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Abstract. We consider the necessary and sufficient condition for boundedness of modified Hardy operators from
a power-weighted Lebesgue space to another. We also compute the exact norm of modified n-dimensional Hardy

operators from those spaces.

1. INTRODUCTION

Let 8 € R and f be measurable functions. The Hardy operator with parameter f5 is defined in [7]

as follows
1
HPf(x) = ——= W) ,

|| B lyl<|x| |y|ﬁ
where x € R\ {0}. Whenever = 0, the operator H' is the classical Hardy operator [4], which is
the average of function f at the ball B(0, |x|).

In functional analysis, there is a quite extensive references on the boundedness and the norm of
integral operators from a normed spaces X to another normed spaces Y. We cite [4,5,7] for the case
of the classical Hardy operators. Let 5"~ denote the surface of unit sphere with its area [S"~!|. Let

1
1<p<oo, ; + ? =1,andp < ; As a consequence of Theorem 6.4 in [6], Karapetiants obtained

an explicit expression for the norm of HP, that is

151
IH o = +—.
» B
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Our modification of the Hardy operators is as follows. Let0 <y <n, € R,0<f+y <nand f
be measurable functions. We define

- L[ 1)
B " P D 1P i

where x € R" \ {0}. Our motivation for such modification to the Hardy operator is to describe the
singularity in a more general way.

We propose a different method from the existing literature to compute the exact norm of the
modified Hardy operator. We extend the idea from Muckenhoupt [1] by computing the minimum
value of the constant of the boundedness, which is dependent on ¢. Using its idea we are able to
compute the upper bound of the norm of the operator Hﬁ

Let X", Y* be dual of X, Y respectively, and T be dual of operator T. If T is bounded from X to Y,
then T is also bounded from Y* to X*. It satisfies

Ty Sx = ITlxy- (1.1)

Throughout this article, the notation A < B, for A,B > 0, means there exists C > 0 such that
A < CB. The operator T is defined by

[ mp@s@an= [ 0T e

for every f € X and g € X". Using this definition, we can prove that the dual of modified Hardy

Hf - o fl W,

Yt Y1y

operators is

Leta € R, 1 < p < co. The power-weighted Lebesgue spaces [x|*?, denoted by L/, (R), is the set

of measurable function f with the norm satisfying

1Al == (j]l;n IxI“PIf(x)lpdx)% < co.

For & = 0, we are back to the regular Lebesgue spaces, L} (R") = LP(R"). For 1 < p < oo and
a € R, the dual of L}, (R") is Lri’a (R™).

This article is written in three sections. In the first section,we introduce the novelty of our
research. In the second section, we consider the necessary boundedness H)ﬁ, from L’le(lR”) to
LZZZ (R™). In the third section, we consider sufficient condition for boundedness H)ﬁ, from Lle (R")

to L} (R") and compute the exact norm.

2. Tue Necessary CONDITIONS

n

P’
. . T N | Y ;

of fractional integral operators from L/ (R") to LP2(R") is 5 = 5~ seein [2, Ch.5]. In the

following result, we propose the necessary conditions of modified Hardy operators from Lﬂll (R")
to L} (R").

Letl <p1 <00,y < The well-known identity of necessary conditions for boundedness



Int. J. Anal. Appl. (2024), 22:23 3

Theorem 2.1. Let aq, ap € Rand 1 < py,pp < co. If the operator Hﬁ is bounded from L}, (R") to L}} (R"),
then

1 a 1 a
©@_ 2,4 )

ppon ponon

Proof. We prove the necessary condition similar to the one for fractional integral operators in
Lebesgue spaces [2, Ch. 5]. Lett > 0, f € L! (R"), and f not identically zero. Define the dilation
of function f by &;f(x) = f(tx). By calculating the norm & f in L{}! (R") we obtain

= 1
n -2 N P1
||5tf||Lﬁ11 = (f |x|¥1P1| f () [P dx) =t"1"n ( Y17 £ ()P dy)
R" R”
_ tal—ﬁ”f”Lill, @)

We compute the Hﬁ f(x) by substitution z = ty

1 f(ty)
HES f(x) = SR
7of (%) " Jyy< (ylP Y

_ P f f2) n g,
X" P77 )i 167121

= 7V Hb f(tx).

