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Abstract. In this paper we study the problem of optimal impulse control for stochastic systems with delay in the case
when the value function of the impulse problem depends only on the initial data of the given process through its initial
value (value at zero) and some weighted averages. A verification theorem for such impulse control problem is given.
As an example the optimal stream of dividends with transaction costs is solved.

1. Introduction

A stochastic impulse control policy can be characterized by the following factors: The first factor
is known to be the random dates at which the considered policies are exercised while the second
one is the size of the applied policies. Such characterization indicates that times and size are factors
that can be studied separately by depending on the nature of the considered applications such
as forest economic and cash flow management. In such applications both the timing and size of
an admissible impulse policy have to be simultaneously determined. The mathematical analysis
of stochastic impulse control in most cases is based on a combination of dynamic programming
techniques and quasi-variational inequalities. The approach is general, its typically results into
functional inequalities which, depending on the nature of the considered problem.

2. Problem Formulation

Suppose that- if there are no interventions- the state X(t) we consider is described by a 1-
dimension stochastic delayed differential equations of the form:

dX(t) = b(X(t), Y(t), Z(t))dt + σ(X(t), Y(t), Z(t))dβ(t), t ≥ 0, (2.1)
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where b : R3
→ R and σ : R3

→ Rare given functions and

Y(t) =
∫ 0

−δ
exp(λs)X(t + s)ds;

Z(t) = X(t− δ),

δ-constant delay, λ ∈ R is also a constant, (Ω, z, zt, β(t) = β(t,ω), t ≥ 0,ω ∈ Ω) is a 1-dimensional
Brownian motion. For −δ ≤ s ≤ 0, we set the initial condition is to be

X(s) = ξ(s) ∈ C[−δ, 0]. (2.2)

The solution of (2.1) given the initial path ξ is denoted by Xξ(t). For existence and uniqueness
of solution of such systems we refer to [3, 5].

In what follows, we refer to the law of the solution Xξ(t) of (2.1) by ρξ(t) and the corresponding
expectation by Eξ.

Suppose that at any time t and any state X we are free to intervene and give the system an
impulse η ∈ H ⊂ C(R×C[−δ, 0]) the set of admissible impulse values. We assume that η ∈ H has
the form

η(X, ξ) = η(x, y(ξ))

where

y = y(ξ) :=
∫ 0

−δ
exp(λs)ξ(s)ds. (2.3)

An impulse control for this system is a double (possibly finite) sequence

ν = (τ1, τ2, . . . , τk, . . . ; η1, η2, . . . , η j, . . . )k≤N, N ≤ ∞,

where 0 ≤ τ1 ≤ τ2 ≤ . . . are zt-stopping times and η1, η2, . . . are the corresponding impulses at
these times assumed to be zτ j-measurable for all j.
If the impulse control v is applied to system (2.1)-(2.2), the process X(ξ,v)(t) is defined by

dX(ξ,v)(t) = b(X(t), Y(t), Z(t)) + σ(X(t), Y(t), Z(t))dβ(t), τk ≤ t ≤ τk+1 ≤ T∗. (2.4)

(X(τk+1), Y(τk+1)) = Γ(X(τk+1), Y(τk+1), ηk+1); k = 0, 1, . . . ; τk+1 ≤ T∗ (2.5)

where T∗ = T∗(ω) is the explosion time of X(ξ,v) defined by

T∗(ω) = lim
R→∞

(inf{t ≥ 0; |X(ξ,v)(t)| ≥ R}).

Γ : R × C[−δ, 0] ×H → R is a given function. Let S ∈ R3 be a given Borel set (solvency set) with
the property that

S = (S0)

where S0 and S− denotes for the interior and closure of S respectively. Define

T = inf{t ∈ (0, T∗(ω)); (s + t, X(t), Y(t)) not belongs to S}
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where

Y(t) :=
∫ 0

−δ
exp(λs)X(t + s)ds.

Suppose that the profit rate is a function u : R3
→ R which is continuous, increasing and concave.

