International Journal of Analysis and Applications

On Null Vertex in Fuzzy Graphs

M.P. Sunil*, J. Suresh Kumar

PG and Research Department of Mathematics, N.S.S. Hindu College, Changanacherry, Kottayam, Kerala, 686102, India

*Corresponding author: sunilmp.mp@gmail.com

Abstract. We introduce a new type of vertex in fuzzy graphs, namely null vertex, which is neither a boundary vertex nor an interior vertex. Here, we initiate a study on the null vertex in fuzzy graphs, explore its properties and establish its presence in various types of fuzzy graphs.

1. Introduction

Zadeh [11] put forth the idea of fuzzy set and this idea brought about revolutionary changes in the area of research. As Euler pioneered the concept of graph theory, Rosenfeld [7] developed fuzzy graph theory in 1975. G. Chartrand [2,3] developed boundary vertex and interior vertex in crisp graphs. Mini Tom [9] introduced boundary vertex and interior vertex in fuzzy graphs.

In fuzzy graphs, there exists some vertices which are distinct from boundary vertices and interior vertices. Here, we introduce the idea of null vertex in fuzzy graphs. Null vertex in a fuzzy graph is a vertex which is neither a boundary vertex nor an interior vertex. The null vertex, if it exists, need not be unique. We study the structural characteristics of the null vertices and establish its presence in various types of fuzzy graphs.

We prove that, a fuzzy end vertex in a fuzzy graph is a boundary vertex. In fuzzy path graphs and fuzzy star graphs, there exists only boundary vertices and interior vertices. We also prove that, there exists null vertices in fuzzy cycles, complete fuzzy graphs, fuzzy wheel graphs and fuzzy helm graphs. For terms and definitions of metric spaces, reader may refer [8]. For terms and definitions of graphs, refer [4].

Received: Nov. 6, 2023.

²⁰²⁰ Mathematics Subject Classification. 05C72.

Key words and phrases. fuzzy graph; boundary vertex; interior vertex; null vertex.

2. Preliminaries

Definition 2.1. [5] A fuzzy graph (FG) is $G : (V, \sigma, \mu)$, V is the vertex set, $\sigma : V \rightarrow [0, 1]$, $\mu : V \times V \rightarrow [0, 1]$ with

$$\mu(p,q) \le \sigma(p) \land \sigma(q), \forall p,q \in V.$$

Definition 2.2. [10] In a FG *G*, a sequence of vertices $p_0, p_1, p_2 \dots p_n$, with $\mu(p_{i-1}, p_i) > 0, i = 1, 2, \dots n$ is a path *P*. Length of *P* is

$$L(P) = \sum_{i=1}^{n} \mu(p_{i-1}, p_i).$$

For two vertices p, q, let $P = \{P_i : P_i \text{ is a } p - q \text{ path }, i = 1, 2, ...\}$. Sum distance from p to q is

$$d_s(p,q) = Min\{L(P_i) : P_i \in P, i = 1, 2,\}$$

Definition 2.3. [6] An arc of a FG *G* with least membership degree is a weakest arc and the strength of path *P* is the membership degree of the weakest arc. *P* is a cycle if $p_0 = p_n$, $n \ge 3$, and a fuzzy cycle if the number of weakest arcs in *P* is more than one.

Definition 2.4. [5] The maximum of the strengths of all paths from the vertex p to the vertex q is the strength of connectedness, $CONN_G(p,q)$ between them. If $\mu(p,q) \ge CONN_{G-(p,q)}(p,q)$, then (p,q) is a strong arc.

Definition 2.5. [1] The vertices p, q are neighbours in the FG G if $\mu(p,q) > 0$. If (p,q) is a strong arc, then q is a strong neighbour of p. If q has exactly one strong neighbour, then q is a fuzzy end vertex.

Definition 2.6. A FG *G* is strong if $\mu(u, v) = \min \{\sigma(u), \sigma(v)\}, \forall (u, v) \text{ in } E$

Definition 2.7. A FG *G* is complete if $\mu(u, v) = \min \{\sigma(u), \sigma(v)\}, \forall u, v \text{ in } V$

3. MAIN RESULTS

Definition 3.1. [9] A vertex *v* in a FG *G* is a boundary vertex of a vertex *u* in *G* if

 $d_s(u, v) \ge d_s(u, w)$, for each neighbour *w* of *v*.

The boundary verticess of u is represented by u^b .

v is a boundary vertex of *G* if *v* is a boundary vertex of some vertex of *G*.

Definition 3.2. [9] A vertex w in a FG G is an interior vertex of G if for each vertex $u \neq w, \exists$ a vertex $v \neq w \neq u$ with

$$d_s(u,v) = d_s(u,w) + d_s(w,v).$$

Remark 3.1. [9] A boundary vertex of a FG G is not an interior vertex of G.

Proposition 3.1. In a connected FG, a fuzzy end vertex is a boundary vertex.

Proof. Consider a FG *G* with vertices v_i , $1 \le i \le n$. Let v_1 be a fuzzy end vertex. v_1 has only one neighbour say, v_2 . Clearly,

 $d_s(v_i, v_1) \ge d_s(v_i, v_2), \quad 1 < i \le n.$

Hence, v_1 is a boundary vertex of v_i , $i \neq 1$ in *G*.

Theorem 3.1. In a fuzzy path graph P_n , all the vertices are either boundary vertices or interior vertices.

Proof. Consider P_n with vertices $v_1, v_2, ..., v_n$. As v_1, v_n are fuzzy end vertices, v_1, v_n are boundary vertices by proposition 3.1. The vertices $v_j, 2 \le j \le (n-1)$ are interior vertices of P_n , since for every vertex v_i , \exists a vertex v_k , $i \ne j \ne k$ with

$$d_s(v_i, v_k) = d_s(v_i, v_j) + d_s(v_j, v_k), \quad 1 \le i, k \le n.$$

Thus, all the vertices are either boundary vertices or interior vertices.

Theorem 3.2. In a fuzzy star graph $K_{1,n}$, all the vertices are either boundary vertices or interior vertices.

Proof. Consider the vertices $v, u_1, u_2, ..., u_n$ in $K_{1,n}$ such that v is the central vertex and $u_1, u_2, ..., u_n$ are fuzzy end vertices. $u_1, u_2, ..., u_n$ are boundary vertices by proposition 3.1.

