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Abstract. Combinatorial design theory and graph decompositions play a critical role in the exploration of combinatorial

design theory and are essential in mathematical sciences. The process of graph decomposition involves partitioning the

set of edges in a graph G. An n-sun graph, characterized by a cycle with an edge connecting each vertex to a terminating

vertex of degree one, is introduced in this study. The concept of n-sun decomposition is applied to certain even-order

graphs. The indices covered in this study include the general connectivity index of the harary graphs, Zagreb indices,

symmetric division degree indices and randic indices.

1. Introduction and Preliminaries

We mean a simple undirected linked graphs with the graph G = (V, E). In G, the cycle length

n is characterized by Cn. The n-sun graph seems to be a Cn cycle including on the edges ending

with Cn[1] from each vertex. Therefore, each the n-sun graph comprises precisely one cycle of

vertices of the n and n pendants in length. The graphic decomposition it’s a set G1, G2, ..., Gn

of G with edge-disjoint subsequences so which each G’s edge is that’s approximately one Gi.

Since the mid nineteenth century, graph decompositions, recognized for their applications in the
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theory of combinatorial design, have been studied. Walecki had a loan from the building The

decomposition of complete graphs by the Hamilton cycle many decades after its launch[2] − [4].

We have decomposed even-order complete graphs, K2n into with n-suns. In complete graphs, The

basis of the decomposition is the The design of cycles for Hamilton by Walecki.

A systematic technique with a method of labeling is given to the decomposition. We demonstrated

a decomposition of the spanning tree of K2n by orderly extracting edges from the cycles in n-suns.

The speciality of any such spanning tree is that it contains a perfect matching of K2n. Equally

essential 2n are the complete bipartite graphs K2n. Also, their decomposition of the n-sun is

provided. The graphs of 2n-vertex, k-connected are consequently next sort in graphs, labeled

graphs on Harary, with the smallest possible number of edges . In interconnection network

topology, such graphs are commonly used. The n-sun decomposition is investigated for various

kinds of harary graphs.

A G graph is called a complete graph, Kn, in which all two separate points are adjacent. The

whole the Km,n bipartite graph is a graph with the vertices that could be divided U and W in two

sets, so each of the edges of km,n is each side of U and W on the other end, respectively. Frank

Harary created the harary graphs are a class of charts named Hk,n ,starting with a n-cycle graph

with numbered vertices around its perimeter consecutively by 0, 1, 2, ..., n− 1 towards the clock. If

k and n are all the same, by joining each vertex to the nearest vertex, form Hk,n vertices of k
2 around

the circle in both directions. Unless k becomes different as well as n is even now, each vertex

forms Hk,n is joined together in each direction towards the closest one k−1
2 vertex and the The Hk,n

is k-regular, totally different the vertex, k-linked graph of n-vertex in both cases. The situation of

all the uncommon n in Hk,n is removed, because the n-sun is just that, specified order graphs for

even.

Figure 1. Harary graph are H8,4 and H8,5
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Figure 2. An array harary graph

1.1. Definition. A specific example of a k-connected graph is the harary graph Hk,n with graph

vertices of n having the least number of edges possible.

1.2. Definition. A harary graph Hn,k is a graph on n the vertices v1, v2, ., ., ., vn are defined as fol-

lows construction:

Case= 1 If k is even, then every vertex vi is adjacent to vi±1, vi±2, ., ., ., vi± k
2
, where the indices follow

a cyclic convention that

vi = vi±n(e.g.vn±3 represents v3).

Case = 2 If k is odd and n is even, then Hn,k equals Hn,k−1 with additional adjacencies between each

vi and vi+ n
2

for each i.
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Case = 3 If k and n are not distinct either, then Hn,k is Hn,k−1 with additional adjacencies

v1v1+ n−1
2

, v1v1+ n−1
2

, v2v2+ n−1
2

, v3v3+ n−1
2

, v n−1
2 , vn.

Figure 3. An array harary graph

Note that these graphs are (except when n and k are both odd) highly symmetrical, and that

each contains [nk
2 ] edges. We thus have an explicit construction of minimal k-connected graphs,

following our proof of the harary graphs connectivity:

Harary theorem: The graph Hn,k is k-connected.

