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Abstract. In this paper, a numerical method based on the Chebyshev tau method is applied to analyze the effects of
rotation and magnetic fields on Rayleigh-Bénard convection. The rotation and magnetic fields are assumed to be parallel
to the vertical direction. The perturbation equations and boundary conditions are analyzed using normal mode analysis.
The equations are then converted into a non-dimensional form and transformed into a generalized eigenvalue problem
of the form AX = RBX, where R represents the eigenvalue corresponding to the Rayleigh number. The MATLAB
software package is utilized to determine the relationship between the Rayleigh number and the Taylor number (rate
of rotation), as well as the relationship between the Rayleigh number and the magnetic parameter (strength of the
magnetic field) for different boundary conditions (free-free, rigid-rigid, or one free and the other rigid). The numerical
and graphical results are presented and found to be in full agreement with the results obtained from previous analytical

and numerical studies of the problem.

1. INTRODUCTION

Rayleigh-Bénard convection is a classical problem in fluid mechanics, it is a type of natural
convection occurring in a planar horizontal layer of fluid heated from below. It has wide range of
application in physics and engineering sciences. There are many analytical and numerical studies
have been done for the problem. Lord Rayleigh (1916) [1] used the experimental results provided
by Benard (1900) and gave the first stability analysis for the problem, he found a dimensionless
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number R called Rayleigh number which measures the ratio of buoyancy and viscosity forces

multiplied by the ratio of momentum and thermal diffusivities given by

_ gapd*
o KV

R

where « is coefficient of thermal expansion, g is gravity acceleration, f is temperature gradient, d
is the vertical distance between the plates, « is thermal diffusivity, v is kinematic viscosity. This
number increases as the temperature gradient § increased till exceed a certain critical value R, this
value determines the stability of the fluid flow, when R < R, the flow is laminar, and it becomes
turbulent at the high values R > R.. Chandrasekhar [2]- [5] studied analytically instability of a
layer of fluid heated from below and subject to simultaneous action of a magnetic field and rotation
for three cases of boundaries free-free, rigid-rigid and rigid-free, he found the relation between
the critical Rayleigh number and the critical wave number for various values of rotation and
magnetic parameters. Wang [7] studied Linear instability analysis of Rayleigh Benard convection
in a cylinder with traveling magnetic field, Yadav [8] gave a numerical investigation of the effect
of magnetic field on the onset of nanofluid convection, A.Abasher [9] study the effect of rotation
numerically by using Chebyshev tau method, Zimmermann [10] performed experimental and
numerical Investigation of a Rayleigh-Bénard Convection Affected by Coriolis Force.

In this paper we study the effect of rotation and magnetic field numerically by using Chebyshev
tau method [11]- [13]. The paper outlined as follows. In section 2 we introduced the perturbation
equations and the boundary conditions, in section 3 we used normal mode analysis to analyze the
system, in section 4 we obtained the non dimensional form of the equations, in section 5 we used
the numerical method to convert the system to generalized eigen value problem, in section 7 we

presented the graphical and numerical results and in the last section 7 we concluded the results.

2. Tue PErTURBATION EQUATIONS

Assume the fluid confined between two horizontal planes which are located at z = 0 and
z = d, also assume the direction of the rotation and magnetic field coincides with the vertical.
The perturbation equations and the boundary conditions were introduced by Chandrasekhar ( [2],
Page 199) as follows

i—? = xV?0 + pw, (2.1)

% = nV2h, + Hg—Z’, (2.2)

% =W+ zog—f + %g—j (2.3)
% _ vie+n (2.4)

ot 0z’
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IViw 2’0 %0 4 aC  uH 9V?h,
FT (ﬁ*a—yz)“V R S T S 23)
subject to the boundary conditions
dw ..
0=0, w=0, (=0 and el 0 onrigid boundary, (2.6a)
B _ dc dw
6=0, w=0, = =0 and = 0 on free boundary. (2.6b)

where 0, w, h;, C and & are the perturbation of the velocity, magnetic field, vorticity and the
current density respectively in the z—direction, p is the density, p is the temperature gradient

where f = |5

kinematic viscosity, x the thermal diffusivity.