Let g : ∂S → R be a given bequest function, where ∂S denotes for the boundary of S. Moreover,
suppose that the profit performing an intervention K where K : R3

×H→ R; K(t, x, y, η) is a given
function.
Let ∆ be the set of admissible controls includes the set of impulse controls v = (τ1, τ2, . . . ; η1, η2, . . . )
such that X(ξ,v)(t) ∈ S for all t ≤ T, T∗ = ∞ and lim τn = Ta.s.ps,ξ,v for all s, ξ, v where ps,ξ,v is the
law of the time space harvested process

W(t) = Wξ,v = (s + t, Xξ,v(t))

(if N < ∞we assume that τN = T a.s.).
Assume the following conditions to be hold:

Es,ξ,v[

∫ T

0
[|u(s + t, X(t), Y(t))|dt] ≤ ∞∀s, ξ, v, v ∈ ∆,

Es,ξ,v[|g(s + t, X(t), Y(t))|χ{T<∞}] < ∞∀s, ξ, v, v ∈ ∆,

Es,ξ,v[
∑
τk<T

|K(s + t, X(t−k )Y(tk), ηk)] < ∞∀s, ξ, v, v ∈ ∆.

Then the total expected profit J(s,ξ) when v ∈ ∆ is applied to the system (2.1)-(2.2) is defined by:

J(s,ξ) =E(s,ξ)[

∫ T

0
[u(s + t, X(t), Y(t))dt]

+ g(s + t, X(t), Y(t))χ{T<∞}]

+ [
∑
τk<T

K(s + t, X(t−k )Y(tk), ηk)].

(2.6)

Now, our optimal impulse control problem for systems (2.1)-(2.2) is to find the value function
Φ(s, ξ) and the optimal impulse control v∗ ∈ ∆ such that:

Φ(s, ξ) = sup
v∈∆

Jv(s, ξ) = Jv∗(s, ξ). (2.7)

A problem of this type for systems without delay had been studied in [2, 4].
Problem (2.7) in general is infinite dimensional. The purpose of this paper is to reduce problem (2.7)
for system (2.1)-(2.2) to finite dimensional one when we restrict its value function Φ to depends
only on the initial path ξ through the three linear functionals namely:

X = X(ξ) := ξ(0). (2.8)

Y = Y(ξ) :=
∫ 0

−δ
exp(λs)ξ(s)ds (2.9)
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and
Z = Z(ξ) := ξ(−δ). (2.10)

In this case Φ can be written as:

Φ(s, ξ) = Ψ(s, x, y, z)

where Ψ : R4
→ R.

3. A Quasi-variational Inequality Formulation

In this section we prove a verification theorem for problem (2.7) in view of (2.8)-(2.10). To start
with, first let Xt(S) = X(t + s) for t ≥ 0,−δ ≤ S ≤ 0 to be the segment of the path of X from t− δ to
t.

Lemma 3.1. (Itô Formula)
Suppose that the function F : R×R×C[−δ, 0]→ R has the form:

F(t, x, y) = f (t, x, y(η)); (t, x, η) ∈ R×R×C[−δ, 0]

where f is some function in C1,2,1(R3) and

y(η) =
∫ 0

−δ
exp(λs)η(s)ds, λ is a constant.

Define

G(t) = F(S + t, Xξ(t), Xξ
t (.)).

Then

G(t) = L f dt +
∂ f
∂x
σ(x, y, y)dB(t) +

∂ f
∂y

[x− e(−λsz)
− λy]dt (3.1)

where the differential operator L acting on f as

L f = L f (u, x, y, z) =
∂ f
∂u

+ b(x, y, z)
∂ f
∂x

+
1
2
σ2(x, y, z)

∂2 f
∂x2

where

u = s + t, Z = x(Xξ
t (.)),

Y = y(Xξ
t (.)) =

∫ 0

−δ
e(λs)Xξ(t + s)ds,

Z = z(Xξ
t (.)) = Xξ(t− δ).

Proof. See [1]. �

Lemma 3.2. (Dynkin Formula). Suppose that ` ∈ C1,2
0 (R3), t ≥ 0. Then

Es,ξ[`(t + s, Xξ(t), Y(Xξ
t (.))] = `(s, ξ(s), y(ξ)) + Es,ξ[

∫ t

0
{L f +

∂ f
∂y

[x− e−λδz] − λy]}dr (3.2)

where L`(u, x, y, z) and all functions are evaluated at u = s + r, x = Xξ(r), Y = y(Xξ
r (.)), z = Xξ(r− δ).