Proof: We shall start by proving this in the symmetric cases. If k = 2r for some r, then let us

consider some subset S of V(Hn,k), with |S| < k; let us assume v1 < S, and there is some other vi < S.

Let us consider the sets v2, ..., vi−1 and vi+1, ..., vn. S is drawn from these two sets, and |S| < 2r,

so one or the other of these sets contains fewer than r elements of S; without loss of generality,

letv2, ..., vi−1 ∩ S have fewer than S elements. Now, either i ≤ k + 1, in which case v1 ∼ vi, or there

is some element vi1 of v1, v2..., vk+1 which is not in S, since |S ∩ v2, v3..., vk+1| < k. So v1 ∼ vi1 now

either i = k + i1 in which case vi1 vi, or there is some element vi2 of vi1vi2 , ..., vi1+k which is not in

S, since |S ∩ v2, v3..., vk+1| < k, so vi1 ∼ vi2 . Continuing this procedure as far as necessary, we will

construct a path from v1 to vi. Thus, since vi was an arbitrary vertex of V(Hn,k), and by symmetry

v1 is equivalent to any other choice of vertex, we have shown connectivity between arbitrary ver-

tices from V(Hn,k)−S, so V(Hn,k) is a k-connected graph on n-vertices with as few edges as possible.
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Next we discuss the topological indices.

42 Balaban et al., included M1(G) and M2(G) among the topological indices in a review paper

and called them "Zagreb group indices". In this regard, some explanation is required. First, in the

early 1980s, only a few topological indices were recognized and the authors of the study wanted

as many of them as possible. Secondly, both authors of the article at that time were representatives

of the Department of theoretical chemistry of the Zagreb institute. The term "Zagreb group

index" was soon shortened to "Zagreb index" and M1G) is now known as "Zagreb’s first index"

and M2(G) is known as "Zagreb’s second index". In 1972 the first and second Zagreb indices

were established by Gutmann and Trynaistik, which are topological graph indices based on past

degrees. It is an important molecular descriptor closely related to many chemical properties.

Thus, it attracted more and more attention of chemists and mathematicians.

The first Zagreb index, denoted as M1(G) represents the sum of squared degrees of the vertices

in a given (molecular) graph resently M. K. Iqbal et.al[22]. Another perspective on this index is

viewing it as the sum of the degrees of the edges within graph G. The expression for M1(G) is

defined as shown [7].

M1(G, x) =
∑

µω∈E(G)

xdµ+dω (1.1)

The second grabbing index, denoted as M2(G) corresponds to the summation of the degree prod-

ucts of adjacent vertices from a pair of vertices in the given (molecular) graph G. The definition of

M2(G) can be found in reference [7].

M2(G, x) =
∑

µω∈E(G)

xdµ×dω (1.2)

In 1972, the inaugural Zagreb index was introduced as an ancient topological index. Subsequently,

several variations of the Zagreb index were proposed. For instance, in 2013, Shirdel et al. presented

a novel index known as the "hyper Zagreb index," which was later identified as [8].

HM(G) =
∑

µω∈E(G)

(dµ + dω)2 (1.3)

The graph G is called the geometric arithmetic Index (GA) resently A. Asghar et.al[18].

GA(G) =
∑

µω∈E(G)

2

√
dµdω

dµ + dω
(1.4)

In 2015, E. Deutshi and S. Klavzar introduced a novel polynomial known as the m-polynomial,

representing a new topological index. This polynomial was defined in the context of degree-based

topological indices as follows, based on the degree of a vertex[9]: [Computational approach to the
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drug acetaminophen using topological indices based on powers and m-polynomials]

M1(G, x, y) =
∑

µω∈E(G)

xdµydω (1.5)

The first Zagreb index is defined in Shuxian in terms of two polynomials, which exhibit the

following structure resently Zaib Hassan Niazi et.al[19]:

M∗1(G, x) =
∑

(ωi)∈V(G)

d(ωi).xd(ωi) (1.6)

M0(G, x) =
∑

(ωi)∈V(G)

xd(ωi) (1.7)