3. NorMAL MODES ANALYSIS
We can write the perturbations w, 0, C,h, and & as a dependence on x, v, and t of the form
0 = © () exp (i (kex + kyy) + 7t)
C = Z(2) exp (i (kex + kyy) + »t)
w =W (z) exp (i (kex + kyy) + pt) (3.1)
X (z) ex ( ( X+ kyy) + pt)
h, = K(z)exp( ( xx+kyy)+vt)

where k = [k2 + ki is the wave number of the disturbance and p is a constant. for functions with

this dependence on x, y, and t, we find

J R 9P ) -
From (3.1), the system (2.1)-(2.5) become
d? 2
PO = pw +« i O, (3.3)
K = d—z—kz K+ Hdw (3.4)
L P iz ‘
2o, 2L\ iz uHd (&2

p(g—k )W——gak2®+v(ﬁ—k W— md— 4npdz(dz2 K |K, (3.5)

a2, dz
pX—n(ﬁ—k)X—f— He, (3.6)

a2, dW  uHdx

pZ—V(d—z—k)Z—f—sz——i- HE (3.7)
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and the boundary conditions (2.6) become

©=0, W=0 for z=0and z=4,

Z =0, —dW =0 onrigid surface
0z
az 2w
= e 0 on free surface

4. NoN-DiMmeENsiONAL ForMm oF THE EQUATIONS

(3.8)

To write the system (3.3)-(3.7) and the boundary conditions (3.8) in non-dimensional form, we

have the distance between the two surfaces is d. If we define the following non-dimensional

variables

v v
Pi=—,and P, = —,

K n
the first and the second operators % and % are given as

d ddz 1d 1 2 1 4 1,
=k dir a2 ™ mTEme 2P

Then the system (3.3)-(3.7) in non-dimensional form given as

(D2 —a? —Pm)@ = - ([22) w,

K

(D2 —a? —on)K - @)Dw,
n

(D —a? —PZG)X — —(HTd)DZ,

(D-a-0)z= —(@)DW—(“HEZ)DX,

(D*-a?)(D*-a* - o)W + (f;i) D(D?-a?)K - (2(3513)[)2 - (g“dZ)az@,

and the boundary conditions

00 W=0 forz=0andz=1,
=0, DW =0 onarigid surface,
DZ =0, D*W =0 on a free surface.

at the stationary convection (¢ = 0), the system become

(D*-a*)® = —(ﬁ%z)w,

(D*-a?)K = - (HTd)DW,

(4.3)

(4.4)

(4.5)

(4.6)
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(D?-a?) X = - (HTd)DZ, (4.9)
Hd
(D-)z= —(@)DW—(“—)DX, (4.10)
v drpv
Hd 3 d?
(D) W+ ( K )D (D*-a)K - (ﬁ) DZ — (g“ )a2®. (4.11)
4dmpv v v
Eliminate X between equations (4.9) and (4.10), we get
[(D2 - u2)2 - QDZ] Z=- (g) D(D?-a*)W. (4.12)
Also, eliminate K between (4.8) and (4.11) we obtain
3 dZ
[(D2 ) - QDZ] W— (2(3‘1 )DZ - (%)cﬂ@. (4.13)
Eliminate © between (4.7) and (4.13), we get
(D?-a?) {[(D2 - a2)2 - QDZ] W—d \/TDZ} = —Ra?W, (4.14)
where,
d4 2 74
R=8%L 4 T= mzd , (4.15)
KV v

are the Rayleigh number and Taylor number respectively. (assume d = 2). Also (4.12) written as
2
[(D2 —a?) - QDZ] Z+ NTD(D? =)W = 0. (4.16)

The equations (4.14) and (4.16) must be solved subject to the boundary conditions (4.6).

5. NUMERICAL SOLUTION

Chebyshev Tau methods is a numerical method used to solve differential equations, It is based
on Chebyshev polynomials to find approximate solution of the differential equation. Returning to
(4.14) and (4.16) and the boundary conditions (4.6)

(D*- ) {[(D2 -2 - QDZ] W-2 \/TDZ} — _RPW, (5.1)

[(D2 ) - QDZ] Z+NTD(D? =)W =0, (5.2)
subject to
W=0, for z=0andz =1,
Z=0, DW=0 onarigid surface (5.3)
DZ =0, D*W =0 on a free surface.
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First convert the domain [0,1] to domain of Chebyshev polynomials [-1,1], use the relation

x=2z—1,whenz =0 = x = -1 and when z = 1 = x = 1, also the derivatives D, = 2D, and