Let
$$\mu(u_i, v) = a, 0 < a \le 1$$

Since, $d_s(u_i, v) = d_s(v, u_j) = a, 1 \le i, j \le n$.
 $d_s(u_i, v) + d_s(v, u_j) = a + a = 2a$
Also, $d_s(u_i, u_j) = 2a$
Therefore, $d_s(u_i, u_j) = d_s(u_i, v) + d_s(v, u_j), \forall i \ne j$

So, *v* is an interior vertex.

Remark 3.2. In FGs, there exists vertices which are different from boundary vertices and interior vertices. These vertices are termed as null vertices.

Definition 3.3. A null vertex in a FG is a vertex which is neither a boundary vertex nor an interior vertex.

Theorem 3.3. A complete FG $G = K_n$, $n \ge 3$ with vertices $v_1, v_2, v_3, \ldots, v_n$ has exactly one null vertex v_1 when $\sigma(v_1)$ is the weakest vertex.

Proof. Let $G = K_n$, $n \ge 3$ be the complete FG with vertices $v_1, v_2, v_3, \ldots, v_n$. Suppose v_1 is the weakest vertex with

$$\sigma(v_1) < \sigma(v_i) < 2\sigma(v_1), 1 < i \le n.$$

The neighbours of v_1 are $v_2, v_3, \ldots, v_{n-1}$. Since v_1 is the weakest vertex,

$$d_s(v_i, v_1) = \mu(v_i, v_1) = \sigma(v_i) \wedge \sigma(v_1) = \sigma(v_1).$$

$$d_s(v_i, v_j) = \mu(v_i, v_j) < 2\sigma(v_1), i \neq 1 \neq j$$

So, $d_s(v_i, v_1) < d_s(v_i, v_j)$, for all neighbours v_j of v_1 .

Hence v_1 is not a boundary vertex of v_i .

Also,
$$d_s(v_i, v_1) = d_s(v_1, v_j) = \sigma(v_1)$$

 $d_s(v_i, v_1) + d_s(v_1, v_j) = 2\sigma(v_1).$

But, $d_s(v_i, v_j) < 2\sigma(v_1)$.

Therfore,
$$d_s(v_i, v_j) \neq d_s(v_i, v_1) + d_s(v_1, v_j)$$
, $\forall i, j$, where $i \neq j \neq 1$.

 $(0.4)v_1$

0.4

0.4

Hence, v_1 is not an interior vertex.

Thus, v_1 is a null vertex.

FIGURE 1. Complete fuzzy graph K₅

Example 3.1. Figure 1 is the complete FG K_5 with vertices v_i , $1 \le i \le 5$, where v_1 is the weakest vertex,

$$\begin{aligned} \sigma(v_1) &= 0.4, \sigma(v_2) = 0.5, \sigma(v_3) = \sigma(v_4) = 0.6, \sigma(v_5) = 0.7, \\ \sigma(v_1) &< \sigma(v_i) < 2\sigma(v_1), 1 < i \le 5. \end{aligned}$$

Since *K*⁴ is complete,

$$\mu(v_1, v_i) = 0.4, 1 \le i \le 5,$$

$$\mu(v_2, v_3) = \mu(v_2, v_4) = \mu(v_2, v_5) = 0.5, \\ \mu(v_3, v_4) = \mu(v_3, v_5) = \mu(v_4, v_5) = 0.6.$$

Consider the vertex v_1 .

The neighbours of v_1 are v_i , $2 \le i \le 5$,

Here,
$$d_s(v_2, v_1) = 0.4$$
, $d_s(v_2, v_3) = d_s(v_2, v_4) = d_s(v_2, v_5) = 0.5$

 v_1 is not a boundary vertex of v_2 since, for the neighbours v_3 , v_4 , v_5 of v_1

$$d_s(v_2, v_1) < \begin{cases} d_s(v_2, v_3) \\ d_s(v_2, v_4) \\ d_s(v_2, v_5) \end{cases}$$

Similarly, v_1 is not a boundary vertex of the other vertices and hence not a boundary vertex of K_5 .

Since,
$$d_s(v_i, v_1) + d_s(v_1, v_j) = 0.4 + 0.4 = 0.8$$
,
 $d_s(v_i, v_j) < 0.8$,
 $d_s(v_i, v_j) \neq d_s(v_i, v_1) + d_s(v_1, v_j)$, $i \neq 1 \neq j$.

i.e., v_1 is not an interior vertex.

Hence, v_1 is the null vertex.

Theorem 3.4. The strong fuzzy cycle C_n , $n \ge 3$ with vertices v_i , $1 \le i \le n$ has exactly two null vertices v_1 and v_{n-2} when $\sigma(v_n) = \sigma(v_{n-1}) = b$ and $\sigma(v_i) = a$, otherwise, where

$$(n-2)a < b < (n-1)a.$$

Proof. Consider the strong fuzzy cycle C_n , $n \ge 3$ with vertices v_i , $1 \le i \le n$, taken in order,

$$\sigma(v_n) = \sigma(v_{n-1}) = b, \quad \sigma(v_i) = a, \quad 1 \le i \le (n-2).$$

where $(n-2)a < b < (n-1)a$.

Since C_n is strong,

$$\mu(v_n, v_{n-1}) = \min\{\sigma(v_n), \sigma(v_{n-1})\} = b$$

 $\mu(v_i, v_j) = \min\{\sigma(v_i), \sigma(v_j)\} = a, \text{ for all other edges } (v_i, v_j).$

Consider the vertex v_1 in C_n .

The neighbours of v_1 are v_2 and v_n .

Here, v_1 is not a boundary vertex of v_i , $i = 2 \dots n - 1$, $i \neq 1, n$, since

 $d_s(v_i, v_1) < d_s(v_i, v_n)$, for the neighbour v_n of v_1 .

 v_1 is not a boundary vertex of v_n , since

 $d_s(v_n, v_1) < d_s(v_n, v_2)$, for the neighbour v_2 of v_1 .

Thus, v_1 is not a boundary vertex of v_i , = 2...n, $i \neq 1$

Consider the vertex v_{n-2} in C_n .

The neighbours of v_{n-2} are v_{n-1} and v_{n-3} .

 v_{n-2} is not a boundary vertex of v_i , i = 1, 2, ..., (n-3), n, $i \neq (n-1), (n-2)$, since

 $d_s(v_i, v_{n-2}) < d_s(v_i, v_{n-1})$, for the neighbour v_{n-1} of v_{n-2} .

 v_{n-2} is not a boundary vertex of v_{n-1} , since

 $d_s(v_{n-1}, v_{n-2}) < d_s(v_{n-1}, v_{n-3})$, for the neighbour v_{n-3} of v_{n-2} .

