International Journal of Analysis and Applications

On the Stability of Quadratic-Quartic $\left(Q_{2} Q_{4}\right)$ Functional Equation over Non-Archimedean Normed Space

A. Ramachandran, S. Sangeetha*
Department of Mathematics, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India

*Corresponding author: sangeets@srmist.edu.in

Abstract

In the present work the stability of Hyers-Ulam mixed type of quadratic-quartic Cauchy functional equation

$$
\mathfrak{g}(2 x+y)+\mathfrak{g}(2 x-y)=4 \mathfrak{g}(x+y)+4 \mathfrak{g}(x-y)+2 \mathfrak{g}(2 x)-8 \mathfrak{g}(x)-6 \mathfrak{g}(y)
$$

has been proved over Non-Archimedean normed space.

1. Introduction

The stability of functional equations arose in 1940 from a question by Ulam [18] on the stability of group homomorphisms.

Given two groups H_{1} and H_{2} with the metric $d(.,$.$) on H_{2}$ and for $\varepsilon>0$, does there exist $\delta>0$ such that if a mapping $G: H_{1} \rightarrow H_{2}$ satisfies the inequality $d(G(a, b), G(a) G(b))<\delta$ for all $a, b \in H_{1}$, then there exist a homomorphism $G^{\prime}: H_{1} \rightarrow H_{2}$ with $d\left(G(a), G^{\prime}(a)\right)<\varepsilon$ for every $a \in H_{1}$?

Hyers [12] gave the very first positive response to Ulam's question for Banach spaces such that

$$
\begin{equation*}
\|\mathfrak{g}(x+y)-\mathfrak{g}(x)-\mathfrak{g}(y)\| \leq \delta \tag{1.1}
\end{equation*}
$$

for all $x, y \in E$ and for some $\delta>0$. Then there is a unique additive mapping $T: E \rightarrow E^{\prime}$ such that

$$
\begin{equation*}
\|\mathfrak{g}(x)-\mathrm{T}(x)\| \leq \delta \tag{1.2}
\end{equation*}
$$

for all $x \in E$. Furthermore, if $\mathfrak{g}(t x)$ is continuous at $t \in R$ for any fixed $x \in E$, then T is linear (For instance [3]).

[^0]For the quadratic functional equation

$$
\begin{equation*}
\mathfrak{g}(x+y)+\mathfrak{g}(x-y)=2 \mathfrak{g}(x)+2 \mathfrak{g}(y) \tag{1.3}
\end{equation*}
$$

we note that the quadratic function $\mathfrak{g}(x)=x^{2}$ is a solution of (1.3). So one usually calls the above functional equation is quadratic and every solution of (1.3) is said to be a quadratic mapping.

Aoki [1] generalized the Hyers theorem for additive mappings. Hyers theorem was generalized by Rassias [16] by allowing the Cauchy difference to be unbounded. Gajada [7] responded to the question for the case $p>1$, posed by Rassias. Moslehian and Rassias [14] proved generalized HUS of the Cauchy functional equation and the $Q_{2} F$ equation in NAN spaces.

In this present article, to the best of our knowledge there is no discussion so far concerning the HUS of the following $Q_{2}-Q_{4} F$ equation.

$$
\begin{equation*}
\mathfrak{g}(2 x+y)+\mathfrak{g}(2 x-y)=4 \mathfrak{g}(x+y)+4 \mathfrak{g}(x-y)+2 \mathfrak{g}(2 x)-8 \mathfrak{g}(x)-6 \mathfrak{g}(y) \tag{1.4}
\end{equation*}
$$

in NAN space. It is easy to show that the function $f(x)=a x^{2}+b x^{4}$ is a solution of the functional equation (1.4), which is called a mixed type $Q_{2}-Q_{4} F$ equation. For more detailed definitions of mixed type functional equations, we can refer to [4-6, 8-10,13,15].

Throughout this article, assume that \mathcal{G} is an additive group, \mathcal{X} is a complete NAN space and V_{1}, V_{2} are vector spaces. Denote the $Q_{2}-Q_{4} F$ equation as given below.
$Q \mathfrak{g}(x, y)=\mathfrak{g}(2 x+y)+\mathfrak{g}(2 x-y)-4 \mathfrak{g}(x+y)-4 \mathfrak{g}(x-y)-2 \mathfrak{g}(2 x)+8 \mathfrak{g}(x)+6 \mathfrak{g}(y)$ for every $x, y \in \mathcal{G}$.

Consider this functional inequality

$$
\begin{equation*}
\|Q \mathfrak{g}(x, y)\| \leq \varphi(x, y) \tag{1.6}
\end{equation*}
$$

for an upper bound a function φ from $\mathcal{G}^{2} \rightarrow[0, \infty)$.

2. Preliminaries

In 1897, Hensel [11] has introduced a normed space which does not have the Archimedean property. It turnout that Non-Archimedean spaces have many nice applications [17,19]. The basic definition and properties of Non-Archimedean space are as follows.

Definition 2.1. [2] A Non-Archimedean field is a field \mathcal{K} equipped with a function (valuation) |.| from \mathcal{K} into $[0, \infty)$ such that $|r|=0$ if and only if $r=0,|r s|=|r||s|$, and $|r+s| \leq \max \{|r|,|s|\}$ for all $r, s \in \mathcal{K}$. Clearly $|1|=|-1|=1$ and $|\eta| \leq 1$ for all $\eta \in \mathcal{N}$.