Computing Hﬁét f in the norm L} (R")

1
p -y azp2 B P2 P2 -y B
IHES: fl, e = t P2 D f () P2 dx | = £ L o 2.2)
az R" a2
By boundedness of Hﬁ from L} (R") to L5} (R"), (2.1), and (2.2)

ﬁ az+y+1ﬁ 0(2+)/+L—(X1—l
VD flle < T RO ()l < 677 B A,

forevery t > 0. f an +y + r_ ay — LS 0, then £ 5, M oo when f — oo, If a+y+
p2 %1
n n R
P_ - — P_ <0, then t* " """ - co when t — 0*. Tt implies
2 1

n n
OL2—|—V—|-——CK1——:O.
p2 p1

The following is the necessary condition for parameter .

Theorem 2.2. Let 1 <py,p2 <00,0<y < pﬂ], and

1 %) 1 ar Y

p_zn P onoon

IfHﬁ is bounded from L} (R") to LE2 (R"), then f + aq < %.
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_— n
Proof. Using contradiction argument, let f + a; > —. We choose f(x) = [x|™* X{xy<1}(x), where

1
a1, p1 as the hyphotesis of this theorem. Note that f € L}! (R"). If B+ a1 and 1 < |x] < oo, then

ﬁ N 1 (f h _ﬁ )
H, f(x) = d
vf(x) 7 e Iyl y

B |Sn—1|
"7 Jra

r—al—ﬁJrn—l —

Q.

Ifr%§a1—|—ﬁ<nandlslx|<oo,then
1

1
A = it o
() 7 e /

= |Sn_1| r_al_ﬁ"rﬂ—l
|x|n—[3—y r<1
= _Isn—1| |x|—n+y+ﬁ
n-— ﬁ — a1 ’
Next, we estimate the norm Hﬁ fin L2 (R™).
gn-1 1
B 2
(121 p— ( f (b dx)
P2 _n+ﬁ+7/+a2 |x|21

1

571 f (—f,+ﬁ+a1)l72—l n
— 4 1 = 0Q.
—n+ ﬁ Ty tax|Jm

3. THE SurriciENT CONDITIONS AND THE Exact NorM
In this section, we compute the exact norm of modified Hardy operators. This is the general
result for the norm of Hardy operators.

Theorem 3.1. Let a; > ap, 1 <p1 <pp<o0,0<y < ;_1’ and

1 o 1 o
il _2:_4__1_2

p2  n P onoon

Ifp+ a1 < Pﬂi’ then Hﬁ is bounded from L} (R") to L}2 (R™). The exact norm of Hﬁ is

1 1
LA (1 1\E TR 1
||H§||LP1_>L1’2 = 5" 1|p1 P2 (—, + —) ! T o~
aq an pl pz
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Proof. Suppose f € L} (]R”) with parameter in the theorem. Using similar technique in [1], we

choose & with f + a1 < e < 7 By Holder’s inequality, we obtain

_ | | e
s sy [ Wy
Iyi<lxl 1Yl

1 1
p _/
< |x|—n+[3+y (f |f( )| ! dy)p (f |y| epl d]/) 1
lylsid [yI (B~ lyl<lxd
1 1
:( i )"i MR (f If (y )|p] dy)pl
—epy+n i< [yl-
1
1 P1
= 8" Y ¢q (&) i TFTYT S(f P )l dy)p ) 3.1)
i<kl [yl =

4+ 1y “7 — Inequahty (3.1) simpifies

L’ — y—e+a | |P1 P1
IIH;/fIIan <[5 ey (e) f R z(f fly ) dy)
! i<k [y1B=
1.
P2

r P2
1 P1 _n —eta 2]
st [ ([ TP o) g
R iyl [y

Since p; < p> and by Minkowski’s inequality

1
Lo} 1
< |f(y)|p2 (—L-i-ﬁ—f—&-m)]ﬂz P2
n— 1 SN P
f”LPZ =at )[f n (Lzm |y (B=)p2 It dx| dy

1
A I
1 P1 B R S P;
= 15" e (e) f s ((ﬁy_)gl) ( f 7 +1)p2dx)2dy
R |Y| PEAT 21yl

1
P1

1
1> 151 P2
— |g" I
| |1C1(e>(p—2(8_ )" iy
1
1 1 Iy
_ el 7+5 1 P2
51 cl(s)(p—z(g_ ﬁ_al)) Il

_Sn—l Pl_'+l’1_2 . .
=18 B ey @)ea(e)fl -

-

1
(pz(&—lﬁ—m)) ?. Note that the function s is differentiable in ¢-

Lets(e) = c1(¢e)ea(e) = (—gp1;+n)

interval f+ a1 <e < 17, where
1

___ 1

$'(e) = (=epy+n) T (pale—p—an) 7 = (pae —p—ar)) 7 (=epp +n)

(p2(e—B—an)) 7 ((=epy +m) = (pa(e = p—m)) ™).