Thus, v_{n-2} is not a boundary vertex of v_i , = 1, 2, ... (n-3), (n-1), n, $i \neq (n-2)$

Consider the vertex v_{n-1} .

For the vertex v_{n-1} in C_n , there does not exist a vertex v_i in C_n such that

$$d_s(v_{n-1}, v_j) = d_s(v_{n-1}, v_1) + d_s(v_1, v_j), \quad 1 \neq j \neq (n-1)$$

So, v_1 is not an interior vertex.

Similarly, Consider the vertex v_n .

For the vertex v_n in C_n , there does not exist a vertex v_k in C_n such that

$$d_s(v_n, v_k) = d_s(v_n, v_{n-2}) + d_s(v_{n-2}, v_k), \quad n \neq k \neq (n-2)$$

So, v_{n-2} is not an interior vertex.

Thus v_1 and v_{n-2} are null vertices.

FIGURE 2. FUZZY Cycle C_6

Example 3.2. Consider the strong fuzzy cycle C_6 in figure 2 with vertices v_i , $1 \le i \le 6$.

Let $\sigma(v_i) = 0.1, 1 \le i \le 4$, $\sigma(v_5) = \sigma(v_6) = 0.45$

Since C_6 is strong,

$$\mu(v_1, v_2) = \mu(v_2, v_3) = \mu(v_3, v_4) = \mu(v_4, v_5) = \mu(v_6, v_1) = 0.1, \quad \mu(v_5, v_6) = 0.45.$$

Consider the vertex v_1 .

The neighbours of v_1 are v_2 and v_6 .

 v_1 is not a boundary vertex of v_i , $2 \le i \le 5$, $i \ne 1$, 6, since

 $d_s(v_i, v_1) < d_s(v_i, v_6)$, for the neighbour v_6 of v_1 .

 v_1 is not a boundary vertex of v_6 , since

 $d_s(v_6, v_1) < d_s(v_6, v_2)$, for the neighbour v_2 of v_1 .

Also, for the vertex v_5 , there does not exist a vertex v_i , $j \neq 1, 5$ such that

 $d_s(v_5, v_j) = d_s(v_5, v_1) + d_s(v_1, v_j).$

Thus v_1 is not an interior vertex and hence v_1 is a null vertex.

Consider the vertex v_4 .

The neighbours of v_4 are v_3 and v_5 .

 v_4 is not a boundary vertex of v_i , $1 \le i \le 6$, $i \ne 4$, 5 since

 $d_s(v_i, v_4) < d_s(v_i, v_5)$, for the neighbour v_5 of v_4 .

 v_4 is not a boundary vertex of v_5 , since

 $d_s(v_5, v_4) < d_s(v_5, v_3)$, for the neighbour v_3 of v_4 .

Also, for the vertex v_6 , there does not exist a vertex v_i , $j \neq 4, 6$ such that

$$d_s(v_6, v_i) = d_s(v_6, v_4) + d_s(v_4, v_i).$$

Thus v_4 is not an interior vertex and hence v_4 is a null vertex.

Corollary 3.1. The null vertex in a FG *G*, if it exists, need not be unique.

Theorem 3.5. In the fuzzy wheel graph W_n , there exists a null vertex v_n , the apex vertex connecting the other vertices v_i , $1 \le i \le (n-1)$, when

$$\mu(v_i, v_j) = \begin{cases} a, & j = n, \quad 1 \le i \le n-1 \\ b, & \text{otherwise} \end{cases}$$
$$\frac{2a}{n-1} < b < \frac{4a}{n-1}, \text{ when } n \text{ is odd,}$$
$$\frac{2a}{n-2} < b < \frac{4a}{n-2}, \text{ when } n \text{ is even.}$$

Proof. The wheel graph W_n is the join $K_1 + C_{n-1}$. Consider the fuzzy wheel graph W_n , $n \ge 5$ with vertices v_i , $1 \le i \le n - 1$, taken in order and v_n be the apex vertex connecting all the other vertices v_i , $1 \le i \le n - 1$.

Case (1) When *n* is odd, $n \ge 5$.

$$\mu(v_i, v_j) = \begin{cases} a, & j = n, \quad 1 \le i \le n-1 \\ b, & \text{otherwise} \\ \frac{2a}{n-1} < b < \frac{4a}{n-1} \end{cases}$$

Consider the apex vertex v_n . The neighbours of v_n are v_i , $1 \le i \le n - 1$.

$$d_s(v_i, v_n) = a$$
$$d_s\left(v_i, v_{i+\left(\frac{n-1}{2}\right)}\right) = \left(\frac{n-1}{2}\right)b, \quad i \le \frac{n-1}{2}$$
$$d_s\left(v_i, v_{i-\left(\frac{n-1}{2}\right)}\right) = \left(\frac{n-1}{2}\right)b, \quad i > \frac{n-1}{2}$$

Since, $\frac{2a}{n-1} < b$, i.e., $a < \left(\frac{n-1}{2}\right)b$,

$$d_{s}(v_{i}, v_{n}) < \begin{cases} d_{s}\left(v_{i}, v_{i+\left(\frac{n-1}{2}\right)}\right), & i \leq \frac{n-1}{2} \\ d_{s}\left(v_{i}, v_{i-\left(\frac{n-1}{2}\right)}\right), & i > \frac{n-1}{2}, \end{cases}$$

for the neighbours $v_{i+\frac{n-1}{2}}, v_{i-(\frac{n-1}{2})}$ of v_n .

So, v_n is not a boundary vertex of v_i , $1 \le i \le n - 1$.

We have, for $1 \le i, j \le (n-1), i \ne j$,

$$d_{s}(v_{i}, v_{n}) = d_{s}(v_{n}, v_{j}) = a$$

$$d_{s}(v_{i}, v_{n}) + d_{s}(v_{n}, v_{j}) = a + a = 2a$$
Since, $b < \frac{4a}{n-1}$, *i.e.*, $\left(\frac{n-1}{2}\right)b < 2a$

$$d_{s}(v_{i}, v_{j}) \le \left(\frac{n-1}{2}\right)b < 2a$$
i.e., $d_{s}(v_{i}, v_{j}) < 2a$.
So, $d_{s}(v_{i}, v_{j}) \ne d_{s}(v_{i}, v_{n}) + d_{s}(v_{n}, v_{j})$.