The proof of this fact follows from Itô formula (Lemma 3.1).
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The intervention operator. If we denote by G for the space of all measurable functions ` : S→ R,
then the intervention operator denoted by M where M : G→ G is denoted to be:

M`(x, y) = sup{`(Γ(x, y, η) + K(x, y, η); η ∈ H, Γ(x, y, η) ∈ S} (3.3)

where ` ∈ G and (x, y) ∈ S.

Lemma 3.3. (Approximation):
Let D ⊆ S be open, ∂S is Lipschitz and ϕ : S→ R satisfy the following
(i) ϕ ∈ C1,2,1(S0)

⋂
C(S).

(ii) ϕ ∈ C1,2,1(S0
\ ∂D).

(iii) Second order derivatives ofϕwith respect to x are locally bounded near ∂D. Then there exists a sequence
of functions ϕ j, j = 1, 2, . . . such that
(a) ϕ j → ϕ uniformly on compact subsets S as j→∞.
(b) `ϕ j → `ϕ uniformly on compact subsets of S0

\ ∂D as j→∞, where ` is:

`ϕ(s, x, y, z) =
∂ϕ

∂s
+ b(x, y, z)

∂ϕ

∂x
+

1
2
σ2(x, y, z)

∂2ϕ

∂x2 +
∂ϕ

∂y
[x− e−(λS)z

− λy]. (3.4)

(c) {`ϕ j}
∞

j=1 is locally bounded on S0.

Proof. See [2]. �

Theorem 3.1. (Verification theorem): Let S = R≥0
×R≥0

×R≥0. Suppose that a nonnegative ϕ : S→ R

exists such that:
(i) ϕ ∈ C1,2,1(S0)∩C(S).
(ii) ϕ(s, x, y) ≥Mϕ(s, x, y)∀(x, y) ∈ S.
Let the continuation region D be defined by:

D = {(s, x, y) ∈ S : ϕ(s, x, y) > Mϕ(s, x, y)}.

Suppose the following hold:
(iii)

Eξ[
∫ T

0
χ∂D(s, xξ(t), y(xξt (.))dt] = 0∀ξ ≥ 0.

Suppose that the continuation region D has the form:
(iv) D := {(s, x, y) ∈ S : ω(x, y) ⊆ ω∗} for some function ω : R2

→ R and some constant ω∗ and ∂D is
Lipschitz surface.
(v) ϕ ∈ C1,2,1(S0

\ ∂D).
(vi) `ϕ+ η ≤ 0 on (S0

\ ∂D)

(vii) The family {φ−(s, Xξ(τ), y(Xξ
τ(.))); τ ≤ T} is uniformly integrable with respect to ρs,ξ for all ξ ≥ 0

and for all v ∈ ν.
(viii) ϕ(s, Xξ(τ), y(Xξ

τ(.))→ g(s, Xξ(T), y(Xξ
T))χ{T<∞} as t→ T a.s. ρs,ξ for all v ∈ ν.

Then ϕ(s, ξ(0), y(ξ)) ≥ Φ(s, ξ)∀ ξ ≥ 0.
Suppose that in addition to (i)-(viii) the following to be hold:
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(ix) `ϕ+ u = 0 on D∩ S0 for all z.
(x) η∗ exists for all ξ ≥ 0 where

η∗ ∈ ν∗ := ν∗ := (τ∗1, τ∗2, . . . , η∗1, η∗2, . . . ),

where

τ∗k+1 = inf{t > τ∗k; (s, Xξ(t), y(Xξ
t ).)) not in D} ∧ T.

(xi) ϕ(s, Xξ,v∗(τ), y(Xξ,v∗
τ (.))t≤T is ρs,ξ uniformly integrable for all ξ ≥ 0.

Then with y(ξ) =
∫ 0
−δ

e(λs)ξ(s)ds,
ϕ(s, ξ(0), y(ξ)) = Φ(s, ξ) f or all ξ ≥ 0 and v∗ is an optimal impulse control.

