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Abstract. The Sobolev space over locally compact abelian group Hs(G) is defined and we extend the

continuous wavelet transform to Sobolev space Hs(G) for arbitrary real s. This generalisation of the

wavelet transform naturally leads to a unitary operator between these spaces. Further, the asymptotic

behaviour of the transforms of the L2 function for small scaling parameters is examined. In special

cases, the wavelet transform converges to a generalized derivative of its argument. We also discuss

the consequences for the discrete wavelet transform arising from this property. Numerical examples

illustrate the main result.

1. Introduction

Most of the space that we are interested in end up bring topological groups. In this section we

define the terms topology and group so that we can work with them. We introduce the Haar measure,

which is a translation-invariant measure.

A set S becomes a group [1] if an operator, say +, can be defined such that

• x + (y + z) = (x + y) + z, ∀ x, y , z ∈ S
• There exist an element 0, such that x + 0 = 0 + x = x ∀ x ∈ S
• For each x ∈ S there ∃ an inverse element x−1 = x such that x+(−x) = (−x)+x = 0.

In addition, S is a commutative group if it is also true that x + y = y + x ∀ x, y ∈ S. Given a set

S, a topology T is a set of subsets on S that
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• contains S and the empty set φ.

• Is closed under finite intersections and finite unions of subsets X.

S is a topological group if it is a group operation and a topology such that the maps α : G × G → G

are continuous, where α(x, y) = x + y and β(x) = x−1.

If S is locally compact, that is, every point in S is contained in a compact neighbourhood, and its

group operation is commutative, then we call it a Locally Compact Abelian (LCA) Group.

Given a topological space X, we define the Borel set as a set of subset of X such that:

• contains all subsets of the topology on X.

• Is closed under complements, countable unions and countable intersections of subsets.

• Is the smallest set of subsets that meets these condition.

A measure µ on X is a function on the Borel sets where

• µ(E) =
∑
µ(Ei) if E ⊂ X and E =

⋃
i∈1 Ei where Ei is a countable pairwise disjoint set.

• µ(E) is finite for all E ⊂ X where the closure of E is compact.

A measure µ is regular if for all Borel sets E, we have

µ(E) = infk⊃Eµ(K) = supk⊂Eµ(K).

µ is invariant if µ(x + E) = µ(E) ∀x ∈ X.
Let M(X) be the space of all complex-valued regular measures on X where ‖µ‖ = |µ(S)| is finite.
A haar measure [10] is a measure that is non-valued, regular, and invariant. In fact, Haar measures

are unique up to a scalar, so we can call them Haar measure. That is, if m− 1 and m2 are both non-

negative, regular, translation-invariant measures on S, then there exists λ ≥ 0 such that m1 = m2.

The corresponding integral is called the Haar integral, which is translation invariant. That is, integrals

over a set E and x + E are equivalent.

Given a LCA group [9] G, we define an Lp(G) space to be the space of all complex valued functions

f on G such that the integral
∫
|f |pdµ exists with respect to the Haar measure. Lp(G) becomes an

algebra under convolution, which is an important characteristic later on.

Definition 1.1. A complex function γ on a LCA group [2] G is called a character of G if |γ(x)| = 1

for all x ∈ G and if the function equation γ(x + y) = γ(x)γ(y) for all (x, y) ∈ G is satisfied. The set

of all continuous characters of G form a group Γ, the dual group of G. Now it is customary to write

(x, γ) = γ(x) satisfy the following properties:( [7], [2])

• (0, γ) = (x, 0) = 1

• (−x, γ) = (x,−γ) = (x, γ)−1 = (x, γ)

• (x + y , γ) = (x, γ)(y , γ)

• (x, γ1 + γ2) = (x, γ1)(x, γ2)
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Definition 1.2. The Fourier transform of f ∈ L1(G) is denoted by f̂ (γ) defined by [1]

f̂ (γ) =

∫
G

f (x)(−x, γ)dx, (1.1)

and the inverse Fourier transform is defined by

f (x) =

∫
G

f̂ (γ)(x, γ)dγ, x ∈ G. (1.2)

Some important properties of the Fourier transform can be proved easily: [6]

(i) ‖f̂ ‖L∞(G) ≤ ‖f ‖L1(G).

