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Abstract. By the Nehari method and variational method, two positive solutions are obtained for a fractional elliptic
system with strongly coupled critical terms and concave-convex nonlinearities. Recent results from the literature are

extended to the fractional case.

1. INTRODUCTION

In this paper, we are concerned with the study of the existence of positive solutions for the

following elliptic system involving the fractional Laplacian for a given 0 <s <1:

q-2
(- = g2+ Bpupziopu+ A, ke 0,
mﬁl Uzﬁ []9~2v
(_A)S 25 1|t |0 |ﬁ1 v+ — S |u|az|’(’)|ﬁ2 U+ [Jw, xe€), (1'1)
u=v=0, on JQ),
where 1,12, A, 1, are positive, 2; = % is the fractional Sobolev critical exponent, N > 2s,

a1+ p1 =2%, ar+ P2 = 2}, and (—A)® is the spectral fractional Laplacian, in (), defined in section
2.
[ul®~2ulolf and [u|%[v|f~2v,i = 1,2 are called strongly coupled terms. Whenn; =, = 1, a1 =
a, =a, 1 = P2 = pand y = 0, problem (1.1) becomes the following elliptic system:

(=A)u = Zgul*ulolff + Ay inQ,

(—A)0 = 5l 20 + plofi 20 in O, (1.2)
on dQ).
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Systems similar to (1.2), but involving Laplacian or p-Laplacian operators, have been studied
extensively in recent years, for example, the authors in [13] proved that the system admits at least
two positive solutions when (A, 1) belongs to certain subset of IR?. Later, Hsu [12] obtained the
same results for the p-Laplacian elliptic system. There are other multiplicity results for critical
elliptic equations involving concave—convex nonlinearities, see for example [2,4].

Caffarelli and Silvestre [8] gave a new formulation of the fractional Laplacians through Dirichlet-
Neumann maps. This is commonly used in the recent literature since it allows us to write nonlocal
problems in a local way and this permits to us use the variational methods for those kinds. To our
best knowledge, there are just a few results in the literature on the fractional system (1.1) with both
concave-convex nonlinearities and the strongly-coupled critical terms. Motivated by the results
mentioned above, in this paper we extend the work [18], where the fibering and Nehari manifold

methods are applicable to obtain two positive solutions for

= T gl - 2o 4 /\|M|| T Q,
Ao = ’“ﬁl o 2o 4 122 ﬁ PR uelopto 4w, xe (9
U=71p= 0, x € 90

We point out that we adopt in the paper the spectral (or regional) definition of the fractional
laplacian in a bounded domain and not the integral definition. We shall refer the interested reader
to [14] for a careful comparison between these two different notions. To formulate the main result,
we consider

Co={(A, 1) e R® :0 < A%T + u=1 < 0},

2

2
(B P2 T
Al_(zz—ze)) [(2;—q> (keSas) (4

where k; is a normalization constant and ©, S, 44 are constants that will be introduced later. We

assume that
gN
(F): 1<g<2 and O§y<N+sq—7.

Our main results dealing with the problem (1.1) are the following.

Theorem 1.1. Assume that () holds, Then
(i) system (1.1) has at least one positive solution for all (A, ) € Ch,.
(ii) there is Ao < Aq such that (1.1) has at least two positive solutions for (A, 1) € Ch,.

The paper is organized as follows. In a preliminary Section 2 we describe the appropriate
functional setting for the study of problem (1.1), including the definition of an equivalent problem.
In Section 3 we show that the Palais-Smale condition holds for the energy functional associated
with (1.1) at energy levels in a suitable range related to the best Sobolev constants. In Section 4 we
investigate the existence of Palais-Smale sequences and we obtain solutions to some related local

minimization problems. Finally, the proof of Theorem 1.1 is given in Section 5.
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2. FUNCTIONAL SETTING AND DEFINITIONS

In this section, we collect some preliminary facts in order to establish the functional setting. We
denote the upper half-space in ]Ri\[“ by

RN .= [z: (x,y) = (%1, ,xn,y) € RN :y>0},

the half cylinder standing on a bounded smooth domain () C RN by Cq := QX% (0,00) C ]RIJ\ZH, the
cylinder with base Q) and its lateral boundary by d;.Cq := dQ x (0, o). Let ex be an orthonnormal
basis of L2(Q)) with ||ex| ) =1 forming a spectral decomposition of —A in () with zero Dirichlet

boundary conditions and Ay be the corresponding eigenvalues. Let

e8] (o] 1/2
H}(Q) =Ju = Zajej eL*(0): el (o) = [Z a?)\;) <oob.