Definition 2.2. Let \mathcal{X} be a linear space over a Non-Archimedean field \mathcal{K} with a non-trivial valuation |.|. A function norm from \mathcal{X} to \mathcal{R} is a Non-Archimedean norm if it satisfies the following conditions:
(NA1) $\|r\| \geq 0$ and $=0$ iff $r=0$,
(NA2) $\|\alpha r\|=\mid \alpha\| \| r \|, \alpha \in \mathcal{K}, r \in \mathcal{X}$,
(NA3) $\|r+s\| \leq \max \{\|r\|,\|s\|\}, r, s \in \mathcal{X}$.
Then $(\mathcal{X},\|\|$.$) is called a Non-Archimedean normed space.$

Because of this,
$\left\|x_{p}-x_{q}\right\| \leq \max \left\{\left\|x_{r+1}-x_{r}\right\|: q \leq r \leq p-1\right\}(p>q)$
A sequence $\left\{x_{p}\right\}$ is Cauchy iff $\left\{x_{p+1}-x_{p}\right\}$ converges to zero in a NAN space. By a complete NAN space every Cauchy sequence is convergent.

The most important examples of Non-Archimedean spaces are p-adic numbers. A key property of p-adic numbers is that they do not satisfy the Archimedean axiom: for $x, y>0$, there exists $\eta \in \mathcal{N}$ such that $x<\eta y$.

3. Main Results

In this section, using the direct method, we investigate the HUS for the quadratic-quartic $\left(Q_{2} Q_{4}\right)$ functional equation (1.4) in Non-Archimedean normed space. We start this section with the following lemma.

Lemma 3.1. [9] If a function \mathfrak{g} from V_{1} to V_{2} satisfies (1.4), then \mathfrak{g} is quadratic-quartic.
Theorem 3.1. Let a function φ from $\mathcal{G}^{2} \rightarrow[0, \infty)$ be such that

$$
\begin{equation*}
\lim _{\eta \rightarrow \infty} \frac{1}{|2|^{2 \eta}} \varphi\left(2^{\eta+1} x, 2^{\eta+1} y\right)=0=\lim _{n \rightarrow \infty} \frac{1}{|2|^{2 \eta}} \bar{\varphi}\left(2^{\eta} x\right) \text { for every } x, y \in \mathcal{G} . \tag{3.1}
\end{equation*}
$$

Let \mathfrak{g} be an even function from \mathcal{G} to \mathcal{X} that satisfies (1.6) and $\mathfrak{g}(0)=0$.
Then, uniqueness of quadratic function \mathcal{Q}_{2} from $\mathcal{G} \rightarrow \mathcal{X}$ exists and

$$
\begin{equation*}
\left\|\mathfrak{g}(2 x)-16 \mathfrak{g}(x)-Q_{2}(x)\right\| \leq \frac{1}{|2|^{2}} \psi_{q_{2}}(x) \text { for each } x \in \mathcal{G} \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{q_{2}}(x)=\lim _{\eta \rightarrow \infty} \max \left\{\frac{1}{|2|^{2 \jmath}} \bar{\varphi}\left(2^{\jmath} x\right): 0 \leq 1<\eta\right\} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\varphi}(x)=\max \{|4| \varphi(x, x), \varphi(x, 2 x)\} \text { exists for each } x \in \mathcal{G} . \tag{3.4}
\end{equation*}
$$

Proof. Putting y by x in (1.6), we get

$$
\begin{gather*}
\|\mathfrak{g}(3 x)-6 \mathfrak{g}(2 x)+15 \mathfrak{g}(x)\| \leq \varphi(x, x) \\
\|4 \mathfrak{g}(3 x)-24 \mathfrak{g}(2 x)+60 \mathfrak{g}(x)\| \leq|4| \varphi(x, x) \tag{3.5}
\end{gather*}
$$

In equation (1.6) substituting $y=2 x$, we obtain

$$
\begin{equation*}
\|\mathfrak{g}(4 x)-4 \mathfrak{g}(3 x)+4 \mathfrak{g}(2 x)+4 \mathfrak{g}(x)\| \leq \varphi(x, 2 x) \tag{3.6}
\end{equation*}
$$

Using (3.5) it follows that,

$$
\begin{equation*}
\|\mathfrak{g}(4 x)-20 \mathfrak{g}(2 x)+64 \mathfrak{g}(x)\| \leq \bar{\varphi}(x) \text { for each } x \in \mathcal{G} . \tag{3.7}
\end{equation*}
$$

Let h_{1} be a mapping from \mathcal{G} into \mathcal{X} defined by $h_{1}(x)=\mathfrak{g}(2 x)-16 \mathfrak{g}(x)$ for each $x \in \mathcal{G}$. we conclude this (3.7) as

$$
\begin{equation*}
\left\|h_{1}(2 x)-4 h_{1}(x)\right\| \leq \bar{\varphi}(x) \text { for each } x \in \mathcal{G} . \tag{3.8}
\end{equation*}
$$

Replacing x by $2^{\eta-1} x$ in (3.8), we arrive

$$
\begin{equation*}
\left\|\frac{h_{1}\left(2^{\eta} x\right)}{2^{2 \eta}}-\frac{h_{1}\left(2^{\eta-1} x\right)}{2^{2(\eta-1)}}\right\| \leq \frac{1}{|2|^{2 \eta}} \bar{\varphi}\left(2^{\eta-1} x\right) \text { for each } x \in \mathcal{G} . \tag{3.9}
\end{equation*}
$$

