.2. Let p > 2, be a prime number and g : Q, — Q, be defined by g(x) = x* + 1. Since |27 = 1
foralln € N. Then for all 6 > 0,

Qs (x, y)Il = 6 < S(UIxII™® + Iyl + lIxl"llyll*) forall x,y € G.

and

hy (an) hy (2’7‘1x)
241 24(n-1)

= 13%.5| # 0.

Hence {2‘2'7h1 (2’7x)} is not a Cauchy sequence. Where hy(x) = g(2x) —4g(x).

Theorem 3.5. Let a function ¢ from G* — [0, 0) be such that
1

1

%1_1)1010 e (21 1y, 21 y) = 0 = %1_{?0 |2|2n(p(2'7x) for every x,y € G. (3.22)
1 1

%1_1)1010 |2|4q(p(2'7+1x, 21y =0 = r}l_rgo W@(an) foreveryx,y€@G. (3.23)
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Let g be an even function from G to X that satisfies (1.6) and g(0) = 0.
Then, uniqueness of quadratic function Q : G — X and uniqueness of quartic function Q4 : G — X exists

and
1
la(x) = Qa(x) — Qu(x)|| < o] max {¢q4 (x), |4|1,qu} foreachx e G. (3.24)
where 1, (x) is defined in (3.3) and g, (x) is defined in (3.15).

Proof. By Theorems (3.1) and (3.3), there exists a quadratic function from G into X and quartic

function from G into X such that

la(2x) — 160(x) - Q(x) < équw (3.25)
la(2x) — 46(x) — Qu(0)ll < #m (x) (3.26)

llag(x) — Qu(x) — Q(x)|| < IllTZI max {gb% (x), |4l (x)} foreachx € G.

So we get (3.24) by setting Q4(x) = % and @ (x) = %z(x) foreachx € G.

To show that @, and Q4 are unique. Let Q/z , Q;l be another quadratic and quartic functions
respectively satisfying (3.24). Let Q@ = Q- Q" and Qs = Q1 — Q4.

Hence
IQ2(x) +Qu(x)ll < max {||g(x) - @, (x) - Q, ()l lla(x) - Qa(x) — Q4(x)“}
< max |y max {a(x), Mg (x)), by max i (x), i, ()}
< |1$_2| max{l,bq4 (x), 14y, (x)} foreach x € G.
Since
1
3 3 0 ] . =
lll)rg%ggomax{|2|2(]+l)(p(2 x):t<j<n+ L} 0 foreachx € G.
1
o N _
lli)rg T}l_r& max{|2|4(]+1) P2x) <7<+ L} 0 foreachx € G. (3.27)
%gn T”Qz(qu) +Q4(2"x)|| = 0 for every x € G.
Hence, we get Q; = 0and @, = 0 and the proof is complete. O

4. CONCLUSION

Many authors discussed the HUS of mixed type functional equation in NAN space in recent
years. In this article, we have proved HUS for quadratic-quartic functional equation (1.4) in NAN

space with some suitable counter examples.
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