=1 =1
For any u € Hj(Q)), the spectral fractional Laplacian (~A)*, is defined by
(-A)’u = ZaiAfei.
ieN
Note that ||u||H8(Q) = ||(—A)s/2u||L2(Q). The dual space H™*(Q)) is defined in the standard way, as

well as the inverse operator (—A)™.

Definition 2.1. We say that (u,v) € Hj (Q) x Hj (Q)) is a weak solution of (1.1) such that for all
(p1,92) € HS (Q) x HS (Q), it holds

[ (o0t + (-a)o(-a)tga)ax

_ f (7712*1 |1~ 2|U|.51u(p1 + = a |u|0€2—2lv|ﬁzu¢1)dx
o 2

8 262 (2.1)
+ f i llul‘“lvlﬁl'zvqoz+77 Iulazlvlﬁz'zvqoz)dx
0
|u|‘7 2y [0]~2v
- [ et e
Associated with problem (1.1), we consider the energy functional
1 . < 0 1 1
Tnp(,0) =5 | (I(=A)2ul +1(=A) 20 ) dx - -Q(u,v) - =K (u,v), (2.2)
2 Jq 2 q
where
Q(u,v) = f (ol + nalulfolf?) dx
0
and

,_ |ul? o]
K(u,v) := L(AW + [Jw)dx.

The functional is well defined in Hj (Q) x Hf, (), and moreover, the critical points of the functional
J 2 correspond to weak solutions of (1.1).
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We now conclude the main ingredients of a recently developed technique which can deal
with fractional power of the Laplacian. To treat the nonlocal problem (1.1), we will study a
corresponding extension problem, so that we can investigate problem (1.1) by studying a local
problem via classical variational methods.

We first define the extension operator and fractional Laplacian for functions in Hj, (). We refer

the reader to [3,5,9] and to the referencess therein.

Definition 2.2. For a function u € H}(Q)), we denote its s-harmonic extension w = Es(u) to the cylinder
Cq as the solution of the problem

—div(y""*Vw) =0 inCq
w=0 on d1Ca

w = u. on ) x {0},

and

o

y (X, y)l

where ks is a normalization constant. Define Hy) , (Cq) as the closure of Cy’ (Cqy) under the norm

1/2
0lles (cq) = (ks yl_ZSIlezdxdy) :
; o

We will use the following notations:

H := H5 (Q) xH5 (), H:=Hj, (Ca)xH;, (Ca),
Liw = —div (yl_ZSVw),

and ||(wy, w>) |~ = |lw|? ws||? .
Iawr, wn)I, = ol + lkoalfy o

By the arguments above, we can reformulate our problem (1.1) in terms of the extension problem

as follows

Lswy =0, Lsw; =0 in Cq

W, = wy = 0 on aLCQ

Wi =U Wr=0 on Q) x {0} (2.3)
q-2

T = Bty 2wnlfror + Bl 22wy + AR on Q1 (0)

S

q-2

02 — By | | 12w, + 222w 2w P20, + }lw—ym on () x {0},

v 2 23 x|

where (wq,w2) = (Es(u), Es(0)).
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An energy solution to this problem is a function (wy,w;) € H such that

ks y " Vw, - Vrdxdy + ks y " Vw, - Vpodxdy
CQ CO

(2.4)