It follows from (3.1) and (3.9) the sequence $\left\{\frac{h_{1}\left(2^{\eta} x\right)}{2^{2 \eta}}\right\}$ is Cauchy. Since \mathcal{X} is complete, we conclude $\left\{\frac{h_{1}\left(2^{\eta} x\right)}{2^{2 \eta}}\right\}$ is convergent.

$$
\begin{equation*}
\text { Let } Q_{2}(x)=\lim _{\eta \rightarrow \infty} \frac{h_{1}\left(2^{\eta} x\right)}{2^{2 \eta}} \text { for each } x \in \mathcal{G} . \tag{3.10}
\end{equation*}
$$

From (3.8) and (3.9) it follows by induction that

$$
\begin{align*}
& \left\|\frac{h_{1}\left(2^{\eta} x\right)}{2^{2 \eta}}-h_{1}(x)\right\| \leq \max \left\{\frac{1}{|2|^{2 \eta}} \bar{\varphi}\left(2^{\eta-1} x\right) \cdots \frac{1}{|2|^{2}} \bar{\varphi}\left(2^{0} x\right)\right\} \\
& \left\|\frac{h_{1}\left(2^{\eta} x\right)}{2^{2 \eta}}-h_{1}(x)\right\| \leq \frac{1}{|2|^{2}} \max \left\{\frac{1}{|2|^{2} \varphi} \bar{\varphi}\left(2^{2} x\right): 0 \leq \jmath<\eta\right\} \tag{3.11}
\end{align*}
$$

for each $\eta \in \mathcal{N}$ and for all $x \in \mathcal{G}$. As $\eta \rightarrow \infty$ in (3.11) and using (3.3), we get (3.2). Now to prove Q_{2} is quadratic. It follows from (3.1), (3.9) and (3.10) we obtain

$$
\begin{aligned}
\left\|Q_{2}(2 x)-4 Q_{2}(x)\right\| & =\lim _{\eta \rightarrow \infty}\left\|\frac{h_{1}\left(2^{\eta} 2 x\right)}{2^{2 \eta}}-2^{2} \frac{h_{1}\left(2^{\eta} x\right)}{2^{2 \eta}}\right\| \\
& \leq|2|^{2} \lim _{\eta \rightarrow \infty} \frac{1}{|2|^{2(\eta+1)}} \bar{\varphi}\left(2^{\eta} x\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{|2|^{2 \eta}} \bar{\varphi}\left(2^{\eta} x\right) \\
& =0 \text { for each } x \in \mathcal{G} .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
Q_{2}(2 x)=4 Q_{2}(x) \text { for each } x \in \mathcal{G} . \tag{3.12}
\end{equation*}
$$

On the other hand (1.6), (3.1) and (3.10) implies that

$$
\begin{aligned}
\left\|Q_{Q_{2}}(x, y)\right\| & =\left\|\lim _{\eta \rightarrow \infty} \frac{Q h_{1}\left(2^{\eta} x, 2^{\eta} y\right)}{2^{2 \eta}}\right\| \\
& =\lim _{\eta \rightarrow \infty} \frac{1}{\mid 22^{2 \eta}}\left\|Q h_{1}\left(2^{\eta} x, 2^{\eta} y\right)\right\|
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{\eta \rightarrow \infty} \frac{1}{|2|^{\eta \eta}}\left\|Q \mathfrak{g}\left(2^{\eta+1} x, 2^{\eta+1} y\right)-16 Q \mathfrak{g}\left(2^{\eta} x, 2^{\eta} y\right)\right\| \\
& \leq \lim _{\eta \rightarrow \infty} \frac{1}{| |^{2 \eta}} \max \left\{\varphi\left(2^{\eta+1} x, 2^{\eta+1} y\right),|16| \varphi\left(2^{\eta} x, 2^{\eta} y\right)\right\} \\
& =0 \text { for each } x \in \mathcal{G} .
\end{aligned}
$$

Therefore, Q_{2} satisfies (1.4). By Lemma (3.1), $\left|Q_{2}(2 x)-16 Q_{2}(x)\right|$ is quadratic. Therefore, Q_{2} is quadratic.

Uniqueness: Let there exist another quadratic function Q_{2}^{\prime}

$$
\begin{aligned}
\left\|Q_{2}(x)-Q_{2}^{\prime}(x)\right\| & =\lim _{\imath \rightarrow \infty}\left\|\frac{Q_{2}\left(2^{\iota} x\right)}{2^{2 t}}-\frac{Q_{2}^{\prime}\left(2^{\prime} x\right)}{2^{2 \iota}}\right\| \\
& \leq \lim _{\iota \rightarrow \infty} \frac{1}{|2|^{2} t} \max \left\{\left\|Q_{2}\left(2^{\iota} x\right)-h_{1}\left(2^{\iota} x\right)\right\|,\left\|h_{1}\left(2^{\imath} x\right)-Q_{2}^{\prime}\left(2^{\iota} x\right)\right\|\right\} \\
\left\|Q_{2}(x)-Q_{2}^{\prime}(x)\right\| & \leq \frac{1}{|2|^{2}} \lim _{\iota \rightarrow \infty} \lim _{\eta \rightarrow \infty} \max \left\{\frac{1}{|2|^{2} \iota} \bar{\varphi}\left(2^{\jmath} x\right): \iota \leq \jmath<\eta+\iota\right\} \\
& =0 \text { for each } x \in \mathcal{G} .
\end{aligned}
$$