Thus, v_n is not an interior vertex.

Hence, v_n is a null vertex.

Case (2) When *n* is even, $n \ge 6$.

$$\mu(v_i, v_j) = \begin{cases} a, & j = n, \quad 1 \le i \le n-1 \\ b, & \text{otherwise} \end{cases}$$
$$\frac{2a}{n-2} < b < \frac{4a}{n-2}$$

Consider the apex vertex v_n . The neighbours of v_n are v_i , $1 \le i \le n - 1$.

$$d_{s}(v_{i}, v_{n}) = a$$

$$d_{s}\left(v_{i}, v_{i+\left(\frac{n-2}{2}\right)}\right) = d_{s}\left(v_{i}, v_{i+\frac{n}{2}}\right) = \left(\frac{n-2}{2}\right)b, \quad i < \frac{n}{2}$$

$$d_{s}\left(v_{i}, v_{i-\left(\frac{n-2}{2}\right)}\right) = d_{s}\left(v_{i}, v_{i+\left(\frac{n-2}{2}\right)}\right) = \left(\frac{n-2}{2}\right)b, \quad i = \frac{n}{2}$$

$$d_{s}\left(v_{i}, v_{i-\left(\frac{n-2}{2}\right)}\right) = d_{s}\left(v_{i}, v_{i-\frac{n}{2}}\right) = \left(\frac{n-2}{2}\right)b, \quad i > \frac{n}{2}$$

Since, $\frac{2a}{n-2} < b$, i.e., $a < \left(\frac{n-2}{2}\right)b$,

$$d_{s}(v_{i},v_{n}) < \begin{cases} d_{s}\left(v_{i},v_{i+\left(\frac{n-2}{2}\right)}\right) & i < \frac{n}{2}, \\ d_{s}\left(v_{i},v_{i+\frac{n}{2}}\right), & i < \frac{n}{2}, \end{cases}$$

for the neighbours $v_{i+\left(\frac{n-2}{2}\right)}, v_{i+\frac{n}{2}}$ of v_n .

$$d_s(v_i, v_n) < \begin{cases} d_s\left(v_i, v_{i-\left(\frac{n-2}{2}\right)}\right) \\ d_s\left(v_i, v_{i+\left(\frac{n-2}{2}\right)}\right), & i = \frac{n}{2}, \end{cases}$$

for the neighbours $v_{i-\left(\frac{n-2}{2}\right)}, v_{i+\left(\frac{n-2}{2}\right)}$ of v_n .

$$d_{s}(v_{i},v_{n}) < \begin{cases} d_{s}\left(v_{i},v_{i-\left(\frac{n-2}{2}\right)}\right) & i > \frac{n}{2}, \\ d_{s}\left(v_{i},v_{i-\frac{n}{2}}\right), & i > \frac{n}{2}, \end{cases}$$

for the neighbours $v_{i-\left(\frac{n-2}{2}\right)}$, $v_{i-\frac{n}{2}}$ of v_n . So, v_n is not a boundary vertex of v_i , $1 \le i \le n-1$.

Also, we have for $1 \le i, j \le (n-1), i \ne j$,

$$d_s(v_i, v_n) = d_s(v_n, v_j) = a$$

$$d_{s}(v_{i}, v_{n}) + d_{s}(v_{n}, v_{j}) = a + a = 2a$$

Since, $b < \frac{4a}{n-2}$, i.e., $\left(\frac{n-2}{2}\right)b < 2a$
 $d_{s}(v_{i}, v_{j}) \le \left(\frac{n-2}{2}\right)b < 2a$

i.e.,
$$d_s(v_i, v_j) < 2a$$
.
So, $d_s(v_i, v_j) \neq d_s(v_i, v_n) + d_s(v_n, v_j)$

i.e., v_n is not an interior vertex. Hence, v_n is a null vertex.

FIGURE 3. Fuzzy Wheel graph W_4

Corollary 3.2. Consider the fuzzy wheel graph W_n , n = 4 with

$$\mu(v_i, v_j) = \begin{cases} a, & j = 4, & 1 \le i \le 3\\ b, & \text{otherwise} \end{cases}$$
$$a < b < 2a$$

Consider the apex vertex v_4 .

The neighbours of v_4 are v_i , $1 \le i \le 3$. We have $d_s(v_i, v_4) = a$, $d_s(v_i, v_j) = b$, $i \ne j$, $1 \le i, j \le 3$ Since a < b, $d_s(v_i, v_4) < d_s(v_i, v_j)$, for the neighbours v_j , j = 2, 3 of v_4 . So, v_4 is not a boundary vertex of v_i , $1 \le i \le 3$.

Also, for $1 \le i, j \le 3$, $i \ne j, d_s(v_i, v_j) = b$, $d_s(v_i, v_4) + d_s(v_4, v_j) = a + a = 2a$ Since b < 2a, $d_s(v_i, v_j) \ne d_s(v_i, v_4) + d_s(v_4, v_j)$. So, v_4 is not an interior vertex.

Thus, v_4 is a null vertex.

FIGURE 4. Fuzzy Wheel graph W_7

Example 3.3. Consider the fuzzy wheel graph W_n , n is odd. Consider W_7 in figure 4 having vertices v_i , $1 \le i \le 6$ and v_7 as the apex vertex.

$$\mu(v_i, v_j) = \begin{cases} 0.6, & j = 7, \quad 1 \le i \le 6\\ 0.3, & \text{otherwise} \end{cases}$$

Consider the apex vertex v_7 .

The neighbours of v_7 are v_i , $1 \le i \le 6$. Here, $d_s(v_i, v_7) = 0.6$ for i = 1, 2,6 $d_s(v_1, v_4) = d_s(v_2, v_5) = d_s(v_3, v_6) = d_s(v_4, v_1) = d_s(v_5, v_2) = d_s(v_6, v_3) = 0.9$. v_7 is not a boundary vertex of v_1 since $d_s(v_1, v_7) < d_s(v_1, v_4)$, for the neighbour v_4 of v_7 . Similarly v_7 is not a boundary vertex of the other vertices $v_i, 2 \le i \le 6$.