D? = 4D?, the system (5.1)-(5.3) become

(4D? - a?) {[(4D2 - a2)2 - 4QD2] W-—4 \/"TDZ} = —Ra?W,

[(41)2 -~y - 4QD2] Z+ NTD(4D* - 22)W =0,

W=0, forx=-landx =1
DZ =0, DW =0, (ona rigid surface)
Z =0, D*W =0, (on a free surface)

2
let A = [(4D2 - az) - 4QD2] W — 4VTDZ then we can write (5.4) - (5.6) as

[(4[)2 - a2)2 - 4QD2] W—4VTDZ-A =0,
(41)2 - az) A = —Ra®W,

[(4D2 2 - 4QD2] Z+ NTD(4D? - 2)W = 0
subject to
W=A=0, frax=-landx =1
DW = 0, (ona rigid surface)

D?W = 0, (on a free surface)
Now expand W, A and Z as Chebyshev polynomials
N N

N
W(x) =Y wiTy (x), A(x) = Y Ty (x) and Z (x) = Y z,Ty (x)
n=0

n=0 n=0

where —1 < x < 1, the derivative D, D? and D* are given by

N N N N
1ow =Y w'T,, D*W =Y w?'T, DW= w'T, and D'W =) wT,
n=0 n=0 n=0

n=0

N N N
D?z =Y 27T, D'Z=) 2T, and D’A=) al'T,
n=0 n=0

n=0
where,

foralln =0,.,N-1

1 T 1
w'El ), =D [wn]n:o,l...,N—l ’ wl(\]) =0,

foralln=0,..,N-2

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)
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2 T 2 2
wr(1 ' =p? [wn]nzo,l...,N—zr wl(\]z = wz(\]) =0,
2 T 2
“En ) =p? [an]=0,1...N-2 zaﬁﬁl = “1(\1) =0,
2 T 2
Z1(1 )= D2 [Z”]n:O,l...,N—Z ,zz(vll = Z](\;) =0
foralln =0,.,N-3
3 T 3 3 2
w,) = D? [@Wn]p=01.. N3 wl(\]zz - wl(\le - wz(v) =0,
foralln=0,..,.N—-4
4 T 4 4 4 4
wr(l ' =p* [Wnln—01..,N-4~ wl(\[zg, = w| 3 = wﬁvll = wl(\]) =0,
4 T 4 4 4
Z1(1 ) = p* [Zn]=0,1...N-4 fzz(\]zg = Zz(\zzz = Zz(\]zl = ZL) =0,
Where D, D?, D? and D* are chebyshev derivative matrices given as
00 0 0 O 0
1 0 0 0 O 0
04 0 0 O 0
D=|3 0 6 0 0 0|, (5.14)
0 8 0 8 0 0
: 0
N 0 2N 0 2N 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
4 0 0 0 0 0 0
D2 0 24 0 0 0 0 0 .
] 32 0 48 0 0 0 0 (5:15)
0 120 0 80 0 0 0
: : : : : : 0
0 N(N’2-1) 0 N(N?2-9) 0 N(N?-25) 0
D3 = (D)) =DD? and D*=(D)*=D?D>
Substitute (5.11), (5.12) into the system (5.7)-(5.10), we get
N N N
Z [16w,(z4) - (8&12 + 4Q) wy, + a4wn] T, — Z a,T,—4 \/TZ z,(f)Tn =0, (5.16)
0 0 0
N
Z ) _ g2 an = —Rd? an ' (5.17)
0
N
Y [162" - (8% + 4Q) 2 + a2z, | T, + 4 VT Z ~a2wM) T, =0, (5.18)

0
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By taking the inner product with T, forn = 0,..., N for (5.16)-(5.18) we get 3(N + 1) equations for
eachn =0,1,...,N as follows

1
[160) — (802 + 4Q) wy + a*w, | - a,—4 Vit — o (5.19)
4a,(12) - aa, = —Ra*w, (5.20)
162, — (842 +4Q) z, + a'z, + 4VT (0 - 22w)) = 0 (5.21)
By substituting w,(zl), w,(f), aff), z%,wff) and 2514) we can write (5.19)-(5.21) as
[16D* - (827 + 4Q) D? + a*1] [wy])" ~ 1 [a,]" -4 VTID [z,]" =0, (5.22)
(4D? - ?1) [a,]" = —Ra®L [w,] ", (5.23)
[16D* - (827 + 4Q) D? + *1] [z4)" + 4 VT (D* - 2’D) [w,]" = 0 (5.24)
These equations (5.22)-(5.24) represent a generalized eigenvalue problem in the form
AX = RBX, (5.25)
where,
[16D* - (822 + 4Q) D? + a'1] -1 —4TD
A= 0 (4D% - 221 0 ,
4T (D? - 2?D) 0 [16D* - (822 + 4Q) D2 + a'1],
0 00
B=|-a’ 0
0 00
and,