Proof. As in [4] for systems without delay we give the following details of the proof for systems
with constant delay as follows:
First when (i)-(iv) is satisfied and by Lemma 3.2, we can find such sequence of functions ϕ j, j =
1, 2 . . . in C1,2,1(S0)∩C(S), such that
(a) ϕ j → ϕ uniformly on compact subsets of S, j→∞.

(b) `ϕ j → `ϕ uniformly on compact subsets of S0 \ ∂D as j→∞.

(c) {`ϕ j}
∞

j=1 is locally bounded on S0.
let v = (τ1, τ2, . . . ; η1, η2, . . . ) ∈ ν and for R ≥ 0 let

TR = R∧ inf{t ≥ 0; (Xξ(t), y(Xξ
t (.)) ≥ R)}

and θ j+1 = θR
j+1 = max(τ(τ j+1 ∧ τR), j = 1, 2 . . . ). Then by applying Lemma 3.2 we have

Es,ξ[ϕ j(s + τi, X(τi), Y(τi))]−Es,ξ[ϕ j(s, X,θ−j+1), Yθ(θ j+1)]

= −Es,ξ[

∫ θi+1

τi

`ϕ jdt], i, j = 1, 2, . . . .
(3.5)

By (a),(b) and (c) as j→∞ taking into account (iii), (v) and (vi) we deduce that:

Es,ξ[ϕ(s + τi), X(τi), Y(τi)]−Es,ξ[ϕ(s, X(θ−i+1), Y(θi+1))]

= −Es,ξ[

∫ θi+1

τi

`ϕdt]

≥ Es,ξ[

∫ θi+1

τi

u(s + t, X(t), Y(t))dt].

(3.6)

From Fatou’s lemma we have

Es,ξ[ϕ(s + τi), X(τi), Y(τi)]−Es,ξ[ϕ(s, X(τ−i+1), Y(τi+1))]

≥ Es,ξ[

∫ θi+1

τi

u(s + t, X(t), Y(t))dt].
(3.7)
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By taking summation from i = 0 to i = m, we get

ϕ(s, ξ(0), y(ξ))+
m∑

i=0

Es,ξ[ϕ(s + τi, X(τi), Y(τi))]

−ϕ(s, X(τ−i ), Y(τi) −ϕ(s, X(τ−m+1), Y(τm+1))

≥ Es,ξ[

∫ τm+1

0
u(s + t, X(t), Y(t))dt].

(3.8)

Now

ϕ(s + τi, X(τi), Y(τi)) =ϕ(Γ(s + τi, X(τ−i ), Y(τi), ηi))

≤Mϕ(s + τi, X(τ−i ), Y(τi)

−K(Γ(s + τi, X(τ−i ), Y(τi), ηi)), τi < T

(3.9)

and

ϕ(s + τi, X(τi), Y(τi)) = ϕ(s + τi, X(τi), Y(τi)) i f s + τi = T (3.10)

and therefore

ϕ(s, ξ(0), y(ξ))+
m∑

i=0

Es,ξ[Mϕ(s + τi, X(τ−i ), Y(τi)) −ϕ(s + τi, X(τ−i ), Y(τi))χτi<T]

≥ Es,ξ[

∫ τm+1

0
u(Ss + t, X(t), Y(t))dt]

+ ϕ(s + τm+1, X(τ−m+1), Y(τm+1))

+
m∑

i=0

K((s + τi, X(τ−i ), Y(τi), ηi))

(3.11)

Hence by (ii) we get

Mϕ(s + τi, X(τ−i ), Y(τi) −ϕ(s + τi, X(τ−i ), Y(τi) ≤ 0.

By (3.11) we deduce that

ϕ(s, ξ(0), y(ξ) ≥Es,ξ[

∫ Tm+1

0
u(s + t, X(t), Y(t))dt]

+ g(s + t, X(t), Y(t))χT<∞

+
N∑

i=0

K((s + t, X(τi), Y(τi), ηi))

i.e.,ϕ(s, ξ(0), y(ξ)) ≥ Jv(s, ξ).
Since ν is taken arbitrary, then (a) is satisfied. Next, we assume that conditions (ix)-(xi) are satisfied.
Then by (3.7)-(3.8) applied to v = v∗we have (2.7) hold by (ix) since (X(t), Y(t)) ∈ D for t ∈ (τi,θi+1).
Equality in (3.8)-(3.9) is obtained by (x). Equality in (2.7) is also obtained by our choice of η∗. Since
(X(t−i ), Y(ti) ∈ ∂D and ϕ = Mϕ outside D we conclude that equality in (3.11)-(3.12) is obtained.
Hence