Also, for $1 \le i, j \le 6$, $i \ne j$, $d_s(v_i, v_j) \le 0.9$, $d_s(v_i, v_7) + d_s(v_7, v_j) = 1.2$ So, $d_s(v_i, v_j) \ne d_s(v_i, v_7) + d_s(v_7, v_j)$ and hence, v_7 is not an interior vertex. Thus, v_7 is a null vertex.

FIGURE 5. Fuzzy wheel graph W_8

Example 3.4. Consider the fuzzy wheel graph W_n , n is even. Consider W_8 in figure 5 having vertices v_i , $1 \le i \le 7$ with v_8 as the apex vertex.

$$\mu(v_i, v_j) = \begin{cases} 0.4, & j = 8, \quad 1 \le i \le 7\\ 0.2, & \text{otherwise} \end{cases}$$

Consider the apex vertex v_8 .

The neighbours of v_8 are $v_i, 1 \le i \le 7$. Here, $d_s(v_i, v_8) = 0.4$ for i = 1, 2,7 $d_s(v_1, v_4) = d_s(v_1, v_5) = d_s(v_2, v_5) = d_s(v_2, v_6) = d_s(v_3, v_6) = d_s(v_3, v_7) = d_s(v_4, v_1) = d_s(v_4, v_7) = d_s(v_5, v_1) = d_s(v_5, v_2) = d_s(v_6, v_2) = d_s(v_6, v_3) = 0.6.$ v_8 is not a boundary vertex of v_1 since,

$$d_{s}(v_{1}, v_{8}) < \begin{cases} d_{s}(v_{1}, v_{4}) \\ d_{s}(v_{1}, v_{5}), \text{ for the neighbours } v_{4} \text{ and } v_{5} \text{ of } v_{8} \end{cases}$$

Similarly v_8 is not a boundary vertex of the other vertices v_i , $2 \le i \le 7$.

For $1 \le i, j \le 7$, $i \ne j$, $d_s(v_i, v_j) \le 0.6$ $d_s(v_i, v_8) + d_s(v_8, v_j) = 0.4 + 0.4 = 0.8$ So, $d_s(v_i, v_j) \ne d_s(v_i, v_8) + d_s(v_8, v_j)$ and hence, v_8 is not an interior vertex. Thus, v_8 is a null vertex.

Theorem 3.6. In the fuzzy helm graph H_n , $n \ge 4$, there exists a null vertex v_{n+1} , the apex vertex connecting all the other vertices u_i , v_i , $1 \le i \le n$, when

$$\mu(v_i, v_j) = \begin{cases} a, & j = n+1, \quad 1 \le i \le n \\ b, & \text{otherwise} \end{cases}$$
$$\mu(u_i, v_i) = b, \quad \forall i, \text{ where,}$$
$$\frac{2a}{n-1} < b < \frac{4a}{n-1}, \text{ when } n \text{ is odd,}$$
$$\frac{2a}{n} < b < \frac{4a}{n}, \text{ when } n \text{ is even.} \end{cases}$$

Proof. Consider the fuzzy helm graph H_n , $n \ge 4$ with vertices u_i , v_i , $1 \le i \le n$ and v_{n+1} is the apex vertex connecting the other vertices.

Case (1) When *n* is odd, $n \ge 5$.

$$\mu(v_i, v_j) = \begin{cases} a, & j = n+1, \quad 1 \le i \le n \\ b, & \text{otherwise} \end{cases}$$
$$\mu(u_i, v_i) = b, \quad \forall i$$
$$\frac{2a}{n-1} < b < \frac{4a}{n-1}$$

Consider the apex vertex v_{n+1} . The neighbours of v_{n+1} are v_i , $1 \le i \le n$.

$$d_{s}(v_{i}, v_{n+1}) = a$$

$$d_{s}\left(v_{i}, v_{i+\left(\frac{n-1}{2}\right)}\right) = d_{s}\left(v_{i}, v_{i+\left(\frac{n+1}{2}\right)}\right) = \left(\frac{n-1}{2}\right)b, \quad i < \frac{n+1}{2}$$

$$d_{s}\left(v_{i}, v_{i+\left(\frac{n-1}{2}\right)}\right) = d_{s}\left(v_{i}, v_{i-\left(\frac{n-1}{2}\right)}\right) = \left(\frac{n-1}{2}\right)b, \quad i = \frac{n+1}{2}$$

$$d_{s}\left(v_{i}, v_{i-\left(\frac{n-1}{2}\right)}\right) = d_{s}\left(v_{i}, v_{i-\left(\frac{n+1}{2}\right)}\right) = \left(\frac{n-1}{2}\right)b, \quad i > \frac{n+1}{2}$$

Since, $\frac{2a}{n-1} < b$, i.e., $a < \left(\frac{n-1}{2}\right)b$,

$$d_{s}(v_{i}, v_{n+1}) < \begin{cases} d_{s}\left(v_{i}, v_{i+\left(\frac{n-1}{2}\right)}\right) \\ d_{s}\left(v_{i}, v_{i+\left(\frac{n+1}{2}\right)}\right), & i < \frac{n+1}{2} \end{cases}$$

for the neighbours $v_{i+\left(\frac{n-1}{2}\right)}, v_{i+\left(\frac{n+1}{2}\right)}$ of v_{n+1} .

$$d_{s}(v_{i}, v_{n+1}) < \begin{cases} d_{s}\left(v_{i}, v_{i+\left(\frac{n-1}{2}\right)}\right) \\ d_{s}\left(v_{i}, v_{i-\left(\frac{n-1}{2}\right)}\right), & i = \frac{n+1}{2}, \end{cases}$$

for the neighbours $v_{i+\left(\frac{n-1}{2}\right)}, v_{i-\left(\frac{n-1}{2}\right)}$ of v_{n+1} .

$$d_{s}(v_{i}, v_{n+1}) < \begin{cases} d_{s}\left(v_{i}, v_{i-\left(\frac{n-1}{2}\right)}\right) \\ d_{s}\left(v_{i}, v_{i-\left(\frac{n+1}{2}\right)}\right), & i > \frac{n+1}{2}, \end{cases}$$

for the neighbours $v_{i-\left(\frac{n-1}{2}\right)}, v_{i-\left(\frac{n+1}{2}\right)}$ of v_{n+1} .