X = (wo,...,wN,ao,...,aN,zo,...,zn)T.
The boundary conditions (5.10), use the formula of calculating the n—derivatives of Chebyshev

polynomial which is

dxp

Pl g2
=@y [, T = @ (526)
k=0

x==1

From this formula we can formulate the conditions of W as
N N

W (£1) = i 0, Ty (£1) = ) (£1) " w, = Y (21)" w, (5.27)
n=0

n=0 n=0

N
DW (£1) = ) w,T; (£1) = Y (£1)" n’w, (5.28)
n=0



Int. . Anal. Appl. (2024), 22:7 9
N N 20,2
’7 n n- — 1
D*W (1) = Y w,T, (£1) = ) (+1)"* ((T>)wn (5.29)
n=0 n=0
The conditions for A as
N N N
A(£1) = ZanTn li=z1 = Z (il)n+1 an = Z (il)nan (5.30)
n=0 n=0 n=0
The conditions for Z,
N N N
Z(£1) =Y 2Ty (£1) = Y (£1)" Tz, = ) (+1)" 2, (5.31)
n=0 n=0 n=0
N N
DZ(+1) = Y z,T, (+1) = ) (+1)" n’w, (5.32)
n=0 n=0

For Free-Free boundaries we have eight boundary conditions

W(+1) =0, D?°W (+1) =0, A(¢1) =0and DZ (+1) =0
BC1 up to BC8 as follows
BC1: W(-1) =0 =[1,-1,1,-1,...,(-D)"]| fw,]" =0,
BC2: W (1) =0 = [1,1,1,1,...,1] [w,]" =0,
BC3:
D*W(-1) =0= [o, 0, 4, —24, 80,-200,..., (-1)"*? w] [w,])" =0,

2 2_
BC4: D?W (1) = 0 = [0, 0, 4, 24, 80, 200,..., V1Y 1)] [w,]” =0,

BC5:A(-1) =0=[1,-1,1,...,(-)V][a)" =0,
BC6:A(1)=0= [1,1,1,...,1] [a,]" =0,

BC7 : DZ(-1) =0 = [0,1, -4, 9,-16,25, ..., (-1)" N?|[z,]" =0,
BCS: DZ(1) =0 =[0,1, 4, 9,16,25,...,N*| [z:]" =0,

For Rigid-Rigid boundaries we have eight boundary conditions

W(x1) =0, DW(x1) =0, A(£1) =0and Z (£1) =0

BC1 up to BC8 as follows

BC1: W(-1) =0=[1,-1,1,-1,..., (1) ] [wa)" =0

BC2: W(1)=0 =[1,1,1,1,...,1)[w,]" =0

BC3: DW (-1) =0=[0,1, -4, 9,-16,25,..., (1) N?| [w,]" = 0
BC4: DW (1) =0 = [0,1, -4, 9,-16,25,..., (1) N?| [w,]" =0
BC5: A(-1)=0=[1,-1,1,...,(-1)"][a,)" =0

BC6: A(1)=0=[1,1,1,...,1] [a,]" =0

BC7: Z(-1) =0 = [1,-1,,1,..., (-1)"] [z4) =0

BC8: Z(1)=0 = [1,1,1,...,1] [z,)" =0
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For Rigid-Free boundaries we have eight boundary conditions, the lower boundary is rigid and

the upper boundary is free, so the conditions are

W(x1) =0, A(x1) =0,
DW (-1) =0 and Z(-1) = 0 (Rigid at x = —1)

D?W(1) =0 and DZ(1) =0 (Freeatx = 1)

then BC1 up to BC8 written as

BC1

BC4 :

BC5:

BC6 :
BC7 :

BC8

TW(-1)=0=[1,-1,1,-1,..., (-1)"][w]" =0,
BC2 :
BC3:

W1)=0 =[1,1,1,1,...,1][w]" =0,
DW (-1) = 0= [0,1, -4, 9,-16,25,..., (-1)" N?] [w.]" =0,
2 2_
DW (1) =0 =0, 0,4, 24,80, 200,..., 5w, ) = o,
A =[1,-1,1,...,(-D)"][a]" =0,
A1) =[1,1,1,...1][a)" =0,
2(-1) =0 = [1,-11,1,...,(-)"][z]" =0,
: DZ(1) =0 = (0,1, 4, 9,16,25,...,N?|[z:]" = 0.