(ii) If f ∈ L1(G), then f̂ is uniformly continuous.

(iii) Parseval formula: If f ∈ L1(G)
⋂
L2(G), then ‖f̂ ‖L2(G) = ‖f ‖L2(G).

(iv) If the convolution of f and g is defined as

(f ∗ g)(x) =

∫
G

f (x − y)g(y)dy, (1.3)

then

( ̂f ∗ g)(γ) = f̂ (γ)γ̂. (1.4)

Definition 1.3. For k, 0 ≤ k < q, k = a0 + a1p + ..... + ac−1p
c−1, 0 ≤ ai < p, i = 0, 1, 2, 3...c − 1,

we define

v(k) = (a0 + a1ε1 + ....+ ac−1εc−1)p−1(0 ≤ k < q)

for k = b0 + b1q + +...+ ac−1q
s , 0 ≤ bi < q, k ≥ 0,we get

v(k) = v(b0) + p−1v(b1) + ...+ p−sv(bs)

Note that for k, l ≥ 0, v(k+l) 6= v(k)+v(l). However, it is true that for all r, s ≥ 0, v(rqs) = p−1v(r),

and for r, s ≥ 0, 0 ≤ t < qs ,

v(rqs + t) = v(rqs) + v(t) = p−1v(r) + v(t).

We denote Xv(n) by Xn(n ≥ 0) and use the notation N0 = 0, 1, 2, 3, ..... throughout this paper.

Distribution over LCA Group

We denote S (G) the space of all finite linear combinations of characteristic functions of the ball of G.

The Fourier transform is a homeomorphism of S (G) onto S (G). The distribution space of S (G) is

denoted by S ′(G).

The Fourier transform of g ∈ S (G) is denoted by f̂ (ω) and is defined by

f̂ =

∫
G

f (x)(−x, ω)dx, ω ∈ G

and the inverse Fourier transform is defined by

f (x) =

∫
G

f̂ (ω)(x, ω)dω, x ∈ G.

The Fourier transform and inverse Fourier transform of a distribution f ∈ S ′(G) is defined by

〈f̂ , ϕ〉 = 〈f , ϕ̂〉, 〈f v , ϕ〉 = 〈f , ϕv 〉, f or al l ϕ ∈ S (G).
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Definition 1.4. Sobolev space over LCA groups

Let s ∈ G, Sobolev space over LCA group denoted by Hsγ(G), and defined by the space of all f ∈ S (G)

such that ∫
GΛ

(
1 + γ(ξ)2

)s |f̂ (ξ)|2dξ is f inite

where f ∈ L2(G), ξ ∈ Γ. We denote Γ by the set

Γ = {γ : GΛ → [0,∞) : ∃cγ∀α, β ∈ GΛγ(αβ) ≤ cγ [γ(α) + γ(β)]}

Moreover, for f ∈ Hsγ(G); its norm ‖f ‖Hsγ(G) is defined as follows:

‖f ‖2
Hsγ(G) =

∫
GΛ

(1 + γ(ξ)2)s |f̂ (ξ)|2dξ

2. The Continuous Wavelet Transform

The wavelet transform is a tool for analyzing and synthesizing signals, with many applications

in geophysics and acoustics [4]. It has a lot of advantages compared to the Fourier transform,

e.g., the high-frequency components are studied with sharper time resolution than the low-frequency

components.

The transformed signal is composed of its inner product with shifted and scaled versions of a fixed

function called analyzing, or a basic wavelet.

Let f ∈ L2(G) be the signal and ψ ∈ L2(G) the analyzing wavelet. The mapping

f (·) 7−→ |a|−1/2

〈
f , ψ

(
· − b
a

)〉
0

, b ∈ G a ∈ G\{0}, (2.1)

describes the analysis of f (up to constant factor), where < ·, · >0 denotes the inner product in

L2(G). With an admissibility condition on ψ the right-hand side of (2.1) is an element in L2

(
(G ×

G \ {0}), dbda
a2

)
and it is possible to synthesize f by these moments.

In the literature, one often finds the definition of the wavelet transform via an irreducible unitary

representation of the group of affine-linear transformations of the real axis (’ax + b’-group). Hence,

its essential properties are abstractly proved with the help of group theory (orthogonality relations).