Two polynomials of Zagreb type are defined as follows resently Mukhtar Ahmad et.al[20]:

Ma,b(G, x) =
∑

(ωiω j)∈E(G)

xad(ωi)+bd(ωi) (1.8)

M′a,b(G, x) =
∑

(ωiω j)∈E(G)

x(a+d(ωi))+(b+d(ωi)) (1.9)

Two updated models of the Zagreb index, the first multiplicative Zagreb index PM1(G) and the

second multiplicative Zagreb index PM2 were introduced by Todeshine et al. for molecular graph

G certain characteristics of both the PM1(G) and PM2(G) indices of particular chemical structures

have been investigated[10]. The first multiplicative Zagreb index for the molecular graph G is

defined as follows resently Mukhtar Ahmad et.al[21].

M1(G) =
∑

ωi∈V(G)

[d(ωi)
2] (1.10)

The second multiplicative Zagreb index for the molecular graph G is defined as follows.

M2(G) =
∑

(ωiω j)∈E(G)

[d(ωi).d(ω j)] (1.11)

The first multiplicative Zagreb polynomial for the molecular graph G is defined as follows.

M1(G, x) =
∑

(ωiω j)∈E(G)

xd(ωi)+d(ω j) (1.12)

The second multiplicative Zagreb polynomial for the molecular graph G is defined as follows.

M2(G, x) =
∑

(ωiω j)∈E(G)

xd(ωi)×d(ω j) (1.13)

Historically, the graph invariants now known as Zagreb indices were the first vertex-degree-based

structure descriptors. However, at first, they were meant to be used for something quite else,

and they were only much later included to the list of topological indices. Milan randic proposed

the first real degree-based topological index in his key study, On characterisation of molecular

branching, published in 1775. His index was [11] as follows.
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Rα(G) =
∑

µω∈E(G)

(dµ × dω)α (1.14)

Ernesto Estrada has described a new topological index, which is a new version of the random

index. He called it the atom-bond connectivity index, which is conveniently reduced to (ABC).
Various applications of graph invariants have been found and are currently being used in chemistry,

environmental sciences, pharmacology, etc. The atom-bond connectivity index (ABC) is one of

them. It is defined as follows[12]. [Estrada, Torres, Rodriguez, and Gutman, 1998b]

ABC(G) =
∑

µω∈E(G)

√
dµ + dω − 2

dµdω
(1.15)

The general random index (or product connectivity index) was proposed by Bolloba and Erdos

and is defined as follows resently A. Asghar et.al[18].

χα(G) =
∑

µ∈V(G)

(dω)2 (1.16)

General connection indexes come in two different varieties, depending on the value of the real

number alpha. If alpha equals negative one-half, it corresponds to a random index. On the other

hand, if alpha equals one, it corresponds to the second Zagreb index. Recently, Trinajstick and Zhou

modified the concept of a random index and obtained a new index called the total connectedness

index of the sum, which is defined as follows resently Zaib Hassan Niazi et.al[19].

χα(G) =
∑

µ,ω∈E(G)

[d(µ) + d(ω)]α (1.17)

The given Zagreb indices, namely the first, second and third, can be described as follows in a

more professional manner resently Mukhtar Ahmad et.al[20].

MR1(G) =
∑

µω∈E(G)

|(d(µ) − 1) + (d(ω) − 1)| (1.18)

MR2(G) =
∑

µω∈E(G)

[(d(µ) − 1)(d(ω) − 1)] (1.19)

MR3(G) =
∑

µω∈E(G)

|(d(µ) − 1) − (d(ω) − 1)| (1.20)

RR(G) =
∑

µω∈E(G)

√
d(µ) × d(ω) (1.21)

The reduced inverse random index is defined as [13].

RRR(G) =
∑

µω∈E(G)

√
(dµ − 1)(dω − 1) (1.22)

In 2015, Furtula and Gutman [14] introduced another topological index called the forgotten index

or F− index, which can be described in a more professional manner. See [15, 16, 17] for details about
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the F − index. The forgotten index of the graph G can be defined in a more professional manner

using synonyms.