For each case of the boundary conditions free-free , rigid-rigid and rigid-free, insert the boundary
conditions BC1 up to BC4 into the matrix A in the system (5.25), the corresponding rows in the
matrix B are zeros. The matrices A and B can written as

[16D* - (822 + 4Q) D2 + a*1] -1 —-4TD
BC1 0...0 0...0
BC2 0...0 0...0
BC3 0...0 0...0
BC4 0...0 0...0

A= 0 4D2—a21 0
0...0 BC5 0...0
0...0 BC6 0...0

4VT(D*-2?D) 0 [16D4 ~ (822 +4Q) D% + a4I]

0...0 BC7
0...0 BC8

0 0 0

0...0 0...0 0...0

0...0 0...0 0...0

0...0 0...0 0...0

0...0 0...0 0...0

B=| -1 0 0

0...0 0...0 0

0...0 0...0

0 0

0..

0..
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By using MATLAB, we can calculate the set of all eigenvalues R for each value of the wave number
a for the system (5.25), and we can find the minimum eigenvalue R. and the corresponding value
ac, The table (1) shows the critical Rayleigh number and the critical wave number in the absence
of rotation and magnetic field (T = 0 and Q = 0) for the three cases of the boundaries free-free,

rigid-rigid and rigid-free.

Free-Free Rigid—Rigid Rigid—Free
R, | a, \ R, | a \ R,
2\ 657 317\ 1707 | 2.68 \1100

ac

TaBLE 1. The critical Rayleigh number R, and critical wave number 4., for the three
cases of the boundaries in the absence of rotation and magnetic field T =0,Q =0

6. MATLAB CopEe IMPLEMENTATION

Listing 1. Formulation of Chebyshev Matrix D.
function D=ChebD(N)
D=zeros (N+1);
for i=1:N+1
for j=1:1:N+1
if mod(j,2)==0

D(1,j)=j -1,
end
if i424j—1<=N+1) D(i,i+2+j —1)=2+(i+2+j —1)=2;
end
end

end

ListinG 2. Formulation of Free-Free Boundary Conditions.

function [BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8]=Bcs_FF(N)

for m=1:N+1
n=m-1;
BCl1(m)=(-1)"n; BC2(m)=1;
BC3(m)=4+(-1)"(n+2)+n"2x(n"2-1)/3; BC4(m)=4*n"2+(n"2-1)/3;
BC5(m)=(—-1)"n; BC6(m)=1;
BC7(m)=(-1)"(n+1)*n"2; BC8(m)=n"2;

end
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Listing 3. Formulation of Rigid-Rigid Boundary Conditions.
function [BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8]=Bcs_RR(N)

for m=1:N+1
n=m-1;
BC1(m)=(-1)"n; BC2(m)=1;
BC3(m)=(-1)"(n+1)*n"2; BC4(m)=n"2;
BC5(m)=(-1)"n; BC6(m)=1;
BC7(m)=(-1)"n; BC8(m)=1;

end

LisTinG 4. Formulation of Rigid-Free Boundary Conditions.

function [BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8]=Bcs_RF(N)

for m=1:N+1
n=m-1;
BCl(m)=(-1)"n; BC2(m)=1;
BC3(m)=(-1)"(n+1)*n"2; BC4(m)=4+n"2+(n"2-1)/3;
BC5(m)=(-1)"n; BC6(m)=1;
BC7(m)=(-1)"n; BC8(m)=n”"2;

end

ListinG 5. Rayleigh-Bénard Convection (Effect of Rotation and Magnetic Field).