So, v_{n+1} is not a boundary vertex of v_i , $1 \le i \le n$.

$$d_{s}(u_{i}, v_{n+1}) = a + b$$

$$d_{s}\left(u_{i}, v_{i+\left(\frac{n-1}{2}\right)}\right) = d_{s}\left(u_{i}, v_{i+\left(\frac{n+1}{2}\right)}\right) = \left(\frac{n+1}{2}\right)b, \quad i < \frac{n+1}{2}$$

$$d_{s}\left(u_{i}, v_{i+\left(\frac{n-1}{2}\right)}\right) = d_{s}\left(u_{i}, v_{i-\left(\frac{n-1}{2}\right)}\right) = \left(\frac{n+1}{2}\right)b, \quad i = \frac{n+1}{2}$$

$$d_{s}\left(u_{i}, v_{i-\left(\frac{n-1}{2}\right)}\right) = d_{s}\left(u_{i}, v_{i-\left(\frac{n+1}{2}\right)}\right) = \left(\frac{n+1}{2}\right)b, \quad i > \frac{n+1}{2}$$

Since $a < \left(\frac{n-1}{2}\right)b,$
 $a + b < \left(\frac{n-1}{2}\right)b + b.$
i.e., $a + b < \left(\frac{n+1}{2}\right)b.$ Therefore,

$$d_{s}(u_{i}, v_{n+1}) < \begin{cases} d_{s}\left(u_{i}, v_{i+\left(\frac{n-1}{2}\right)}\right) \\ d_{s}\left(u_{i}, v_{i+\left(\frac{n+1}{2}\right)}\right), & i < \frac{n+1}{2}, \end{cases}$$

for the neighbours $v_{i+\left(\frac{n-1}{2}\right)}, v_{i+\left(\frac{n+1}{2}\right)}$ of v_{n+1} .

$$d_{s}(u_{i}, v_{n+1}) < \begin{cases} d_{s}\left(u_{i}, v_{i+\left(\frac{n-1}{2}\right)}\right) \\ d_{s}\left(u_{i}, v_{i-\left(\frac{n-1}{2}\right)}\right), & i = \frac{n+1}{2}, \end{cases}$$

for the neighbours $v_{i+\left(\frac{n-1}{2}\right)}, v_{i-\left(\frac{n-1}{2}\right)}$ of v_{n+1} .

$$d_{s}(u_{i}, v_{n+1}) < \begin{cases} d_{s}\left(u_{i}, v_{i-\left(\frac{n-1}{2}\right)}\right) \\ d_{s}\left(u_{i}, v_{i-\left(\frac{n+1}{2}\right)}\right), & i > \frac{n+1}{2}, \end{cases}$$

for the neighbours $v_{i-\left(\frac{n-1}{2}\right)}, v_{i-\left(\frac{n+1}{2}\right)}$ of v_{n+1} .

So, v_{n+1} is not a boundary vertex of u_i , $1 \le i \le n$.

Thus, v_{n+1} is not a boundary vertex of H_n , $n \ge 5$.

Also, for $1 \le i, j \le n, i \ne j$

$$\begin{aligned} d_{s}(v_{i}, v_{n+1}) &= d_{s}(v_{n+1}, v_{j}) = a \\ d_{s}(v_{i}, v_{n+1}) + d_{s}(v_{n+1}, v_{j}) &= a + a = 2a \\ \text{Since} \quad b < \frac{4a}{n-1}, \quad i.e., \left(\frac{n-1}{2}\right)b < 2a. \\ d_{s}(v_{i}, v_{j}) &\leq \left(\frac{n-1}{2}\right)b < 2a. \\ \text{i.e.,} \quad d_{s}(v_{i}, v_{j}) < 2a. \end{aligned}$$

$$\begin{aligned} \text{So,} d_{s}(v_{i}, v_{j}) &\neq d_{s}(v_{i}, v_{n+1}) + d_{s}(v_{n+1}, v_{j}). \\ d_{s}(u_{i}, v_{n+1}) &= d_{s}(v_{n+1}, u_{j}) = a + b \\ d_{s}(u_{i}, v_{n+1}) + d_{s}(v_{n+1}, u_{j}) &= 2(a + b) \\ \text{Since,} \quad d_{s}(u_{i}, u_{j}) < 2a + 2b \\ \text{i.e.,} d_{s}(u_{i}, u_{j}) < 2(a + b). \\ d_{s}(u_{i}, u_{j}) &\neq d_{s}(u_{i}, v_{n+1}) + d_{s}(v_{n+1}, u_{j}) \end{aligned}$$

Also,
$$d_s(u_i, v_{n+1}) = a + b$$
, $d_s(v_{n+1}, v_j) = a$
 $d_s(u_i, v_{n+1}) + d_s(v_{n+1}, v_j) = 2a + b$
But, $d_s(u_i, v_j) < 2a + b$
So, $d_s(u_i, v_j) \neq d_s(u_i, v_{n+1}) + d_s(v_{n+1}, v_j)$

Thus, v_{n+1} is not an interior vertex.

Hence, v_{n+1} is a null vertex.

Case (2) When *n* is even, $n \ge 4$.

$$\mu(v_i, v_j) = \begin{cases} a, & j = n+1, \quad 1 \le i \le n \\ b, & \text{otherwise} \end{cases}$$
$$\mu(u_i, v_i) = b, \quad \forall i$$
$$\frac{2a}{n} < b < \frac{4a}{n}$$

Consider the apex vertex v_{n+1} . The neighbours of v_{n+1} are v_i , $1 \le i \le n$.

$$d_{s}(v_{i}, v_{n+1}) = a$$
$$d_{s}(v_{i}, v_{i+\frac{n}{2}}) = (\frac{n}{2})b, \quad i \le \frac{n}{2}$$
$$d_{s}(v_{i}, v_{i-\frac{n}{2}}) = (\frac{n}{2})b, \quad i > \frac{n}{2}$$

Since, $\frac{2a}{n} < b$, i.e., $a < \frac{n}{2}b$.

$$d_{s}(v_{i}, v_{n+1}) < \begin{cases} d_{s}(v_{i}, v_{i+\frac{n}{2}}), i \leq \frac{n}{2} \\ d_{s}(v_{i}, v_{i-\frac{n}{2}}), i > \frac{n}{2}, \end{cases}$$

for the neighbours $v_{i+\frac{n}{2}}$, $v_{i-\frac{n}{2}}$ of v_{n+1} .