Therefore $Q_{2}(x)=Q_{2}^{\prime}(x)$.
Theorem 3.2. Let a function φ from $\mathcal{G}^{2} \rightarrow[0, \infty)$ be such that

$$
\lim _{\eta \rightarrow \infty}|2|^{2 \eta} \varphi\left(\frac{x}{2^{\eta+1}}, \frac{y}{2^{\eta+1}}\right)=0=\lim _{\eta \rightarrow \infty}|2|^{2 \eta} \bar{\varphi}\left(\frac{x}{2^{\eta}}\right) \text { for every } x, y \in \mathcal{G} .
$$

Let \mathfrak{g} be an even function from \mathcal{G} to \mathcal{X} that satisfies (1.6) and $\mathfrak{g}(0)=0$.
Then, uniqueness of quadratic function Q_{2} from $\mathcal{G} \rightarrow \mathcal{X}$ exists and

$$
\left\|\mathfrak{g}(2 x)-16 \mathfrak{g}(x)-Q_{2}(x)\right\| \leq|2|^{2} \psi_{q_{2}}(x) \text { for each } x \in \mathcal{G}
$$

where

$$
\psi_{q_{2}}(x)=\lim _{\eta \rightarrow \infty} \max \left\{|2|^{2 \jmath} \bar{\varphi}\left(\frac{x}{2^{\prime}}\right): 0 \leq 1<\eta\right\}
$$

and

$$
\bar{\varphi}(x)=\max \{|4| \varphi(x, x), \varphi(x, 2 x)\} \text { exists for each } x \in \mathcal{G} .
$$

Proof. The proof is similar to Theorem (3.1).

Corollary 3.1. Let r, s and δ are positive real numbers. Define a function \mathfrak{g} from \mathcal{G} to \mathcal{X} and if a quadratic mapping satisfying the inequality

$$
\begin{gathered}
\|Q \mathfrak{g}(x, y)\| \leq \delta\left(\|x\|^{r+s}+\|y\|^{r+s}+\|x\|^{r}\|y\|^{s}\right) \text { for all } x, y \in \mathcal{G} . \\
\left\|\mathfrak{g}(2 x)-16 \mathfrak{g}(x)-Q_{2}(x)\right\| \leq \frac{1}{|2|^{2}} \psi_{q_{2}}(x) \text { for each } x \in \mathcal{G} .
\end{gathered}
$$

where

$$
\psi_{q_{2}}(x)=\delta\left(1+|2|^{r+s}+|2|^{s}\right)\|x\|^{r+s}
$$

Then,
(i) For $r+s>2$, there is a unique quadratic mapping $\mathcal{Q}_{2}(x): \mathcal{G} \rightarrow \mathcal{X}$ such that

$$
\left\|\mathfrak{g}(2 x)-16 \mathfrak{g}(x)-Q_{2}(x)\right\| \leq \frac{\delta}{|2|^{2}}\left(1+|2|^{r+s}+|2|^{s}\right)\|x\|^{r+s}
$$

(ii) For $r+s<2$, there is a unique quadratic mapping $\mathcal{Q}_{2}(x): \mathcal{G} \rightarrow \mathcal{X}$ such that

$$
\left\|\mathfrak{g}(2 x)-16 \mathfrak{g}(x)-Q_{2}(x)\right\| \leq|2|^{2} \delta\left(1+|2|^{r+s}+|2|^{s}\right)\|x\|^{r+s} \text { for each } x \in \mathcal{G} .
$$

For the case $r+s=2$, we have the following counter example.
Example 3.1. Let $p>2$, be a prime number and $\mathfrak{g}: Q_{p} \rightarrow Q_{p}$ be defined by $\mathfrak{g}(x)=x^{2}+1$. Since $\left|2^{\eta}\right|=1$ for all $\eta \in \mathcal{N}$. Then for all $\delta>0$,

$$
\|Q g(x, y)\|=6 \leq \delta\left(\|x\|^{r+s}+\|y\|^{r+s}+\|x\|^{r}\|y\|^{s}\right) \text { for all } x, y \in \mathcal{G} .
$$

and

$$
\left\|\frac{h_{1}\left(2^{\eta} x\right)}{2^{2 \eta}}-\frac{h_{1}\left(2^{\eta-1} x\right)}{2^{2(\eta-1)}}\right\|=|3|^{2} \cdot|5| \neq 0 .
$$

Hence $\left\{2^{-2 \eta} h_{1}\left(2^{\eta} x\right)\right\}$ is not a Cauchy sequence. Where $h_{1}(x)=\mathfrak{g}(2 x)-16 \mathfrak{g}(x)$.
Theorem 3.3. Let a function φ from $\mathcal{G}^{2} \rightarrow[0, \infty)$ be such that

$$
\begin{equation*}
\lim _{\eta \rightarrow \infty} \frac{1}{|2|^{4 \eta}} \varphi\left(2^{\eta+1} x, 2^{\eta+1} y\right)=0=\lim _{\eta \rightarrow \infty} \frac{1}{|2|^{4 \eta}} \bar{\varphi}\left(2^{\eta} x\right) \text { for each } x \in \mathcal{G} \tag{3.13}
\end{equation*}
$$

Let \mathfrak{g} be an even function from \mathcal{G} to \mathcal{X} that satisfies (1.6) and $\mathfrak{g}(0)=0$.
Then, uniqueness of quartic function Q_{4} from $\mathcal{G} \rightarrow \mathcal{X}$ exists and

$$
\begin{equation*}
\left\|\mathfrak{g}(2 x)-4 \mathfrak{g}(x)-Q_{4}(x)\right\| \leq \frac{1}{|2|^{4}} \psi_{q_{4}}(x) \text { for each } x \in \mathcal{G} . \tag{3.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{q_{4}}(x)=\lim _{\eta \rightarrow \infty} \max \left\{\frac{1}{|2|^{4} \mid} \bar{\varphi}\left(2^{\jmath} x\right): 0 \leq \jmath<\eta\right\} \tag{3.15}
\end{equation*}
$$

and $\bar{\varphi}(x)$ follows as in (3.4) for all $x \in \mathcal{G}$.