% Benard problem with effect of rotation and magnetic field

% for Free—Free Boundaries, Rigid—Rigid boundaries and Rigid—Free
% boundaries

clear all

N=30;

%formulation boundary conditions

fprintf ([ "Enter_the_type_of_the_boundaries:.1_for.free—free,
2_for.Rigid-Rigid ,.3_.for_.Rigid—Freex++\n"]);
Type_of_boundaries=input(’the_type_.of_.the_boundaries.=\n.");

switch Type_of_boundaries

case 1
[BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8] = Bes_FF(N);
case 2
[BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8] = Bes_RR(N);

case 3
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[BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8] = Bes_RF(N);
otherwise
fprintf ( "Wrong.selection ,.select.1,2_.0r.3\n");
end
%T1_values=[10,100,200,500,1000];
T1_values=700; % Taylor number
for T1=T1_values
Q1=[200 300 400 500 600 700];
Q=Qlx+pi~2; T=Tlx+pi~™4; a=0.1:0.01:20;
format long
D=ChebD (N); D2=D+D; D3=D2+D; D4=D2:D2; % formulation of D,D2,D4
I=eye (N+1); O=zeros (N+1);
for kk=1:length(T)
fprintf ("for.T=%d.\n" ,T1(kk));
for jj=1:length(Q)
for ii=1:length(a)
A=[(4+D2-a(ii)"2+1)"2-4+Q(jj)+D2 -1 —4+sqrt(T(kk))+D;...
O (4+D2-a(ii)"2+1) O;...
4xsqrt (T(kk))+D3-sqrt(T(kk))+a(ii)"2+D
O (4+D2-a(ii)"2+1)"2-4:Q(jj)+D2];
A(N+1,1:N+1)=BC4; A(N,1:N+1)=BC3;
A(N-1,1:N+1)=BC2; A(N-2,1:N+1)=BC1;
A(2+N+1,N+2:2«N+2)=BC5; A(2xN+2,N+2:2:N+2)=BC6;
A(3%N+2,2+N+3:3«N+3)=BC7; A(3+N+3,2«N+3:3:N+3)=BCS8;
B=[O O O;—-a(ii)"2«1 O O;0 O O];
lambdas=eig (A,B); R(ii)=min(lambdas);
end
% find eigenvalue lambda
[Rc acloc]=min(R); ac=a(acloc);
fprintf ('QI=%d.\t\t\tuac=%2.2f \t\t\t_oRc=%5.2f\n",Q1(jj),ac,Rc);
hold on
myPlot=plot(a,R);%plot (ac,Rc, 'b.’, "MarkerSize’, 7);
end
end
title ("Free—Free,.T1=700"); xlabel(’wave.number.a’);

ylabel ('Rayliegh_.number.R");
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xlim ([0 20]); ylim ([0 200000]);

hold off

end

lgd=legend ( 'Q1=200", ’'Q1=300", 'Q1=400", ’'Q1=500", ’'Q1=600", 'Q1=700",
"Location’, ’'north’);

lgd . FontSize = 8;

7. NuMericaL Resurts

The following table and graphs show the critical Rayleigh number R. and the critical wave

number 4. for free-free boundaries for various values of Q; = % and T; = %

Free-Free Boundaries

T =10 T; =100 T, = 200 T1 =500 T1; = 1000
Q1
ac R, ac R, ac R, ac R, ac R,

200 | 6.43 | 27409 | 6.41 | 27657 | 6.38 | 27931 | 6.29 | 28749 | 6.15 | 30090

300 | 6.93 | 39289 | 6.91 | 39474 | 6.89 | 39679 | 6.82 | 40291 | 6.72 | 41298

400 | 7.29 | 50924 | 7.28 | 51075 | 7.26 | 51241 | 7.22 | 51740 | 7.14 | 52562

500 [ 7.59 | 62396 | 7.58 | 62524 | 7.57 | 62667 | 7.53 | 63092 | 7.46 | 63795

600 | 7.84 | 73748 | 7.83 | 73861 | 7.82 | 73986 | 7.79 | 74360 | 7.74 | 74979

700 | 8.06 | 85007 | 8.05 | 85108 | 8.04 | 85220 | 8.01 | 85556 | 7.97 | 86111

TaBLE 2. Critical Rayleigh number R. and critical wave number a. for various
values of Ty = 10,100,200,500,1000 and Q; = 200,300,400, 500,600,700 when
both boundaries are free.
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Ficure 1. The variation of Rayleigh number R with wave number a for different
values Ty = 10,100,200, 500,1000 and Q; = 200,300,400, 500, 600, 700 when both

boundaries are free
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The following table and graphs show the critical Rayleigh number R, and the critical wave

number 4, for rigid-rigid boundaries for various values of Q; = % and T1 = n—j;