In the next section, some known results will be verified without group-theoretical arguments in such a

way that the extension of the wavelet transform to Sobolev spaces becomes obvious. It will be seen

that the signal and the wavelet transform share the same Sobolev order. The preponderant part of

the paper deals with the asymptotic behaviour of (2.1) for small a. Without a heuristic frequency

analysis, our inquiry explains the basics of the widespread use of wavelet techniques in edge detection

and pattern recognition. It turns out that the right-hand side of (2.1) converges to a derivative of f ,

as already observed for a very special example in [5], for a great class of basic wavelets ψ.

We define it with the help of the shift operator as follows:

(T bg)(x) = g(x − b), b ∈ G (2.2)
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and the dilation-operator

(Dag)(x) = |a|1/2g

(
x

a

)
, a ∈ G0 := G\{0} (2.3)

a unitary transform U(b, a) : L2(G, dt)→ L2(G, dt), where dt denotes the Lebesgue-measure, by

(U(b, a)g)(x) = (T bDag)(x) = |a|1/2g

(
x − b
a

)
, (b, a) ∈ G × G0 (2.4)

To simplify further calculations, we introduce the Fourier transform on L
′
(G)

(F f )(ω) = f̂ (ω) =

∫
G

f (x)(−x, ω)dx, ω ∈ G, (2.5)

leading to

FT b = (−b, ω)F (2.6)

FDa = D1/aF. (2.7)

Hence we get

(U(b, a)g)∧(ω) = F (T aDbg)(ω) = (−b, ω)|a|1/2ĝ(aω) (2.8)

In the sequel we describe the wavelet transform, based on function ψ.

Definition 2.1. A function ψ ∈ L2(G, dt) is admissible if and only if ψ is not identical to zero and〈
U(·, ·)ψ,ψ

〉
0
lies in L2

(
G × G0,

dbda
a2

)
,∫

G0

∫
G

|
〈
U(b, a)ψ,ψ

〉
0
|2
dbda

a2
<∞. (2.9)

With ’*’ denoting the convolution [8], we reformulate the admissibility condition (2.9) as∫
G0

∫
G

|
〈
T bDaψ,ψ

〉
0
|2
dbda

a2
=

∫
G0

∫
G

|(D−aψ ∗ ψ)(b)|2
dbda

a2

=

∫
G0

∫
G

|(D−aψ)∧(%) · ψ̂(%)|2d%
da

a2

=

∫
G0

∫
G

|a||ψ̂(−a%|2|ψ̂(%)|2d%
da

a2

= ‖ψ‖2
0 ·
∫
G

|ψ̂(ω)|2

|ω| dω.

(2.10)

In the last step we substituted ω = −a% an changed the order of integration. As a consequence we

can characterize the admissible functions.

Lemma 2.1. ψ ∈ L2(G, dt)\{0} is admissible if and only if the integral∫
G0

|ψ̂(ω)|2

|ω| dω exists.
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Remark. As a necessary condition on the admissibility of an element ψ ∈ L2(G, dt) we derive

ψ̂(0) =

∫
G

ψ(t)dt = 0; (2.11)

i.e. the mean value of ψ has to be zero, if the integral exists (e.g. if ψ is in addition integrable). We

call an admissible function also analyzing resp. basic wavelet or wavelet in short.

Theorem 2.1. Let ψ be admissible and f ∈ L2(G, dt), Let Cψ =
∫
G
|ψ̂(ω)|2
|ω| dω. The integral

Lψf (b, a) =
1√
Cψ

〈
f , U(b, a)ψ

〉
0

=
1√
Cψ

1√
|a|

∫
G

ψ

(
t − b
a

)
f (t)dt

(2.12)

defines an element of L2

(
G × G0,

dbda
a2

)
.

Moreover Lψ : L2(G, dt)→ L2

(
G × G0,

dbda
a2

)
is an isometry.

Proof. Lψf (b, a) exists for any (b, a) ∈ G × G0 because f and T bDaψ are in L2(G, dt). A similar

calculation to (2.10) results in

‖Lψf ‖2 =

∫
G0

∫
G

|Lψf (b, a)|2
dbda

a2

=
1

Cψ

∫
G0

∫
G

|
(
U(b, a)ψ, f

)
|2
dbda

a2

=
1

Cψ
· ‖f ‖2

0 ·
∫
G0

|ψ̂(ω)|2

|ω| dω = ‖f |20·

(2.13)

�

Definition 2.2. The operator Lψ : L2(G, dt) → L2

(
G × G0,

dbda
a2

)
(ψ admissible) is called wavelet

transform with analyzing (basic) wavelet ψ.