Proof. The proof of this theorem is similar to Theorem (3.1), we get

$$
\begin{equation*}
\|\mathfrak{g}(4 x)-20 \mathfrak{g}(2 x)+64 \mathfrak{g}(x)\| \leq \bar{\varphi}(x) \text { for each } x \in \mathcal{G} \tag{3.16}
\end{equation*}
$$

Let h_{2} mapping from \mathcal{G} into \mathcal{X} defined by $h_{2}(x)=\mathfrak{g}(2 x)-4 \mathfrak{g}(x)$ for each $x \in \mathcal{G}$. we conclude this (3.16), we obtain

$$
\begin{equation*}
\left\|h_{2}(2 x)-16 h_{2}(x)\right\| \leq \bar{\varphi}(x) \text { for each } x \in \mathcal{G} \tag{3.17}
\end{equation*}
$$

Replacing x by $2^{\eta-1} x$ in (3.17), we get

$$
\begin{equation*}
\left\|\frac{h_{2}\left(2^{\eta} x\right)}{2^{4 \eta}}-\frac{h_{2}\left(2^{\eta-1} x\right)}{2^{4(\eta-1)}}\right\| \leq \frac{1}{\mid 2^{4 \eta}} \bar{\varphi}\left(2^{\eta-1} x\right) \text { for each } x \in \mathcal{G} \tag{3.18}
\end{equation*}
$$

It follows from (3.13) and (3.18) the sequence $\left\{\frac{h_{2}\left(2^{\eta} x\right)}{2^{4 \eta}}\right\}$ is Cauchy. Since \mathcal{X} is complete, we conclude $\left\{\frac{h_{2}\left(2^{\eta} x\right)}{2^{4 \eta}}\right\}$ is convergent.

$$
\begin{equation*}
\text { Let } Q_{4}(x)=\lim _{\eta \rightarrow \infty} \frac{h_{2}\left(2^{\eta} x\right)}{2^{4 \eta}} \text { for each } x \in \mathcal{G} \tag{3.19}
\end{equation*}
$$

From (3.17) and (3.18) it follows by induction that

$$
\begin{align*}
& \left\|\frac{h_{2}\left(2^{\eta} x\right)}{2^{4 \eta}}-h_{2}(x)\right\| \leq \max \left\{\frac{1}{|2|^{4}(\jmath+1)} \bar{\varphi}\left(2^{\jmath} x\right): 0 \leq \jmath<\eta\right\} \\
& \left\|\frac{h_{2}\left(2^{\eta} x\right)}{2^{4 \eta}}-h_{2}(x)\right\| \leq \frac{1}{|2|^{4}} \max \left\{\frac{1}{\left.|2|^{4}\right]^{4}} \bar{\varphi}\left(2^{\jmath} x\right): 0 \leq \jmath<\eta\right\} \tag{3.20}
\end{align*}
$$

for each $\eta \in \mathcal{N}$ and for all $x \in \mathcal{G}$. As $\eta \rightarrow \infty$ in (3.20) and using (3.15), we get (3.14). Now to prove Q_{4} is quartic. It follows from (3.13), (3.18) and (3.19) we obtain

$$
\begin{aligned}
\left\|Q_{4}(2 x)-16 Q_{4}(x)\right\| & =\lim _{\eta \rightarrow \infty}\left\|\frac{h_{2}\left(2^{\eta} 2 x\right)}{2^{4 \eta}}-2^{4} \frac{h_{2}\left(2^{\eta} x\right)}{2^{4 \eta}}\right\| \\
& \leq|2|^{4} \lim _{\eta \rightarrow \infty} \frac{1}{|2|^{4(\eta+1)}} \bar{\varphi}\left(2^{\eta} x\right) \\
& =\lim _{\eta \rightarrow \infty} \frac{1}{\mid 2^{4 \eta}} \bar{\varphi}\left(2^{\eta} x\right) \\
& =0 \text { for each } x \in \mathcal{G} .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
Q_{4}(2 x)=16 Q_{4}(x) \text { for each } x \in \mathcal{G} \tag{3.21}
\end{equation*}
$$

On the other hand (1.6), (3.13) and (3.19) implies that

$$
\begin{aligned}
\left\|Q_{Q_{4}}(x, y)\right\| & =\left\|\lim _{\eta \rightarrow \infty} \frac{Q h_{2}\left(2^{\eta} x, 2^{\eta} y\right)}{2^{4^{\eta}}}\right\| \\
& =\lim _{\eta \rightarrow \infty} \frac{1}{22^{4 \eta}}\left\|Q h_{2}\left(2^{\eta} x, 2^{\eta} y\right)\right\| \\
& =\lim _{\eta \rightarrow \infty} \frac{1}{22^{4 \eta}}\left\|Q \mathfrak{g}\left(2^{\eta+1} x, 2^{\eta+1} y\right)-4 Q \mathfrak{g}\left(2^{\eta} x, 2^{\eta} y\right)\right\| \\
& \leq \lim _{\eta \rightarrow \infty} \frac{1}{22^{4 \eta}} \max \left\{\varphi\left(2^{\eta+1} x, 2^{\eta+1} y\right),|4| \varphi\left(2^{\eta} x, 2^{\eta} y\right)\right\} \\
& =0 . \text { for each } x \in \mathcal{G} .
\end{aligned}
$$

Therefore, Q_{4} satisfies (1.4). By Lemma (3.1), $\left|Q_{4}(2 x)-4 Q_{4}(x)\right|$ is quartic.
Therefore, Q_{4} is quartic.