F(G) =
∑

(µω)∈E(G)

[(dµ)2 + (dω)2] (1.23)

The forgotten polynomial of the graph G can be defined in a more professional manner using

synonyms.

F(G, x) =
∑

(µω)∈E(G)

x[(dµ)
2+(dω)2] (1.24)

2. Main Results

In this part, we’ll developed a number of conclusions regarding the harary graph’s degree-based

topological indices.

Theorem 2.1 Let Hk,n be the harary subdivision graph. Then for η ≥ 2, first Zagreb polynomial

indices are:

M1(G) =
η(η−1)

2 x(2η−2).

Proof: The harary graph 2, 3, 4, ..., η − 1 appears in figure( graph ). The harary graph

2, 3, 4, ..., η− 1 contains η number of vertices and Cη2 number of edge. The degree of each vertex in

the graph Hk,n is equal to η− 1 and now we introduce the first general Zagreb topological index.

M1(G) =
∑
µω∈E(G) xdµ+dω → eq.(1)

Put dµ = (η− 1) and dω = (η− 1) in eq.(1)

M1(G) =|E(R)|x(η−1)+(η−1)

M1(G) =|E(R)|x(2η−2)

Put |E(R)| = η(η−1)
2 in eq.(1)

M1(G) =
η(η−1)

2 x(2η−2)

Theorem 2.2 Let Hk,n be the harary subdivision graph. Then for η ≥ 2, second Zagreb

Polynomial indices are,

M2(G) =
η(η−1)

2 x(η−1)2
.

Proof: The harary graph 2, 3, 4, ..., η − 1 appears in figure( graph ). The harary graph

2, 3, 4, ..., η − 1 contains η number of vertices and Cη2 number of edges. The degree of each vertex

in the graph Hk,n is equal to η − 1 and now we introduce the second general Zagreb topological
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index.

M2(G) =
∑
µω∈E(G) xdµ×dω → (1)

Put dµ = (η− 1) and dω = (η− 1) in eq.(1)

M2(G) = |E(R)|x(η−1)(η−1)

M2(G) = |E(R)|x(η−1)2

Put |E(R)| = η(η−1)
2 in eq.(1)

M2(G) =
η(η−1)

2 x(η−1)2
.

Theorem 2.3 Let Hk,n be the harary subdivision graph. Then for η ≥ 2, randic indices are,

Rα(G) =
η(η−1)

2 (η− 1)2α.

Proof: The harary graph 2, 3, 4, ..., η − 1 appears in figure( graph ). The harary graph

2, 3, 4, ..., η − 1 contains η number of vertices and Cη2 number of edges. The degree of each vertex

in the graph Hk,n is equal to η− 1 and now we introduce the randic indices.

Rα(G) =
∑
µω∈E(G)(dµdω)α→ eq.(1)

Put dµ = (η− 1) and dω = (η− 1) in eq.(1)

Rα(G) =|E(R)|((η− 1)(η− 1))α

Rα(G) =|E(R)|(η− 1)2α

Put |E(R)| = η(η−1)
2 in eq.(1)

Rα(G) =
η(η−1)

2 (η− 1)2α.

Theorem 2.4 Let Hk,n be the harary subdivision graph. Then for η ≥ 2, general sum-connectivity

indices are

χα(G) =
η(η−1)

2 (2η− 2)α.

Proof: The harary graph 2, 3, 4, ..., η − 1 appears in figure( graph ). The harary graph

2, 3, 4, ..., η − 1 contains η number of vertices and Cη2 number of edges. The degree of each vertex

in the graph Hk,n is equal to η− 1 and now we introduce the general sum-connectivity topological
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index.

χα(G) =
∑
µω∈E(G)(dµdω)α→ eq.(1)

Put dµ = (η− 1) and dω = (η− 1) in eq.(1)

χα(G) =|E(R)|((η− 1) + (η− 1))α

χα(G) =|E(R)|(2η− 2)α

Put |E(R)| = η(η−1)
2 in eq.(1)

χα(G) =
η(η−1)

2 (2η− 2)α.