3. Extension to Sobolev Spaces

In this section we extend the wavelet transform, which we defined on L2(G, dt), to Sobolev spaces

Hα(G) and interpret its images as elements of the fiber space L2

((
G0,

da
a2

)
, Hα(G)

)
abbreviated by

Fα which is isomorphic to tensor product L2

(
G0,

da
a2

)
⊗̂Hα(G) as well as to the Sobolev space with

two variables H0,α

(
G2, dadb

a2

)
.

If µ is a measure on G0 and (B, ‖·‖) an arbitrary normed space, then L2

(
(G0, dµ(x)), (B, ‖·‖)

)
consists

of those φ ∈ B which depend on a real variable and for which holds∫
G0

‖φ(x)‖2dµ(x) <∞
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Hα(G), α ∈ G, denotes the sobolev space of those tempered distributions γ having a regular and with

respect to the weight (1+γ(ξ)2)α square integrable Fourier transform γ̂. We sometimes call elements

of Hα(G) signals.

From now on we assume ψ to be admissible and integrable. If ψ and f are real then Lψf is real.

Without loss of generity we assume ψ and f to be real. Under the assumption above we have

Lψf (b, a) =
1√
Cψ
〈T bDaψ, f 〉0

=
1√
Cψ

(
D−aψ ∗ f

)
(b).

(3.1)

From (2.7) we obtain the Fourier transform of Lψ with respect to its shift argument

(
Lψf (·, a)

)∧
(ω) =

√
1

Cψ
|a|1/2ψ̂(−aω)f̂ (ω). (3.2)

Fix a ∈ G0 and let f ∈ S (G), the Schwartz space on G. Let us now determine the Hα(G)-norm of

Lψf (·, a). For that we need an inequality from Fourier analysis

|ψ̂(ω)| 5 ‖ψ‖L1

leading to

‖Lψf (·, a)‖2
Hs(G) =

∫
G

(1 + γ(ξ)2)s |(Lψf (·, a))∧(ω)|2dω

=
1

Cψ

∫
G

(1 + γ(ξ)2)s |(D−aψ)∧(ω)|2|f̂ (ω)|2dω

5
1

Cψ
‖D−aψ‖2

L1

∫
G

(1 + γ(ξ)2)s |f̂ (ω)|2dω

= K(a, ψ) · ‖f ‖2
Hs(G),

(3.3)

where K(a, ψ) = 1
Cψ
|a||ψ‖2

Hs(G).

The Schwartz space is dense in Hα(G). Therefore we are in a position to extend Lψf (·, a) uniquely

for fixed a to a continuous mapping from Hα(G) to itself.

Lemma 3.1. The integral operator Lψ with an integrable and admissible ψ is an isometry from

Hα(G), α ∈ G to the fiber space Fα, i.e.

‖Lψf ‖Fα =

(∫
G

‖Lψf (·, a)‖2
α

da

a2

) 1
2

= ‖f ‖α.

Proof. It suffices to consider f ∈ S (G). The result is shown by a straight forward computation.

‖Lψf ‖2
Fα =

∫
G0

∫
G

(1 + γ(ξ)2)s |(Lψf (·, a))∧(ω)|2dω
da

a2

=
1

Cψ

∫
G0

∫
G

(1 + γ(ξ)2)s |a||ψ̂(−aω)|2|f̂ (ω)|2dω
da

a2

(3.4)
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Substituting −aω = ξ and treating ω > 0 and ω < 0 separately leads to

‖Lψf ‖2
Fα =

1

Cψ

∫
G0

|ψ̂(ξ)|2

|ξ| dξ ·
∫
G

(1 + γ(ξ)2)s |f̂ (ω)|2dω = ‖f ‖2
α.

�

The signal f and its wavelet transform Lψf share the same Sobolev order. For a linear isometry U

between Hilbert spaces we have that see [12],

U ∗ U =id and UU∗i s the orthogonal projection

onto range(U) (which is closed),
(3.5)

where U∗ is the adjoint operator of U. From statement (3.5) it follows immediately that the transform

Lψ is inverted, on its range, by its adjoint L∗ψ and that an element g ∈ Fα lies in range (Lψ) if and

only if LψL∗ψg = g.