ϕ(s, ξ(0), y(ξ)) ≥ Jv(s, ξ) = Φ(s, ξ)
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and v∗ is optional. �

4. Application

This application is an extension to the no-delay case of a problem of optional stream of dividends
with transaction costs. Suppose that if we make no interventions the amount X(t) = Xξ(t) available
(cash flow) is given by

dX(t) = [θX(t) + αY(t) + βZ(t)]dt + σ[X(t) + βEλδY(t)]dβ(t), t ≥ 0 (4.1)

X(s) = ξ(s),−δ ≤ s ≤ 0 (4.2)

where

Y(t) =
∫ 0

−δ
eλsX(t + s)ds, Z(t) = X(t− δ).

Suppose that at any time t we are free to take out dividend η from X(t) by applying the transaction
cost K(η) = c + γη, where c > 0 and γ > 0 are constants. The constant c is called the fixed part and
the quantity γη is called the proportional part, respectively, of the transaction cost. The resulting
cash flow X(ξ,v) is given by (4.1)-(4.2) and for τi ≤ t ≤ τi+1

X(τi+1) = X(τ−i+1) − c− (1 + γ)ηi, i = 0, 1, 2, . . . (4.3)

Let

S = {(s, x, y) : x + βeλsy ≥ 0}. (4.4)

So that

T∗(ω) = inf{t ≥ 0 : X(t) + βeλsY(t) ≤ 0}.

Define

Js,ξ = Es,ξ[

∫ T

0
e−ρ(s+t)(X(t) + βeλsY(t))kdt +

∑
τi<T

e−ρ(s+t+τi)ηi], (4.5)

ρ is a constant (discounted exponent). The functional Js,ξ represents the total expected discounted
dividend up to time T, k ∈ (0, 1) is a constant. The problem is to find the optional impulse v∗ ∈ ν
and the value function Φ such that

Φ(s, ξ) = sup
v∈ν

Jv(s, ξ) = Jv∗(s, ξ)

we try to find a function ϕ(s, ξ(0), y(ξ)) of the form

ϕ(s, x, y) = exp(−ρs)ψ(x, y)

satisfying the conditions of Theorem 3.1. Assume that the continuation region D has the form:

D = {(s, x, y) : 0 ≤ x + βeλδy ≤ ω∗} (4.6)
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where ψ(x, y),ω∗ are to be determined.
According to this choice of ψ we have

eρs`ψ(s, x, y, z) = − ρψ+ (θx + αy)
∂ψ

∂x
+

1
2
σ2[x + βeλsy]2

∂2ψ

∂x2

+ (x− λy)
∂ψ

∂y
+ z[β

∂ψ

∂x
− e−λδ

∂ψ

∂y
+ (x + βeλδy)k = 0

(4.7)

for all z ≥ 0 and all (x, y) ∈ D. This is only possible if

β
∂ψ

∂x
− e−λs∂ψ

∂Y
= 0. (4.8)

The general solution of (4.8) is ψ(x, y) = h(ω) for some h : R→ R, where

ω(x, y) = x + βeλδy. (4.9)

By substituting for this ψ into (4.7) we obtain:

−ρh(ω) + (θ+ βeλδ)[x + (θ+ βe−λδ)(α− λβeλδ)y]h
′

+
1
2
σ2(x + βeλδy)2h

′′

(ω) + (x + βeλδy)k = 0.
(4.10)

Equation (4.10) has a solution depending on ω if and only if:

x + (θ+ βe−λδ(α− λβeλδ))y = ω(x, y)

i.e.,

α = βeλδ(λ+ θ+ βeλδ). (4.11)

If we assume (4.11) holds, then (4.10) takes the form:

−ρh(ω) + (θ+ βeλδ)ωh
′

(ω) +
1
2
σ2ω2h

′′

(ω) +ωk = 0 (4.12)

which has a general solution

h(ω) = Cωr1 + Dωr2 + Kωk (4.13)

for some arbitrary constants C, D, where

r1 = σ−2[
1
2
σ2
− p±

√
(γ−

1
2
σ2)2 + 2ρσ2; i = 1, 2 (4.14)

where p := (θ+ βeλδ) are the solutions of the equation:

1
2
σ2r2 + (p−

1
2
σ2)r− ρ = 0; r1 ≤ 0 ≤ r2

and

K = −(
1
2
σ2k2 + (p−

1
2
σ2)r− ρ).