Uniqueness: Let there exist another quartic function Q_{4}^{\prime}

$$
\begin{aligned}
& \left\|Q_{4}(x)-Q_{4}^{\prime}(x)\right\|=\lim _{t \rightarrow \infty}\left\|\frac{Q_{4}\left(2^{2} x\right)}{2^{4 t}}-\frac{Q_{4}^{\prime}\left(2^{t} x\right)}{2^{4 t}}\right\| \\
& \leq \lim _{\imath \rightarrow \infty} \frac{1}{|2|^{4 t}} \max \left\{\left\|Q_{4}\left(2^{\iota} x\right)-h_{2}\left(2^{\iota} x\right)\right\|,\left\|h_{2}\left(2^{\iota} x\right)-Q_{4}^{\prime}\left(2^{\iota} x\right)\right\|\right\} \\
& \left\|Q_{4}(x)-Q_{4}^{\prime}(x)\right\| \leq \frac{1}{|2|^{4}} \lim _{\imath \rightarrow \infty} \lim _{\eta \rightarrow \infty} \max \left\{\frac{1}{|2|^{4} \mid} \bar{\varphi}\left(2^{\eta} x\right): \iota \leq \jmath<\eta+\iota\right\} \\
& =0 \text { for each } x \in \mathcal{G} \text {. }
\end{aligned}
$$

Therefore, $Q_{4}(x)=Q_{4}^{\prime}(x)$.
Theorem 3.4. Let a function φ from $\mathcal{G}^{2} \rightarrow[0, \infty)$ be such that

$$
\lim _{\eta \rightarrow \infty}|2|^{4 \eta} \varphi\left(\frac{x}{2^{\eta+1}}, \frac{y}{2^{\eta+1}}\right)=0=\lim _{\eta \rightarrow \infty}|2|^{4 \eta} \bar{\varphi}\left(\frac{x}{2^{\eta}}\right) \text { for every } x, y \in \mathcal{G} .
$$

Let \mathfrak{g} be an even function from \mathcal{G} to \mathcal{X} that satisfies (1.6) and $\mathfrak{g}(0)=0$.
Then, uniqueness of quartic function Q_{4} from $\mathcal{G} \rightarrow \mathcal{X}$ exists and

$$
\left\|\mathfrak{g}(2 x)-4 \mathfrak{g}(x)-Q_{4}(x)\right\| \leq|2|^{4} \psi_{q_{4}}(x) \text { for each } x \in \mathcal{G} .
$$

where

$$
\psi_{q_{4}}(x)=\lim _{\eta \rightarrow \infty} \max \left\{|2|^{4 j} \bar{\varphi}\left(\frac{x}{2^{\jmath}}\right): 0 \leq 1<\eta\right\}
$$

and

$$
\bar{\varphi}(x)=\max \{|4| \varphi(x, x), \varphi(x, 2 x)\} \text { exists for each } x \in \mathcal{G}
$$

Proof. The proof is similar to Theorem (3.3).
Corollary 3.2. Let r, s and δ are positive real numbers. Define a function \mathfrak{g} from \mathcal{G} to \mathcal{X} and if a quartic mapping satisfies the inequality

$$
\begin{aligned}
& \|Q \mathfrak{g}(x, y)\| \leq \delta\left(\|x\|^{r+s}+\|y\|^{r+s}+\|x\|^{r}\|y\|^{s}\right) \text { for all } x, y \in \mathcal{G} . \\
& \qquad\left\|\mathfrak{g}(2 x)-4 \mathfrak{g}(x)-Q_{4}(x)\right\| \leq \frac{1}{|2|^{4}} \psi_{q_{4}}(x) \text { for each } x \in \mathcal{G} .
\end{aligned}
$$

where

$$
\psi_{q_{4}}(x)=\delta\left(1+|2|^{r+s}+|2|^{s}\right)\|x\|^{r+s}
$$

Then,
(i) For $r+s>4$, there is a unique quartic mapping $Q_{4}(x): \mathcal{G} \rightarrow \mathcal{X}$ such that

$$
\left\|\mathfrak{g}(2 x)-4 \mathfrak{g}(x)-Q_{4}(x)\right\| \leq \frac{\delta}{|2|^{4}}\left(1+|2|^{r+s}+|2|^{s}\right)\|x\|^{r+s}
$$

(ii) For $r+s<4$, there is a unique quartic mapping $\mathcal{Q}_{4}(x): \mathcal{G} \rightarrow \mathcal{X}$ such that

$$
\left\|\mathfrak{g}(2 x)-4 \mathfrak{g}(x)-Q_{4}(x)\right\| \leq|2|^{4} \delta\left(1+|2|^{r+s}+|2|^{s}\right)\|x\|^{r+s} \text { for each } x \in \mathcal{G} .
$$