Next we figure out an explicit expression for L∗ψ : Fα → Hα. In what follows we use

f ∈ S (G), g(x, a) = g1(x) · g2(a) with g1 ∈ S (G), g2 ∈ C∞0 (G0) and Λ(a, ω, α) = (1 +

γ(ξ)2)α(Lψf (·, a))∧(ω) · (g(·, a)) ∧ (ω). Setting up a scalar product on Fα in a canonical man-

ner,

(%, γ)α =

∫
G0

〈%(·, a), γ(·, a)〉α
da

a2
,

we get

(Lψf , g)α =

∫
G0

∫
G

Λ(a, ω, α)dω
da

a2
. (3.6)

Applying two times the Cauchy-Schwartz (C.S) inequality leads to∫
G0

∫
G

Λ(a, ω, α)dω
da

a2
≤
∫
G0

‖Lψf (·, a)‖α‖g(·, a)‖α
da

a2
≤ ‖Lψf ‖Fα‖g‖Fα

which allows to change the order of integration in (3.6).

(Lψf , g)α =

∫
G

(1 + γ(ξ)2)s f̂ (ω)

∫
G0

√
1

Cψ
(D−aψ)∧(ω)(g(·, a))∧(ω)

da

a2
dω. (3.7)

We abbreviate the inner integral by (Ãg)(ω) and estimate |Ãg| to conclude that Ãg ∈ L2(G, dt) :

|Ãg(ω)|2 5
∫
G0

|(g(·, a))∧(ω)|2
da

a2
. (3.8)

Again, we used the C.S. inequality and get∫
G

|Ãg(ω)|2dω 5
∫
G

∫
G0

|(g(·, a))∧(ω)|2
da

a2
dω = ‖g‖2

F 0 . (3.9)

Consequently, there exists a Ag ∈ L2(G, dt) with

(Ag)∧(ω) = Ãg(ω) (3.10)

and now the equation (3.7) reads as

(Lψf , g)α =

∫
G

(1 + γ(ξ)2)s f̂ (ω)(Ag)∧(ω)dω = 〈f , Ag〉α. (3.11)
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In the last step, we determine Ag(x) using the fact that the integral∫
G0

∫
G

|(D−aψ)∧(ω)(g(·, a))∧(ω)|dω
da

a2
(3.12)

exists.

Ag(x) =

∫
G

(Ag)∧(ω)(−x, ω)dω

=
1√
Cψ

∫
G0

1√
2π

∫
G

(D−aψ ∗ g(·, a))∧(ω)(−x, ω)dω
da

a2

=
1√
Cψ

∫
G0

(D−aψ ∗ g(., a))(x)
da

a2

=
1√
Cψ

∫
G0

∫
G

1√
|a|
ψ

(
b − x
a

)
g(b, a)

dbda

a2

(3.13)

We showed that the operators Lψ and A are disjoints of each other on pre-hilbert spaces of Hα resp.

Fα. This property is inherited by their extensions. Accordingly the extension of A on F is identical

to L∗ψ. The abstract characterization of range (Lψ) results in

Lemma 3.2. Range (Lψ) ⊂ Fα is a Hilbert space with reproducing kernel

P (b̃, ã, b, a) =
1√
Cψ

(Lψψ)

(
b̃ − b
a

,
ã

a

)
.

g ∈ range(Lψ)⇔ g(b̃, ã) =

∫
G0

∫
G

P (b̃, ã, b, a)g(b, a)
dbda

a2

Proof. A direct calculation of LψL∗ψ proves the lemma. �

We will now determine the Hs - distance of two wavelet transforms with different basic wavelets

and different argument functions to study the dependence of the transform on its wavelet and its

argument.

Lemma 3.3. For admissible and integrable ψ, γ and f , g ∈ Hs(G), s ∈ G, holds:

‖Lψf (·, a)− Lγg(·, a)‖s 5
√
|a|
(
‖
ψ√
Cψ
−

γ√
Cψ
‖L1
‖f ‖s + ‖

γ√
Cψ
‖L1
‖f − g‖s .