If we assume that

ρ ≥ p := (θ+ βeλδ). (4.15)

Then

r2 > 1 (4.16)
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which implies that K > 0 since 0 < k < 1. Choose h(ω) of the form:

h(ω) = Cωr + Kωk (4.17)

where r is given by (4.14). If this is the case, then our solution ψ(s, x, y) gets the form

ψ(s, x, y) = e−ρsφ(x, y);ω ≤ ω1,

ψ(s, x, y) = Mψ(s, x, y);ω ≥ ω1,

where Mψ is:

Mφ(x, y) = sup{φ(x− c− (1 + γ)η, y) + η}. (4.18)

The supremum of

g(η) := φ(x− c− (1 + γ)η, y) + η (4.19)

is η̂ = η̂(x, y) such that

g
′

(η̂) = φD1(x− c− (1 + γ)η̂, y) =
1

1 + γ
(4.20)

or

φD1 = h
′

(ω0) =
1

1 + γ
(4.21)

where D1 is the derivative of φ with respect to the first variable and ω0, x0 are as follows:

ω0 = ω(x− c− (1 + γ)η̂, y) (4.22)

x0 = x− c− (1 + γ)η̂. (4.23)

By equation (4.19) we have

φ(x, y) = h(ω) = φ(x0, y) + η̂ = h(ω0) + η̂,ω ≥ ω1.

In particular,

φD1(x1, y) = h
′

(ω1) =
1

1 + γ
(4.24)

where ω1 = ω(x1, y) and

φ(x1, y) = φ(x0, y) +
(x− x0) − c
(1 + γ)

. (4.25)

To summarize we put

φ(x, y) = h(ω) = cωr + Kωk;ω ≤ ω1 (4.26)

φ(x, y) = h(ω0) +
1

1 + γ
(ω−ω0) −

c
1 + γ

;ω ≥ ω1 (4.27)

where ω0,ω1 are determined by (4.21), (4.23), (4.25) and (4.26), i.e.,

γcωγ−1
0 = −kKωk−1

0 +
1

1 + γ
(4.28)

γcωγ−1
1 = −kKωk−1

1 +
1

1 + γ
(4.29)
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c(ωγ1 −ω
r
0) =

1
1 + rγ

(x1 − x0) + K(ωk
0 −ω

k
1) −

c
1 + γ

. (4.30)

To study the solutions of (4.27)-(4.30), we first consider the function

F(ω) = γcωγ−1
0 + kKωk−1

0 −
1

1 + γ

and

F
′

(ω) = γ(γ− 1)cωγ−2 + k(k− 1)Kωk−2

so that F
′′

(ω) = 0 if and only if

γ(γ− 1)cωγ−2 = k(k− 1)Kωk−2

which has a unique solution

ω = ω = [
k(1− k)K
cγ(γ− 1)

]
1
γ−k > 0. (4.31)

Since

F
′′′

(ω) = γ(γ− 1)(γ− 2)cωγ−3 + k(k− 1)(k− 2)Kωk−3 < 0

for ω < ω and F
′

(ω) > 0 for ω < ω we see that ω = ω is a maximum point for f (ω). From this we
conclude that (4.27) and (4.30) have exactly two solutions ω0 = ω(x0, y) as given in (4.32) and ω1

such that 0 < ω0 < ω < ω1. We know choose ω1 = ω and x0 = x − c − (1 + r)η̂, c is chosen such
that (4.26)-(4.27) defines a continuous function at ω = ω1, i.e.,

φ(x1, y) = φ(x0, y) +
x1 − x0 − c

1 + r
i.e.,

h(ω1) =
ω1 −ω0 − c

1 + γ

or

h(ω1) − h(ω0)
ω1 −ω0 − c

1 + γ
.