For the case $r+s=4$, we have the following counter example.
Example 3.2. Let $p>2$, be a prime number and $\mathfrak{g}: Q_{p} \rightarrow Q_{p}$ be defined by $\mathfrak{g}(x)=x^{4}+1$. Since $\left|2^{\eta}\right|=1$ for all $\eta \in \mathcal{N}$. Then for all $\delta>0$,

$$
\|Q g(x, y)\|=6 \leq \delta\left(\|x\|^{r+s}+\|y\|^{r+s}+\|x\|^{r}\|y\|^{s}\right) \text { for all } x, y \in \mathcal{G} .
$$

and

$$
\left\|\frac{h_{2}\left(2^{\eta} x\right)}{2^{4 \eta}}-\frac{h_{2}\left(2^{\eta-1} x\right)}{2^{4(\eta-1)}}\right\|=|3|^{2} \cdot|5| \neq 0 .
$$

Hence $\left\{2^{-2 \eta} h_{1}\left(2^{\eta} x\right)\right\}$ is not a Cauchy sequence. Where $h_{2}(x)=\mathfrak{g}(2 x)-4 \mathfrak{g}(x)$.
Theorem 3.5. Let a function φ from $\mathcal{G}^{2} \rightarrow[0, \infty)$ be such that

$$
\begin{align*}
& \lim _{\eta \rightarrow \infty} \frac{1}{|2|^{2 \eta}} \varphi\left(2^{\eta+1} x, 2^{\eta+1} y\right)=0=\lim _{\eta \rightarrow \infty} \frac{1}{|2|^{2 \eta}} \bar{\varphi}\left(2^{\eta} x\right) \text { for every } x, y \in \mathcal{G} . \tag{3.22}\\
& \lim _{\eta \rightarrow \infty} \frac{1}{|2|^{4 \eta}} \varphi\left(2^{\eta+1} x, 2^{\eta+1} y\right)=0=\lim _{\eta \rightarrow \infty} \frac{1}{|2|^{4 \eta}} \bar{\varphi}\left(2^{\eta} x\right) \text { for every } x, y \in \mathcal{G} . \tag{3.23}
\end{align*}
$$

Let \mathfrak{g} be an even function from \mathcal{G} to \mathcal{X} that satisfies (1.6) and $\mathfrak{g}(0)=0$.
Then, uniqueness of quadratic function $Q_{2}: \mathcal{G} \rightarrow \mathcal{X}$ and uniqueness of quartic function $Q_{4}: \mathcal{G} \rightarrow \mathcal{X}$ exists and

$$
\begin{equation*}
\left\|\mathfrak{g}(x)-Q_{2}(x)-Q_{4}(x)\right\| \leq \frac{1}{|192|} \max \left\{\psi_{q_{4}}(x),|4| \psi_{q_{2}}\right\} \text { for each } x \in \mathcal{G} \tag{3.24}
\end{equation*}
$$

where $\psi_{q_{2}}(x)$ is defined in (3.3) and $\psi_{q_{4}}(x)$ is defined in (3.15).
Proof. By Theorems (3.1) and (3.3), there exists a quadratic function from \mathcal{G} into \mathcal{X} and quartic function from \mathcal{G} into \mathcal{X} such that

$$
\begin{gather*}
\left\|\mathfrak{g}(2 x)-16 \mathfrak{g}(x)-Q_{2}(x)\right\| \leq \frac{1}{|2|^{2}} \psi q_{2}(x) \tag{3.25}\\
\left\|\mathfrak{g}(2 x)-4 \mathfrak{g}(x)-Q_{4}(x)\right\| \leq \frac{1}{|2|^{4}} \psi_{q_{4}}(x) \tag{3.26}\\
\left\|\mathfrak{g}(x)-Q_{4}(x)-Q_{2}(x)\right\| \leq \frac{1}{|192|} \max \left\{\psi_{q_{4}}(x),|4| \psi_{q_{2}}(x)\right\} \text { for each } x \in \mathcal{G} .
\end{gather*}
$$

So we get (3.24) by setting $Q_{4}(x)=\frac{q_{4}(x)}{12}$ and $Q_{2}(x)=\frac{-q_{2}(x)}{12}$ for each $x \in \mathcal{G}$.

To show that Q_{2} and Q_{4} are unique. Let $Q_{2}^{\prime}, Q_{4}^{\prime}$ be another quadratic and quartic functions respectively satisfying (3.24). Let $\bar{Q}_{2}=Q_{2}-Q_{2}{ }^{\prime}$ and $\bar{Q}_{4}=Q_{4}-Q_{4}{ }^{\prime}$.

Hence

$$
\begin{aligned}
\left\|\bar{Q}_{2}(x)+\bar{Q}_{4}(x)\right\| & \leq \max \left\{\left\|\mathfrak{g}(x)-Q_{2}^{\prime}(x)-Q_{4}^{\prime}(x)\right\|,\left\|\mathfrak{g}(x)-Q_{2}(x)-Q_{4}(x)\right\|\right\} \\
& \leq \max \left\{\frac{1}{|192|} \max \left\{\psi_{4}(x),|4| \psi_{q_{2}}(x)\right\}, \frac{1}{|192|} \max \left\{\psi_{4}(x),|4| \psi_{q_{2}}(x)\right\}\right\} \\
& \leq \frac{1}{|192|} \max \left\{\psi_{q_{4}}(x),|4| \psi_{q_{2}}(x)\right\} \text { for each } x \in \mathcal{G}
\end{aligned}
$$