Proof.

‖Lψf (·, a)− Lγg(·, a)‖s 5 ‖Lψf (·, a)− Lγf (·, a)‖s‖Lψf (·, a)− Lγg(·, a)‖s

=

(∫
G

(1 + γ(ξ)2)s |f̂ (ω)|2|
(D−aψ) ∧ (ω)√

Cψ
−

(D−aγ) ∧ (ω)√
Cψ

|2dω
)1/2

+

(∫
G

(1 + γ(ξ)2)s |f̂ (ω)− ĝ(ω)|2|
(D−aγ) ∧ (ω)√

Cψ
|2dω

)1/2

Performing the same steps as in (3.3) to each term of the sum yields the lemma. �

A direct application of lemma 3.3 gives
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Corollary 3.1. Let ψ and f be as in the preceding lemma. Then

‖Lψf (·, a)‖s = 0(
√
|a|).

4. Asymptotic Behaviour for Small Dilation Parameters

We adopt the assumptions on f and ψ from the last paragraph. In addition we assume without loss

of generality ψ̂ to be real because the admissibility condition is valid not only for the real but also for

the imaginary part of ψ̂. Then

Lψf (b, a) =
1√
Cψ

1√
|a|

∫
G

ψ

(
t − b
a

)
f (t)dt

=
1√
Cψ

√
|a|
∫
G

ψ̂(aω)f̂ (ω)(−b, ω)dω

(4.1)

is even in the second variable because ψ̂ is. We restrict ourselves to the half-plane a > 0.

Considering (4.1) we realize that the integral expression looks like the ψ-average ψa ∗ f of f with

ψa(x) = a−1 · ψ(a−1x).

Indeed, we have

(ψa ∗ f )(b) =

√
Cψ
a
Lψf (b,−a) =

√
Cψ
a
Lψf (b, a). (4.2)

For ψ ∈ L1(G) (i.e. ψ is integrable) with
∫
G ψ(t)dt = 1 the ψ-average of f converges to f in the

L2-norm, which means that

lim
a→0
‖ψa ∗ f − f ‖0 = 0. (4.3)

Unfortunately, a basic wavelet has a zero mean, and therefore (4.5) does not hold for the WT. Now

we are interested in whether an asymptotic behaviour like (4.5) is possible under certain assumptions

on the analyzing wavelet.

For the ψ-average of f we write Λψf (·, ·), i.e.

Λψf (b, a) = (ψaf )(b) =
1

a

∫
G

ψ

(
b − t
a

)
f (t)dt. (4.4)

Lemma 4.1. Let f ∈ Hs(G), s ∈ G. Let ψ ∈ L1(G) with
∫
G ψ(t)dt = 1. Then we have

(i) Λψf (·, a)→ f (·) in Hs(G) as a→ 0,

(ii) dk(Λψf )(·, a) = Λψ(dk f )(·, a) = a−k(Λdkψf )(·, a), if dkψ ∈ L1(K).

(dk denoting k-th generalized derivative).

Proof. (i) ‖ψa ∗ f − f ‖2
s =

∫
G I(a, ω)dω

where I(a, ω) = (1 + γ(ξ)2)s |f̂ (ω)|2|1− ψ̂(aω)|2.
With M = supω∈G |1 − ψ̂(aω)|2 which exists by the lemma of Riemann-Lebesgue and is

independent of a we find

I(a, ω) 5 M · (1 + γ(ξ)2)s |f̂ (ω)|2
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as well as

lim
a→0

I(a, ω) = 0 a.e.

Applying the dominated convergence theorem yields the assertion.

(ii) Let {fn}n∈N ⊂ S (G) converge to f in Hs(G). The equality dk(Λψfn) = Λψd
k fn = A−kΛdkψfn

is valid in Hs−k(G). Since the operators Λψ and dk are continuous, the limits of the three

terms are equal.

�

Lemma 4.2. Let 0 6≡ % ∈ Hβ(G), β = 1. Then dk% is admissible for 1 5 k 5 β.

Proof. First , it is easy to see that dk% is equal to zero if and only if % ≡ 0 because zero is the only

constant in Hs(G), s ∈ G. Therefore we have dk% 6= 0. second, β − k = 0 implies dk% ∈ L2(G).