Theorem 2.5 Let Hk,n be the harary subdivision graph. Then for η ≥ 2, atom bond connectivity

indices are,

ABC(G) =
η(η−1)

2

√
2η−3

(η−1) .

Proof: The Harary graph 2, 3, 4, ..., η − 1 appears in figure( graph ). The harary graph

2, 3, 4, ..., η− 1 contains η number of vertices and Cη2 number of edges. The degree of each vertex in

the graph Hk,n is equal to η− 1 and now we introduce the atom bond connectivity topological index.

ABC(G) =
∑
µω∈E(G)

√
dµ+dω−2

dµdω
→ eq.(1)

Put dµ = (η− 1) and dω = (η− 1) in eq.(1)

ABC(G) =|E(R)|
√

(η−1)+(η−1)−2
(η−1)(η−1)

ABC(G) =|E(R)|
√

(2η−3)
(η−1)2

Put |E(R)| = η(η−1)
2 in eq.(1)

ABC(G) =
η(η−1)

2

√
2η−3

(η−1) .

Theorem 2.6 Let Hk,n be the harary subdivision graph. Then for η ≥ 2, first multiple Zagreb

indices are,

PM1(G) = (2(η− 1))
η(η−1)

2 .
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Proof: Since graph G and (V(G), E(G)) = (η, η(η−1)
2 ) be hararay subdivision graph and now first

multiple Zagreb index of topological index is,

PM1(G) =
∏
µωE(R)(dµ + dω)→ eq.(1)

Put dµ = (η− 1) and dω = (η− 1) in eq.(1)

PM1(G) =
∏
µωE(R)((η− 1) + (η− 1))

PM1(R) = (2η− 2)E(R)

Put |E(R)| = η(η−1)
2 in eq.(1)

PM1(G) = (2η− 2)
η(η−1)

2

PM1(G) = (2(η− 1))
η(η−1)

2 .

Theorem 2.7 Let Hk,n be the harary subdivision graph. Then for η ≥ 2, second multiple Zagreb

indices are,

PM2(G) = (η− 1)η(η−1).

Proof: Since graph G and (V(G), E(G)) = (η, η(η−1)
2 ) be hararay subdivision graph and now

second multiple Zagreb index of topological index is,

PM2(G) =
∏
µωE(G)(dµ × dω)→ eq.(1)

Put dµ = (η− 1) and dω = (η− 1) in eq.(1)

PM2(G) =
∏
µω∈E(R)((η− 1) ∗ (η− 1))

PM2(G) = ((η− 1)2)E(R)

Put |E(R)| = η(η−1)
2 in eq.(1)

PM2(G) = ((η− 1)2)
η(η−1)

2

PM2(G) = (η− 1)η(η−1).

Theorem 2.8 Suppose graph G and (V(G), E(G)) = (η, η(η−1)
2 ) be hararay subdivision graph.

Then for η ≥ 2, hyper Zagreb index is,
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HM(G) =
η(η−1)

2 (2η− 2)2.

Proof: The harary graph 2, 3, 4, ..., η − 1 appears in figure( graph ). The harary graph

2, 3, 4, ..., η − 1 contains η number of vertices and Cη2 number of edges. The degree of each vertex

in the graph Hk,n is equal to η− 1 and now we introduce the hyper Zagreb topological index.

HM(G) =
∑
µω∈E(G)(dµ + dω)2

→ (1)

Put dµ = (η− 1) and dω = (η− 1) in eq.(1)

HM(G) =|E(R)|((η− 1) + η− 1))2

HM(G) =|E(R)|(2η− 2)2

Put |E(R)| = η(η−1)
2 in eq.(1)

HM(G) =
η(η−1)

2 (2η− 2)2.

Theorem 2.9 Suppose graph G and (V(G), E(G)) = (η, η(η−1)
2 ) be hararay subdivision graph.

Then for η ≥ 2, geometric arithmetic Index (GA) Zagreb index is,

GA(G) =
η(η−1)

2 .

Proof: The harary graph 2, 3, 4, ..., η − 1 appears in figure( graph ). The harary graph

2, 3, 4, ..., η − 1 contains η number of vertices and Cη2 number of edges. The degree of each vertex

in the graph Hk,n is equal to η − 1 and now we introduce the geometric arithmetic index (GA)

topological index.