Since

$$
\begin{align*}
& \lim _{\imath \rightarrow \infty} \lim _{\eta \rightarrow \infty} \max \left\{\frac{1}{|2|^{2(\jmath+1)}} \bar{\varphi}\left(2^{\jmath} x\right): \iota \leq \jmath<\eta+\iota\right\}=0 \text { for each } x \in \mathcal{G} . \\
& \lim _{\imath \rightarrow \infty} \lim _{\eta \rightarrow \infty} \max \left\{\frac{1}{|2|^{4(\jmath+1)}} \bar{\varphi}\left(2^{\jmath} x\right): \iota \leq \jmath<\eta+\iota\right\}=0 \text { for each } x \in \mathcal{G} \tag{3.27}\\
& \lim _{\eta \rightarrow \infty} \frac{1}{|2|^{4 \eta}}\left\|\bar{Q}_{2}\left(2^{\eta} x\right)+\bar{Q}_{4}\left(2^{\eta} x\right)\right\|=0 \text { for every } x \in \mathcal{G}
\end{align*}
$$

Hence, we get $\bar{Q}_{4}=0$ and $\bar{Q}_{2}=0$ and the proof is complete.

4. Conclusion

Many authors discussed the HUS of mixed type functional equation in NAN space in recent years. In this article, we have proved HUS for quadratic-quartic functional equation (1.4) in NAN space with some suitable counter examples.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] T. Aoki, On the Stability of the Linear Transformation in Banach Spaces, J. Math. Soc. Japan. 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064.
[2] G. Bachman, Introduction to p-Adic Numbers and Valuation Theory, Academic Press, 1964.
[3] D.G. Bourgin, Classes of Transformations and Bordering Transformations, Bull. Amer. Math. Soc. 57 (1951), 223-237.
[4] A. Ebadian, A. Najati, M.E. Gordji, On Approximate Additive-Quartic and Quadratic-Cubic Functional Equations in Two Variables on Abelian Groups, Results. Math. 58 (2010), 39-53. https://doi.org/10.1007/s00025-010-0018-4.
[5] M. Eshaghi Gordji, H. Khodaei, R. Khodabakhsh, General Quartic-cubic-quadratic Functional Equation in NonArchimedean Normed Spaces, U.P.B. Sci. Bull. Ser. A. 72 (2010), 69-84.
[6] M. Eshaghi Gordji, M.B. Savadkouhi, Stability of Cubic and Quartic Functional Equations in Non-Archimedean Spaces, Acta Appl. Math. 110 (2009), 1321-1329. https://doi.org/10.1007/s10440-009-9512-7.
[7] Z. Gajda, On Stability of Additive Mappings, Int. J. Math. Math. Sci. 14 (1991), 431-434.
[8] M.E. Gordji, S. Abbaszadeh, C. Park, On the Stability of a Generalized Quadratic and Quartic Type Functional Equation in Quasi-Banach Spaces, J. Inequal. Appl. 2009 (2009), 153084. https://doi.org/10.1155/2009/153084.
[9] M.E. Gordji, M.B. Savadkouhi, C. Park, Quadratic-Quartic Functional Equations in RN-Spaces, J. Inequal. Appl. 2009 (2009), 868423. https://doi.org/10.1155/2009/868423.
[10] M.E. Gordji, S.K. Gharetapeh, J.M. Rassias, S. Zolfaghari, Solution and Stability of a Mixed Type Additive, Quadratic, and Cubic Functional Equation, Adv. Differ. Equ. 2009 (2009), 826130. https://doi.org/10.1155/2009/826130.
[11] K. Hensel, Über eine neue Begründung der Theorie der Algebraischen Zahlen, Jahresber. Dtsch. Math.-Ver. 6 (1897), 83-88. https://eudml.org/doc/144593.
[12] D.H. Hyers, G. Isac, Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Boston, 1998.
[13] Y.S. Lee, S. Kim, C. Kim, Stability for the Mixed Type of Quartic and Quadratic Functional Equations, J. Funct. Spaces. 2014 (2014), 853743. https://doi.org/10.1155/2014/853743.
[14] S.M. Mohammad, T. Rassias M., Stability of functional equations in non-Archimedean spaces, Appl. Anal. Discr. Math. 1 (2007), 325-334. https://doi.org/10.2298/aadm0702325m.
[15] A. Ramachandran, S. Sangeetha, On the Generalized Quadratic-Quartic Cauchy Functional Equation and its Stability over Non-Archimedean Normed Space, Math. Stat. 10 (2022), 1210-1217. https://doi.org/10.13189/ms. 2022.100607.
[16] Th.M. Rassias, On the Stability of the Linear Mapping in Banach Spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[17] A.M. Robert, A Course in p-Adic Analysis, Springer, New York, 2000.
[18] S.M. Ulam, Problems in Modern Mathematics, John Wiley \& Sons, New York, 1940.
[19] A.C.M. van Rooij, Non-Archimedean Functional Analysis, Monographs and Textbooks in Pure and Applied Mathematics, 51, Marcel Dekker, New York, 1978.

[^0]: Received: Oct. 20, 2023.
 2020 Mathematics Subject Classification. 39B62, 39B72, 12J25.
 Key words and phrases. quadratic function $\left(Q_{2} F\right)$ equation; quartic function $\left(Q_{4} F\right)$ equation; non-Archimedean normed (NAN) space; Hyers-Ulam stability (HUS).