Third, we use the relation

(dk%)∧(·) = ik(·)k %̂(·)

to estimate ∫
G0

|(dk%)∧(ω)|2

|ω| dω =

∫
G0

|ω|2k−1|%̂(ω)|2dω

5
∫
G

(1 + γ(ξ)2)k−1/2|%̂(ω)|2dω 5 ‖%‖2
β.

The result follows from Lemma 2.2. �

Our investigations now focus on the WT with analyzing wavelet dkψ ∈ L1(G) with ψ ∈
Hβ(G)

⋂
L1(G), β = 1, and

∫
G ψ(t)dt = 1 (thus ψ itself is not admissible).

Theorem 4.1. Let f ∈ Hs(G), s ∈ G, and ψ ∈ Hβ(G)
⋂
L1(G), β ∈ N, with

∫
G ψ(t)dt = 1 and

dkψ ∈ L1(G) at least for one k ∈ {1, ....., β}. Then

lim
a→0
‖

1

ak+1/2
Ldkψf (·)−

1√
Ck
dk f (·)‖s−k = 0,

where Ck abbreviates Cdkψ.

Proof. ψ is not identical to zero . According to lemma 4.2 dkψ is admissible . with an application of

lemma 4.1(ii) we restate

Ldkψf (b, a) =

√
a

Ck
Λdkψf (b, a)

=
ak+1/2

√
Ck

Λψd
k f (b, a)

=
ak+1/2

√
Ck

dkb (Λψf )(b, a).
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Now we estimate

‖
1

ak+1/2
Ldkψf (·, a)−

1√
Ck
dk f (·)‖s−k =

1√
Ck
‖dk [Λψf (., a)− f (.)]‖s−k

5
1√
Ck
‖Λψf (·, a)− f (·)‖s

using the boundedness of the differential operator from Hs to Hs−k . The term on the right tends to

zero in part (i) of Lemma 4.1. This ends the proof. �

Remarks.

(i) For s > 1
2 +k we have uniform convergence. This results immediately by Sobolev’s Imbedding

Theorem [11].

(ii) For compactly supported ψ we know that Ldkψf (·, a) ∈ Hs−k+β(G) if f ∈ Hs(G), ψ ∈ Hβ(G),

and 1 5 k 5 β. Hence, in accordance with the theorem above, 1
ak+1/2Ldkψf (·, a) is an

approximation of 1√
Ck
dk f which is at least β levels smoother than its limit.

4.1. Local Convergences. In practical applications of wavelet transfrom, i.e., the analysis and syn-

thesis of time-dependent signals, the signal f is compactly supported. Even if this signal possesses a

high order of smoothness within its support, under a global viewpoint, we can only deduce that f is

square integrable over the real line, which means f ∈ H0(G).

By theorem 4.1,
√
Ck

ak+1/2Ldk f approximates the k − th derivative of f only in H−k(R) although f is

local element of the Sobolev space Hs(G) with s > 0 and therefore we would expect a kind of local

convergence in the stronger norm of Hs−k(G).

We specify the concept of local convergence. Therefore, we define the local Sobolev spaces [3].

Definition 4.1. Let Ω ⊂ G be open.

Hsloc(Ω) :=

{
f is a distr ibution| ∀Ω′ ⊂ Ω,Ω′compact, ∃gΩ′ ∈ Hs(G) : f ≡ gΩ′onΩ′

}
is called local Sobolev space of order s.

Lemma 4.3. f ∈ HslocΩ ⇔ f · Φ ∈ Hs(G) ∀Φ ∈ C∞0 (Ω) suggests a concept of convergence in

Hsloc(Ω). (C∞0 (Ω) denotes the space of the test functions with compact support in Ω)

Definition 4.2. Let {Fn}n∈N be a sequence in Hsloc(Ω) and f ∈ Hsloc(Ω). {fn}n∈N converges to f in

Hsloc (local convergence) if and only if ‖Φfn −Φf ‖s converges to zero for any Φ ∈ C∞0 (Ω).

Remark. This concept of local convergence is well defined because the limit is uniquely determined.

Without loss of generality, we assume that

supp(f ) = [−T, T ] = I. (4.5)

Further we consider

f ∈ Hsloc(I0) with I0 =]− T, T [ and s ∈ G. (4.6)
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For 0 < ε < T let Jε be the compact interval [−ε, ε]. We know from real analysis that there is a

Γε ∈ C∞0 (I0) which is identical to 1 on Jε.