=

= (-epy+n)
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n+ppa+aip2

e Note that

The stationary point of s is g =

n+ppy+apy (Brar)pi—n

+a1—¢&=p+a; — 7 = 7 <0,
ﬁ ! ﬁ ! P; +p2 P1 +p2
and
no_. n o n+ppr+apy  p2(n—ppy—aap)) >0
— — O —_— —,— 7 = .
pl P1 Py +p2 pl +p2

Hence, we obtain f + a1 < ¢g < r%'
1

. . . +Bpat
The minimum value of s is obtained at ¢y = PP

pi+p2

. :S(n+ﬁpz+a1pz):( pitpe )’+
- py+p2 (n= (B +a1)p))p2

141

AL 1 e

= _,+— T A N .
PP y— (BFai)

Hence, we obtain an inequality in the following direction

\HE £, 2

||Hﬁ|| p_p2 = Sup ﬁ
Vg —Laj n £l P
fELal \{0} L(’tl

1,1 141
cprA(L LR
PLope 7~ (B+a) '

Lo
For the other side of in equality, let 0 < 6 < Pﬂi — (B4 a1). Write C(p1,p2) = %. Choose
%(%ﬂ%)”l
_ﬁ Ity n
f( ) |':)C|_(‘)_pn_1_a1 /|x| 2 1 d ( ) I'xl PZ Pz ,lxl > min pllPZ é
= and g(x) = y
0 <1 )i
0 , x| < min C(p1,p2)
Note that
1
gn—- 1 gn— 11\, )
||f||Lp1 = (l o l) and lgll o= (| o |) * min{1,C(p1, p2)). (3.2)
L2,
Assuming |x| > 1 yields
1<|yl<Ix]
Sn—l s B
ran g (R, 63)
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/
Lo

For min {1, C(p1,p2) OF’Z} < |x] £ 1, we obtain Hﬁf(x) = 0. Hence

8 _ |Sn—1|2 L_ 1
LJH”("”“’C”X‘ﬁ—(ﬁm)—é 72 Sz-1) ﬁ—(ﬁﬂcl)]
_ |Sn—1|2 %—(,3—{-0(1)—(5
i B =0 opa) o2 -1+ 7 - 5+ an)
|Sn—1|2

— : (3.4)
(6p2) [3(p2 = 1) + & = (B +a)]

By Holder’s inequality, boundedness of H}Fi from L]} (R") to L} (R"), and duality, we obtain

[ g @ < 1l sl st -
|X|21 ay ap ay L

—ay

From (3.2) and (3.4)
gt (op) 7 (op2) |
it CPLP} - (opa) [3(p2=1) + = ()|

b >
”Hy”Lle_)LZZZ =

/+_

1,1
e (l 1 )p;+pz r;
Py p2

Gp0t o)
(&p2) [3p2 = 1) + 2 = (B + )]

As 0 tends to pl, — (B + a1) from left, we obtain.

1

X

1,1
1ial1 1\ TR 5

Wl e > lim U (-ﬁ_)pl L

[Xl LYZ - 2 1

6%(%—(ﬁ+a1)) ip (Pl)pl (Pz)p

N ~|’—‘

(3p0) 7 (3p)
(6p2) [3p2=1) + & = (B + )]

1,1 AT
_ |Sn_1|z+a (l i l)ﬁl P2
Py P2

X

1 )P£+é
—1 — .
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The following corollary is a direct consequences of duality in (1.1)

+R - fpta <y

Corollary 3.1. Let 1 <p; <00, 0<y < pﬂl,pl <p2, m zazandplz—f—% = z,
1

1
T
then Hf, is bounded from L" 2, (R™) to L” 4, (R™). The norm of Hﬁ is

— a1 1\ TE v, ot
Ly o = 18" 7 (? + p_z) (—n_ (ﬁ+0¢1)p’) :
—ap T 1 1

We remark that establishing the exact norm by our alternated approach is expected to become as
our initial building block in establishing explicit norm for integral operators with various kernels,
particularly for homogeneous kernels of degree —n + . Furthermore, we aim to explore the
potential extension of these developments into other functional spaces. We believe that these
tfindings hold promise for stimulating meaningful discussions among mathematicians.
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