GA(G) =
∑
µω∈E(G) 2

√
dµdω

dµ+dω
→ (1)

Put dµ = (η− 1) and dω = (η− 1) in eq.(1)

GA(G) =|E(R)|2
√
(η−1)(η−1)

(η−1)+(η−1)

GA(G) =|E(R)|2
√
(η−1)2

(2η−2)

Put |E(R)| = η(η−1)
2 in eq.(1)

GA(G) =
η(η−1)

2 2
√
(η−1)2

2(η−1)

GA(G) =
η(η−1)

2 2 (η−1)
2(η−1)
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GA(G) =
η(η−1)

2 .

Theorem 2.10 Suppose graph G and (V(G), E(G)) = (η, η(η−1)
2 ) be hararay subdivision graph.

Then for η ≥ 2, reduced reciprocal randic is,

RRR(G) =
η(η−1)

2 (η− 2).

Proof: Since graph G and (V(G), E(G)) = (η, η(η−1)
2 ) be hararay subdivision graph and now

reduced reciprocal randic of topological index is,

RRR(G) =
∑
µω∈E(G)

√
(dµ − 1)(dω − 1)→ eq.(1)

Put dµ = (η− 1) and dω = (η− 1) in eq.(1)

RRR(G) =
∑
µω∈E(R)

√
((η− 1) − 1)((η− 1) − 1)

RRR(G) = |E(R)|
√
(η− 2)(η− 2)

RRR(G) = |E(R)|
√
(η− 2)2

|E(R)| = η(η−1)
2

RRR(G) =
η(η−1)

2

√
(η− 2)2

RRR(G) =
η(η−1)

2 (η− 2).

Theorem 2.11 Suppose graph G and (V(G), E(G)) = (η, η(η−1)
2 ) be harary subdivision graph.

Then for η ≥ 2, The first Zagreb index is associated by two polynomials, which are,

(i) M∗1(R, x) =η(η− 1).xη

(ii) M0(R, x) =ηxη−1.

Proof: Since graph G and (V(G), E(G)) = (η, η(η−1)
2 ) be harary subdivision graph and now The

first Zagreb index is associated by two polynomials, which are,

M∗1(G, x) =
∑
ωi∈V(G) d(ωi).Xωi
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M∗1(G, x) =
∑
ωi∈V(G) d(ωi).xωi

(i)
M∗1(G, x) =

∑
ωi∈V(G) d(ωi).xωi

Edges E(G) =
η(η−1)

2

Vertices V(G) = η

Each vertex in the harary graph has a degree that is

Hk,n =(dµ, dω) = (η− 1)

so we have

Here

|E(R)| = η(η−1)
2

dµ = (η− 1)

dω = (η− 1)

Two polynomials connected to the general form of the first Zagreb index,

M∗1(G, x) =
∑
ωi∈V(G) d(ωi).xωi → eq.(1)

Put dµ = (η− 1) and dω = (η− 1) in eq.(1)

M∗1(R, x) =
∑
ωi∈V(R))(η− 1).xωi

M∗1(R, x) =
∑
ωi∈V(R)(η− 1).xη

M∗1(R, x) =|V(R)|(η− 1).xη

M∗1(R, x) =η(η− 1).xη.

(ii)
The two polynomials referring to the first Zagreb index of the graph G are defined as:

M0(G, x) =
∑
ωi∈V(G) xd(ωi)
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M0(G, x) =
∑
ωi∈V(G) xd(ωi)

Edges E(G) =
η(η−1)

2

Vertices V(G) = η

Each vertex in the harary graph has a degree that is

Hk,n =(dµ, dω) = (η− 1)

so we have

Here

|E(R)| = η(η−1)
2

dµ = (η− 1)

dω = (η− 1)

Two polynomials connected to the general form of the first Zagreb index,

M0(R, x) =
∑
ωi∈V(G) xd(ωi)

M0(R, x) =
∑
ωi∈V(R) xη−1

M0(R, x) =|V(R)|xη−1

|V(R)| = η

M0(R, x) =ηxη−1.