So, v_{n+1} is not a boundary vertex of v_i , $1 \le i \le n$.

$$d_{s}(u_{i}, v_{n+1}) = a + b$$

$$d_{s}(u_{i}, v_{i+\frac{n}{2}}) = (\frac{n}{2})b + b = (\frac{n}{2} + 1)b, \quad i \le \frac{n}{2}$$

$$d_{s}(u_{i}, v_{i-\frac{n}{2}}) = (\frac{n}{2} + 1)b, \quad i > \frac{n}{2}$$
Since $a < \frac{n}{2}b, \quad a + b < \frac{n}{2}b + b,$
i.e., $a + b < (\frac{n}{2} + 1)b,$

$$d_{s}(u_{i}, v_{n+1}) < \begin{cases} d_{s}(u_{i}, v_{i+\frac{n}{2}}), & i \leq \frac{n}{2} \\ d_{s}(u_{i}, v_{i-\frac{n}{2}}), & i > \frac{n}{2} \end{cases}$$

So, v_{n+1} is not a boundary vertex of u_i , $1 \le i \le n$.

Thus, v_{n+1} is not a boundary vertex of H_n , $n \ge 3$.

Also we have, for $1 \le i, j \le n, i \ne j$

$$d_{s}(v_{i}, v_{n+1}) = d_{s}(v_{n+1}, v_{j}) = a$$

$$d_{s}(v_{i}, v_{n+1}) + d_{s}(v_{n+1}, v_{j}) = a + a = 2a$$
Since, $b < \frac{4a}{n}$, *i.e.*, $(\frac{n}{2})b < 2a$,
$$d_{s}(v_{i}, v_{j}) \le (\frac{n}{2})b < 2a$$
i.e., $d_{s}(v_{i}, v_{j}) < 2a$.
So, $d_{s}(v_{i}, v_{j}) \ne d_{s}(v_{i}, v_{n+1}) + d_{s}(v_{n+1}, v_{j})$.
$$d_{s}(u_{i}, v_{n+1}) = d_{s}(v_{n+1}, u_{j}) = a + b$$

$$d_{s}(u_{i}, v_{n+1}) + d_{s}(v_{n+1}, u_{j}) = 2(a + b)$$
But, $d_{s}(u_{i}, u_{j}) < 2a + 2b$
i.e., $d_{s}(u_{i}, u_{j}) < 2(a + b)$
So, $d_{s}(u_{i}, u_{j}) \ne d_{s}(u_{i}, v_{n+1}) + d_{s}(v_{n+1}, u_{j}) = a$

$$d_{s}(u_{i}, v_{n+1}) = a + b, \quad d_{s}(v_{n+1}, v_{j}) = a$$

$$d_{s}(u_{i}, v_{n+1}) + d_{s}(v_{n+1}, v_{j}) = 2a + b$$

But, $d_s(u_i, v_j) < 2a + b$

So, $d_s(u_i, v_j) \neq d_s(u_i, v_{n+1}) + d_s(v_{n+1}, v_j)$

Thus, v_{n+1} is not an interior vertex.

Hence, v_{n+1} is a null vertex.

FIGURE 6. Fuzzy Helm graph H_3

Corollary 3.3. Consider the fuzzy helm graph H_n , n = 3 with

$$\mu(v_i, v_j) = \begin{cases} a, & j = 4, & 1 \le i \le 3\\ b, & \text{otherwise} \end{cases}$$
$$\mu(u_i, v_i) = b, \quad \forall i$$
$$a < b < 2a$$

Consider the apex vertex v_4 .

The neighbours of v_4 are v_i , $1 \le i \le 3$. We have $d_s(v_i, v_4) = a$, $d_s(v_i, v_j) = b$, $1 \le i, j \le 3, i \ne j$. Since a < b, $d_s(v_i, v_4) < d_s(v_i, v_j)$, for the neighbours v_j , j = 2, 3 of v_4 . i.e., v_4 is not a boundary vertex of v_i , $1 \le i \le 3$,

We have $d_s(u_i, v_4) = a + b$, $d_s(u_i, v_j) = 2b$. Since a < b, a + b < 2b $d_s(u_i, v_4) < d_s(u_i, v_j)$, for the neighbours v_j , j = 2, 3 of v_4 . i.e., v_4 is not a boundary vertex of u_i , $1 \le i \le 3$.

Also, for
$$1 \le i, j \le 3$$
, $i \ne j$
 $d_s(v_i, v_j) = b$.
 $d_s(v_i, v_4) + d_s(v_4, v_j) = a + a = 2a$.
Since $b < 2a$,
 $d_s(v_i, v_j) \ne d_s(v_i, v_4) + d_s(v_4, v_j)$.

 $\begin{aligned} &d_s(u_i, v_j) = b + b = 2b. \\ &d_s(u_i, v_4) + d_s(v_4, v_j) = a + b + a = 2a + b. \\ &\text{Since } b < 2a, \quad i.e., 2b < 2a + b, \\ &d_s(u_i, v_j) \neq d_s(u_i, v_4) + d_s(v_4, v_j). \end{aligned}$

 $d_{s}(u_{i}, u_{j}) = 3b,$ $d_{s}(u_{i}, v_{4}) + d_{s}(v_{4}, u_{j}) = 2(a + b),$ Since b < 2a, *i.e.*, 3b < 2(a + b), $d_{s}(u_{i}, u_{j}) \neq d_{s}(u_{i}, v_{4}) + d_{s}(v_{4}, u_{j}).$

So, v_4 is not an interior vertex. Thus, v_4 is a null vertex.

FIGURE 7. Fuzzy Helm graph H_5

Example 3.5. Consider the fuzzy helm graph H_n , n is odd. Consider H_5 in figure 7 having vertices u_i , v_i , i = 1, 2, ...5 and v_6 as the apex vertex.

$$\mu(v_i, v_j) = \begin{cases} 0.4, & j = 6, \quad 1 \le i \le 5\\ 0.3, & \text{otherwise} \end{cases}$$
$$\mu(u_i, v_i) = 0.3, \quad \forall i$$

Consider the apex vertex v_6 .

The neighbours of v_6 are $v_i, 1 \le i \le 5$ $d_s(v_i, v_6) = 0.4$ for i = 1, 2, ..., 5 $d_s(v_1, v_3) = d_s(v_1, v_4) = 0.6.$

$$d_{s}(v_{1}, v_{6}) < \begin{cases} d_{s}(v_{1}, v_{3}) \\ d_{s}(v_{1}, v_{4}), \text{ for the neighbours } v_{3} \text{ and } v_{4} \text{ of } v_{6}. \end{cases}$$

So, v_6 is not a boundary vertex of v_1 .