Hence
c = (ω

γ
1 −ω

γ
0)[
ω1 −ω0 − c

1 + γ
−K(ωk

1 −ω
k
0)] (4.32)

and
η̂ =

x− x0 − c
1 + r

=
ω1 −ω0 − c

1 + γ
. (4.33)

Now, we verify condition (ii)-Theorem 1; i.e., φ(x, y) = Mφ(x, y) on S.
First we assume that ω > ω1. Then if:

ω0 = ω(x− c− (1 + γ)η, y) ≥ ω1

we have by equations (4.26)-(4.27).

φ(x− c− (1 + r), η, y) + η = φ(x, y) −
c

1 + γ
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On the other hand, by by (4.34)

supφ(x− c− (1 + γ)η, y) + η;ω(x− c− (1 + γ)η, y) < ω1

= φ(x0, y) +
x− x0 − c

1 + γ
= φ(x, y).

This proves (ii) for ω > ω1. To verify (ii) for ω < ω1, note that φD1(x, y) > 1
1+γ for 0,ω < ω1 and

therefore

Mφ(x, y) = φ(x0, y) +
x− x0 − c

1 + γ
,ω0 < ω < ω1.

Since
∂
∂ω

[cωγ + Kωk
− h(ω0) −

ω−ω0 − c
1 + γ

] < 0,ω0 < ω < ω1.

We see that φ9x, y).Mφ(x, y) for ω0 < ω < ω1, since φ is increasing, we have

φ(x, y) ≥Mφ(x, y) f or ω < ω0.

Verification of condition (iv)-Theorem 3.1:

ρh(ω) + pω
∂h
∂ω

+
1
2
σ2ω2 ∂

2h
∂ω2 +ωk

≤ 0,ω < ω1.

In our case, this reduces to check that

ρ(h(ω0)) +
ω−ω0 − c

1 + r
+

p
1 + r

ω+ωk
≤ 0,ω > ω1.

Since `φ(x, y) = 0 for ω = ω1 and 0 < k < 1 we see that `φ(x, y) ≤ 0 for ω > ω1 if and only if

ρ > θ = βeλδ := p

which is (4.17). We conclude that the value function of problem (2.6) is given by

Φ(S, ξ) = e−ρSφ(x, y)

where φ is given by (4.26)-(4.27). The corresponding optimal impulse control ν∗ is the following:
Define

D = {(x, y) = 0 ≤ x + βeλδy ≤ ω1}. (4.34)

In case X(0−) < x1(= ω1 − βeλδy), then wait until the first time t = τ∗1 when x(t) + βeλδy(t) = ω1 =

ω(x1, y), then pay out the dividend

η̂1 =
ω1 −ω− c

1 + γ
=

x1 − x0 − c
1 + γ

.

This bring x(t) + βeλδy(t) down the level

ω0 = ω(x0, y) = x− c− (1 + r)η̂+ βeλδy,

i.e., x0 = ω0 − βeλδy. Again do nothing until the next time t = τ∗2 when x(t) = x1 and again
we harvest the amount η̂2 = η̂2, etc. If initially x has a value x(0−) ≥ x1 then τ∗1 = 0 and we
immediately pay out

η̂1 =
x(0−) − x0 − c

1 + γ
.
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In other words, if ω > ω1, then

ω−ω1 = x + βeλδ −ω1 = x− x1,

i.e., we harvest exactly enough to bring x-level down to the value x1. We summarize what we
have proved in the following theorem:

Theorem 4.1. Suppose that θ,α, β, δ,λ and ρ satisfy the following conditions:

ρ ≥ p where p := θ+ βe6λδ (4.35)

and
α = βeλδ(λ+ θ+ βeλδ). (4.36)

Then, with ω+ω(x, y) = x + βeλδy,

Φ(s, ξ) = ϕ(s, x, y) = e−ρsφ(x, y); 0 < ω ≤ ω1,

Φ(s, ξ) = ϕ(s, x, y) = e−ρs[φ(x0, y) +
x− x0 − c

1 + r
];ω ≥ ω1

where φ,ω0,ω1, c are given by (4.26)-(4.27), (4.22), (4.32) and (4.33) respectively, v∗ =

(τ∗1, τ∗2, . . . ; η∗1, η∗2, . . . ) is the optimal impulse control.
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