Theorem 2.12 Suppose graph G and (V(G), E(G)) = (η, η(η−1)
2 ) be harary subdivision graph.

Then for η ≥ 2, the first Zagreb index is associated by two polynomials, which are,

(i) Ma,b(R, x) =
η(η−1)

2 x[(a+b)(η−1)]

(ii) M′a,b(R, x) =
η(η−1)

2 x(η
2+(a+b−2)η−(a+b−1)).

Proof: Since graph G and (V(G), E(G)) = (η, η(η−1)
2 ) be harary subdivision graph and now the

first Zagreb index is associated by two polynomials, which are

Ma,b(G, x) =
∑

(ωiω j)∈E(G) xad(ωi)+bd(ωi)
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(i)
Ma,b(G, x) =

∑
(ωiω j)∈E(G) xad(ωi)+bd(ωi)

Edges E(G) =
η(η−1)

2

Vertices V(G) = η

Each vertex in the harary graph has a degree, that is,

Hk,n =(dµ, dω) = (η− 1)

So we have

|E(R)| = η(η−1)
2

dµ = (η− 1)

dω = (η− 1)

Zagreb type polynomials the general form,

Ma,b(R, x) =
∑

(ωiω j)∈E(G) xad(ωi)+bd(ωi)→ eq.(1)

Put dµ = (η− 1) and dω = (η− 1) in eq.(1)

Ma,b(R, x) =
∑

(ωiω j)∈E(R) x[a(η−1)+b(η−1)]

Ma,b(R, x) =
∑

(ωiω j)∈E(R) x[(a+b)(η−1)]

Ma,b(R, x) =|E(R)|x[(a+b)(η−1)]

|E(R)| = η(η−1)
2

Ma,b(R, x) =
η(η−1)

2 x[(a+b)(η−1)].

(ii)

M′a,b(G, x) =
∑

(ωiω j)∈E(G) x(a+d(ωi))+(b+d(ωi))



Int. J. Anal. Appl. (2024), 22:63 17

M′a,b(G, x) =
∑

(ωiω j)∈E(G) x(a+d(ωi))+(b+d(ωi))

Edges E(G) =
η(η−1)

2

Vertices V(G) = η

Each vertex in the harary graph has a degree that is

Hk,n =(dµ, dω) = (η− 1)

so we have

Here

|E(R)| = η(η−1)
2

dµ = (η− 1)

dω = (η− 1)

Zagreb type polynomials the general form,

M′a,b(G, x) =
∑

(ωiω j)∈E(G) x(a+d(ωi))+(b+d(ωi))→ eq.(1)

Put dµ = (η− 1) and dω = (η− 1) in eq.(1)

M′a,b(R, x) =
∑

(ωiω j)∈E(R) x(a+(η−1))(b+(η−1))

M′a,b(R, x) =|E(R)|x(a+(η−1))(b+(η−1))

M′a,b(R, x) = |E(R)|x(a+η−1)(b+η−1)

M′a,b(R, x) = |E(R)|x(η
2+η(a+b−2)−(a+b−1))

|E(R)| = η(η−1)
2

M′a,b(R, x) =
η(η−1)

2 x(η
2+(a+b−2)η−(a+b−1)).

Theorem 2.13 Suppose graph G and (V(G), E(G)) = (η, η(η−1)
2 ) be harary subdivision graph.

Then for η ≥ 2, the forgotten polynomial index is,

F(G) =
η(η−1)

2 x|2(η
2
−2η+1)|.

Proof: Since graph G and (V(G), E(G)) = (η, η(η−1)
2 ) be harary subdivision graph and now the

forgotten polynomial index is,
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F(G) =
∑

(µω)∈E(x) x[(dµ)
2+(dω)2]

→ eq.(1)

Put dµ = (η− 1) and dω = (η− 1) in eq.(1)

F(R) =
∑

(µω)∈E(R) x|(η−1)2+(η−1)2
|

F(G) =
∑

(µω)∈E(R) x|η
2+1−2η+η2+1−2η|

F(G) =|E(R)|x|2η
2
−4η+2|

F(G) =|E(R)|x|2(η
2
−2η+1)|

|E(R)| = η(η−1)
2

F(G) =
η(η−1)

2 x|2(η
2
−2η+1)|.