Similarly v_6 is not a boundary vertex of the vertices v_i , $2 \le i \le 5$.

$$d_s(u_i, v_6) = 0.7$$
 for $i = 1, 2,5$
 $d_s(u_1, v_3) = d_s(u_1, v_4) = 0.9$

$$d_s(u_1, v_6) < \begin{cases} d_s(u_1, v_3) \\ d_s(u_1, v_4), \text{ for the neighbours } v_3 \text{ and } v_4 \text{ of } v_6, \end{cases}$$

So, v_6 is not a boundary vertex of u_1 .

Similarly v_6 is not a boundary vertex of the vertices $u_i, 2 \le i \le 5$.

For $i \neq j, 1 \leq i, j \leq 5$, Since, $d_s(v_i, v_j) \leq 0.6$, $d_s(v_i, v_6) + d_s(v_6, v_j) = 0.8$, $\begin{aligned} &d_s(v_i, v_j) \neq d_s(v_i, v_6) + d_s(v_6, v_j).\\ &\text{Since, } d_s(u_i, v_j) \leq 0.9, \quad d_s(u_i, v_6) + d_s(v_6, v_j) = 1.1, \\ &d_s(u_i, v_j) \neq d_s(u_i, v_6) + d_s(v_6, v_j).\\ &\text{Since, } d_s(u_i, u_j) \leq 1.2, \quad d_s(u_i, v_6) + d_s(v_6, u_j) = 1.4, \\ &d_s(u_i, u_j) \neq d_s(u_i, v_6) + d_s(v_6, u_j). \end{aligned}$

Thus, v_6 is not an interior vertex.

Hence, v_6 is a null vertex.

FIGURE 8. Fuzzy Helm graph H_4

Example 3.6. Consider the fuzzy helm graph H_n , *n* is even.

Consider H_4 in figure 8 having vertices u_i , v_i , i = 1, 2, ...4 and v_5 as the apex vertex.

$$\mu(v_i, v_j) = \begin{cases} 0.3, & j = 5, \quad 1 \le i \le 4\\ 0.2, & \text{otherwise} \end{cases}$$
$$\mu(u_i, v_i) = 0.2, \quad \forall i$$

Consider the apex vertex v_5 .

The neighbours of v_5 are $v_i, 1 \le i \le 4$ Here, $d_s(v_i, v_5) = 0.3$ for i = 1, 2, ..., 4 $d_s(v_1, v_3) = 0.4$

 v_5 is not a boundary vertex of v_1 since, $d_s(v_1, v_5) < d_s(v_1, v_3)$, for the neighbour v_3 of v_5 . Similarly v_5 is not a boundary vertex of the vertices $v_i, 2 \le i \le 4$.

$$d_s(u_i, v_5) = 0.5$$
 for $i = 1, 2, \dots, 4$
 $d_s(u_1, v_3) = 0.6$

 v_5 is not a boundary vertex of u_1 since, $d_s(u_1, v_5) < d_s(u_1, v_3)$, for the neighbour v_3 of v_5 Similarly v_5 is not a boundary vertex of the vertices $u_i, 2 \le i \le 4$.

Since,
$$d_s(v_i, v_j) \le 0.4$$
, $d_s(v_i, v_5) + d_s(v_5, v_j) = 0.6$,
 $d_s(v_i, v_j) \ne d_s(v_i, v_5) + d_s(v_5, v_j)$.
 $d_s(u_i, v_j) \le 0.6$, $d_s(u_i, v_5) + d_s(v_5, v_j) = 0.5 + 0.3 = 0.8$,

 $d_s(u_i, v_j) \neq d_s(u_i, v_5) + d_s(v_5, v_j).$ $d_s(u_i, u_j) \leq 0.8, \quad d_s(u_i, v_5) + d_s(v_5, u_j) = 0.5 + 0.5 = 1,$ $d_s(u_i, u_j) \neq d_s(u_i, v_5) + d_s(v_5, u_j).$ Thus, v_5 is not an interior vertex. Hence, v_5 is a null vertex.

4. Conclusions

We presented the novel idea of null vertex in FGs, which is a vertex distinct from boundary vertex and interior vertex. Null vertex is a vertex which is neither a boundary vertex nor an interior vertex. We investigated that null vertex in a fuzzy graph if it exists need not be unique. We established the presence of null vertex in some graphs such as complete FGs, fuzzy cycles, fuzzy wheel graphs and fuzzy helm graphs.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- K.R. Bhutani, A. Rosenfeld, Fuzzy End Nodes in Fuzzy Graphs, Inf. Sci. 152 (2003), 323–326. https://doi.org/10. 1016/s0020-0255(03)00078-1.
- [2] G. Chartrand, P. Zhang, A First Course in Graph Theory, Graph Theory, Dover Publications, New York, (2012).
- [3] G. Chartrand, D. Erwin, G.L. Johns, P. Zhang, Boundary Vertices in Graphs, Discr. Math. 263 (2003), 25–34. https://doi.org/10.1016/s0012-365x(02)00567-8.
- [4] F. Harary, Graph Theory, Addison-Wesley, Boston, (1969).
- [5] J.N. Mordeson, P.S. Nair, Fuzzy Graphs and Fuzzy Hypergraphs, Physica Verlag, Berlin, (2000).
- [6] J.N. Mordeson, Y.Y. Yao, Fuzzy Cycles and Fuzzy Trees, J. Fuzzy Math. 10 (2002), 189–202.
- [7] A. Rosenfeld, Fuzzy Graphs, In: L.A. Zadeh, K.S. Fu, M. Shimura (Eds), Fuzzy Sets and Their Application to Cognitive and Decision Processes, Academic Press, New York, (1975), 77–95.
- [8] G.F. Simmons, Introduction to topology and modern analysis, McGraw Hill, New York, (1963).
- [9] M. Tom, M.S. Sunitha, Boundary and Interior Nodes in a Fuzzy Graph Using Sum Distance, Fuzzy Inf. Eng. 8 (2016), 75–85. https://doi.org/10.1016/j.fiae.2015.07.001.
- [10] M. Tom, M.S. Sunitha, Strong Sum Distance in Fuzzy Graphs, SpringerPlus. 4 (2015), 214. https://doi.org/10.1186/ s40064-015-0935-5.
- [11] L.A. Zadeh, Fuzzy Sets, Inf. Control. 8 (1965), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x.