Rigid-Rigid Boundaries

T, =10 T, = 100 T, = 200 T1 =500 T; = 1000
Q1
ac R, ac R, ac R, ac R, ac R,

200 | 6.54 | 29838 | 6.56 | 30251 | 6.58 | 30749 | 6.69 | 32593 | 7.09 | 37994

300 | 7.02 | 42114 | 7.02 | 42353 | 7.03 | 42626 | 7.05 | 43496 | 7.10 | 45155

400 | 7.38 | 54087 | 7.38 | 54217 | 7.38 | 54362 | 7.38 | 54804 | 7.39 | 55562

500 | 7.67 | 65859 | 7.66 | 65845 | 7.66 | 65828 | 7.65 | 65769 | 7.64 | 65650

600 | 7.91 | 77491 | 7.90 | 77226 | 7.89 | 76933 | 7.86 | 76070 | 7.82 | 74688

700 | 8.11 | 89033 | 8.09 | 88343 | 8.07 | 87595 | 8.02 | 85476 | 7.94 | 82367

TaBLE 3. Critical Rayleigh number R. and critical wave number a. for various
values of Ty = 10,100,200,500,1000 and Q; = 200,300,400, 500,600,700 when

both boundaries are rigid.
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Ficure 2. The variation of Rayleigh number R with wave number a for different
values T = 10,100,200,500,1000 and Q; = 200,300,400, 500,600, 700 when both

boundaries are rigid
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The following table and graphs show the critical Rayleigh number R, and the critical wave

number 4, for rigid-free boundaries for various values of Q1 = % and T; = %

Rigid-Free Boundaries

T, =10 T, = 100 T, = 200 T1 =500 T; = 1000
Q1
ac R, ac R, ac R, ac R, ac R,

200 | 6.49 | 28600 | 6.49 | 29043 | 6.49 | 29592 | 6.59 | 31762 | 7.50 | 39117

300 | 6.97 | 40679 | 6.97 | 40995 | 6.96 | 41360 | 6.96 | 42546 | 7.00 | 44929

400 | 7.34 | 52484 | 7.33 | 52757 | 7.33 | 53068 | 7.32 | 54034 | 7.31 | 55783

500 | 7.63 | 64105 | 7.63 | 64398 | 7.62 | 64727 | 7.61 | 65742 | 7.60 | 67527

600 | 7.88 | 75588 | 7.88 | 75971 | 7.87 | 76402 | 7.86 | 77729 | 7.85 | 80066

700 | 8.10 | 86953 | 8.10 | 87514 | 8.10 | 88149 | 8.09 | 90122 | 8.08 | 93668

TasrLe4. Critical Rayleigh number R, and critical wave number 4. for various values
of Ty = 10,100,200, 500, 1000 and Q; = 200, 300, 400, 500, 600, 700 when the lower

boundary is rigid and the upper is free.
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values T; = 10,100,200,500,1000 and Q; = 200,300,400, 500,600,700 when the
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8. CoNCLUSION

The numerical results for the three cases of the boundary conditions are in full agreement with
the results obtained by Chandrasekhar [2], we can conclude the following

e As the temperature gradient increases, the Rayleigh number R also increases. The con-
vection motion begins at the critical Rayleigh number R., which represents the minimum
value of R. For R < R, the flow is stable, while it becomes unstable for R > R..

e From the tables 2, 3 and 4, it is observed that for the three cases of the boundaries (free-free,
rigid-rigid and rigid-free), an increase in the Taylor number T is associated with an increase
in the critical Rayleigh number R.. Additionally, an increase in the magnetic parameter
Q is also linked to an increase in the critical Rayleigh number R.. This implies that both
rotation and the presence of a magnetic field tend to suppress convective motion due to
the Coriolis force resulting from rotation and the Lorentz force resulting from the magnetic
field. These forces act to reduce the vertical motion of the fluid.

e From the tables 2, 3, and 4, it can be observed that the critical Rayleigh number varies
depending on the type of boundary conditions. For example, if we consider the values
(T =10,Q = 200), we find R, = 27409 for the free-free boundary case, R, = 28600 for the
rigid-free boundary case, and R. = 29838 for the rigid-rigid boundary case. This difference
in critical Rayleigh numbers can be attributed to the constraints imposed by the boundary
conditions. In the case of free boundaries, there are no constraints on vertical motion,
allowing for faster convection compared to the cases with rigid boundaries. On the other
hand, the presence of constraints in the rigid boundary cases limits the convective motion,

resulting in a higher critical Rayleigh number.
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