3. Numerical Examples

In this part, we’ll developed a number of conclusions regarding the harary graph’s degree-based

topological indices.

Example 3.1. There must be η if this is a positive natural number η = 2, 3, ...., so E(G) exists in the

graph for vertices V(G) = η =
η(η−1)

2 edges and the peculiarity of this graph is that approximately

the degree of each vertex corresponds to η− 1.

η = 2, 3, ...

V(G) = η eq.(1)

E(G) =
η(η−1)

2 eq.(2)

Equations (1) and (2) become, when η = 3 is substituted in.

Vertex V(G) = η

Here

η = 3

Edges E(G) = Cη2 =
3(3−1)

2 = 3

Degree of harary graph (dµ, dω) = 3− 1 = 2.

Figure 4. Harary graph are H2,3
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Example 3.2. There must be η if this is a positive natural number η = 2, 3, ...., so E(G) exists in the

graph for vertices V(G) = η =
η(η−1)

2 edges and the peculiarity of this graph is that approximately

the degree of each vertex corresponds to η− 1.

η = 2, 3, ...

V(G) = η eq.(1)

E(G) =
η(η−1)

2 eq.(2)

Equations (1) and (2) become, when η = 3 is substituted in.

Vertex V(G) = η

Here

η = 4

Edges E(G) = Cη2 =
4(4−1)

2 = 6

Degree of harary graph (dµ, dω) = 4− 1 = 3

Figure 5. Harary graph are H3,4

Example 3.3. There must be η if this is a positive natural number η = 2, 3, ...., so E(G) exists in the

graph for vertices V(G) = η =
η(η−1)

2 edges and the peculiarity of this graph is that approximately

the degree of each vertex corresponds to η− 1.

η = 2, 3, ...

V(G) = η eq.(1)

E(G) =
η(η−1)

2 eq.(2)

Equations (1) and (2) become; when η = 3 is substituted in.

Vertex V(G) = η

Here

η = 6

Edges E(G) = Cη2 =
6(6−1)

2 = 15

Degree of harary graph (dµ, dω) = 6− 1 = 5
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Figure 6. Harary graph are H5,6

Example 3.4. There must be η if this is a positive natural number η = 2, 3, ...., so E(G) exists in the

graph for vertices V(G) = η =
η(η−1)

2 edges and the peculiarity of this graph is that approximately

the degree of each vertex corresponds to η− 1.

η = 2, 3, ...

V(G) = η eq.(1)

E(G) =
η(η−1)

2 eq.(2)

Equations (1) and (2) become, when η = 3 is substituted in.

Vertex V(G) = η

Here

η = 8

Edges E(G) = Cη2 =
8(8−1)

2 = 28

Degree of harary graph (dµ, dω) = 8− 1 = 7

Figure 7. Harary graph are H7,8

Example 3.5. There must be η if this is a positive natural number η = 2, 3, ...., so E(G) exists in the

graph for vertices V(G) = η =
η(η−1)

2 edges and the peculiarity of this graph is that approximately

the degree of each vertex corresponds to η− 1.

η = 2, 3, ...

V(G) = η eq.(1)

E(G) =
η(η−1)

2 eq.(2)
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Equations (1) and (2) become, when η = 3 is substituted in.

Vertex V(G) = η

Here

η = 25

Edges E(G) = Cη2 =
25(25−1)

2 = 300

Degree of harary graph (dµ, dω) = 25− 1 = 24.

Figure 8. Harary graph are H24,25

4. Conclusion

This article explores the decomposition of various graphs using the n-sun method. A topological

index of harary graphs has been discovered specifically in the case of harary graphs. The extension

or generalization of the n-sun decomposition for harary graphs is investigated. The identification

of a necessary and sufficient condition for the existence and total decomposition of n-sun is deemed

valuable. Research on n-sun harary graphs is recommended and the creation of graceful graphs

for the presented n-sun graphs is proposed by carefully selecting the graphs.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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