Lemma 4.4. (i) Γε(·)f (·) ∈ Hs(G)

(ii) Γε(·)f (·) converges to f in Hsloc(I0) as ε tends to T .

(iii) Γε(·)f (·) ≡ f (·) on Hsloc(J0
ε ).

Proof. (i) Is the statement of Lemma 4.3.

(ii) Let Φ ∈ C∞0 (I0). For sufficiently large εΦ with 0 < εΦ < T we have supp(Φ) ⊆ Jε for all ε
with εΦ 5 ε < T. This implies ΦΓεf = Φf in Hs(G) for εΦ 5 ε < T and thus the assertion.

(iii) It is clear that both Γεf and f are in Hsloc(J0
ε ). We still have to show equality. Let a test

function Φ ∈ C∞0 (J0
ε ) act on the distribution Γεf :

(Γε(t)f (t),Φ(t)) = (f (t),Γε(t)Φ(t)) = (f (t),Φ(t)).

�

A local version of theorem 4.1 reads as

Theorem 4.2. Let fulfill (4.5) and (4.6). Let ψ be defined as in theorem 4.1 and Γε as above. Then
1

ak+1/2Ldkψ(Γεf )(·, a) converges to 1√
Ck
dk f in Hs−kloc (J0

ε ) for any ε ∈]0, T [ as a tends to zero.

Remark. Even locally, we can reach convergence in the strongest norm.

Proof. First, we conclude that dk f = dk(Γεf ) in Hs−kloc (J0
ε ) with the Leibniz rule and the action of

Φ ∈ C∞0 (J0
ε ) on dk(Γεf ) :

(dk(Γεf ),Φ) =

k∑
i=0

(
k

i

)
(dk−i f , (d iΓε)Φ) = (dk f ,Φ).

The last equality holds true because Γε|supp(Φ) ≡ 1.

Theorem 4.1 yields

1

ak+1/2
Ldkψ(Γεf )(·, a)→

1√
Ck
dk(Γεf )(·) ∈ Hs−k(G).

To continue the proof, we need the boundness of the multiplication operator on Hα. Let
∏
∈ S (G)

and let T∏ : Hα → Hα be defined by T∏f =
∏
.f . Then T∏ is continuous for all α ∈ G.We are now

able to prove the desired convergence in Hs−kloc (J0
ε ).

Let Φ ∈ C∞0 (J0
ε ) ⊂ S (G):

‖Φ(·)
1

ak+1/2
Ldkπ(Γεf )(·, a)−Φ(·)

1√
Ck
dk f (·)‖s−k

5 ‖TΦ‖ · ‖
1

ak+1/2
Ldkπ(Γεf )(·, a)−

1√
Ck
dk(Γεf )(·)‖s−k .

�
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Under local conditions of smoothness on the signal, statements can be made about the order of

convergence.

Lemma 4.5. Let f be two times continuously differentiable in a neighbourhood of b ∈
G(e.g.f ∈ Hsloc(N), where N is the nbd of a topological group) Let ψ ∈
Hβ(K)

⋂
L1(G), β = 1,with

∫
G ψ(t)dt = 1 and suppπ = M, where M is the subgroup of G. For

a > 0 sufficiently small holds

a−3/2Ldψf (b, a) =
1√
C1
f ′(b) + 0(a)

(prime indicates the first classical derivative).

Proof. Using the facts that for sufficiently small a df is equal to f ′ in M and that M(a) = supξ ∈
M|f ”(ξ)|exists, we obtain by the mean value theorem∣∣a−3/2Ldψf (b, a)−

1√
C1
f ′(b)

∣∣ =
1√
C1
|Λψdf (b, a)− f ′(b)|

5
1√
C1
·

1

a

∫
M

∣∣ψ(t − b
a

)∣∣|f ′(t)− f ′(b)dt|

5
1√
C1
·

1

a
·M(a)

∫
M

∣∣∣∣ψ(t − ba
)∣∣∣∣|t − b|dt

= K(a, b, f ) · a

with K(a, b, f ) = 1√
C1
·M(a)

∫
M |ψ(y)||y |dy. �
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