=f‘ D o2 wafrawy y + 222 1[92 2w o0y |
oxiop \ 25 23
ke |1 |2 ws P2 wszZ)dx

+ (f%wwwlmw+
Ox{0} s

w1 172wy |wa|12w,
AN— _ dx,
* Lx{@} ( |x” P |x|” P2 |

for all (¢1,¢2) € H.
If (wy, w,) satisfies (2.3), then the trace (u,v) = (w1(+,0), wz(+,0)) € H is an energy solution to
problem (1.1). The converse is also true. By the equivalence of these two formulations, we will use
both formulations in the sequel to their best advantage. Finally, the energy functional associated
with problem (2.3) is the following,
Tyu(w) =TI, (w,w) = %Il(wl,wz)ll(H ; LX o (A% + y%)dx
1

> (s [ewa P + nafeoy 12wl ) dx.
s JOx{0})

Clearly, the critical points of 7, ;, in H correspond to critical points of J, i H-R
The following lemma is due to [5], which reflect the relationship between the spaces Hj(Q2) and
H;, (Ca).

Lemma 2.1. i) ||u||H[s](Q) = ||Es(14)| H: (Ca)’ forall u € H3(Q)).

Ca
ii)For any 1 < r < 23 and any w € Hy; (Cq), it holds

2
(f Iu(x)lrdx) <C YUV (x, y)Pdxdy,  u = Tr(w), (2.5)
Q Ca
for some positive constant C = C(r,s,N, Q). Furthermore, the space Hy, , (Cq) is compactly embedded
into L"(Q)), for every r < 2.
Remark. When r = 2}, the best constant in (2.5) is denoted by S(s, N), that is
fc 125V (x, y)lzdxdy

S(s,N):= inf (2.6)

It is not achieved in any bounded domain and, for all w € H® (IRIXH),

N-2s
N

|w(x,o)|%dx) . 2.7)

RN

fN ] yIE IV (x, y)Pdxdy > S(S,N)(
RN
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However, S(s,N) is indeed achieved for the case Q) = RN when w,(x, y) = E(u.), where u, takes

the form
o(N=25)/2
(x) := e>0,xeRN, (2.8)
" (€2 4 xf2) V22 '

25—N

Let U(x) = (1 + lez)T and let ‘W be the extension of U [3,13]. Then

W(x,y) = Es(U) = Cnsy® fR . Uiz

S

o=z +y2) 2
is the extreme function for the fractional Sobolev inequality (2.7). The constant S(s, N) given in
(2.6) takes the exact value

Now, we consider the following minimization problem

Joo v (IVan? + Ve ) dxdy

Shapi= inf_ 55 (2.9)
() RO () (mlwrleroalPt + faleoy 2ol ) de)
We define
1 2
F(r) = T s 2.10)

S

(mh + nptf2) %
Since f is continuous on (0, o) such that 11%1+ f(r) = l1r+n f(t) = 400, then there exists 79 > 0
T— T—1+00
such that

f(70) :==min f(t) > 0. (2.11)
™0
Using ideas from [1], we establish a relationship between S(s, N) and S, 4 4.
Lemma 2.2. For the constants S(s,N) and S, q g introduced in (2.6) and (2.9), it holds
Snap = f(10) S(s,N). (2.12)
In particular, the constant Sy q g is achieved for O = RN.

Proof. Let {z,} ¢ Hj, (Ca) be a minimization sequence for S(s,N). Consider the sequences
W1,y = zy and Wy, := 102z, in Hy; (Cq). By (2.9), we have

1422 Jo, ¥ IVau(x, y)Pdxdy

(fQ |z (x,0)[% dx)

> Sy - (2.13)

!"IN
XS

(nlfc + 127, )
Letting n — +-oo yields
f(70) S(s,N) = Sy ap- (2.14)
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On the other hand, let {(w1 ,, w2,)} C 7:{\{0} be a minimizing sequence for S . Set hy, 1= s,wo
for s, > 0 with fo{O} w1 u*dx = fo{O} |hy/>dx. Then Young's inequality yields

f (w1 ol Pdx < = lwy o[> dx + 1 = dx
Qx{0) 2

s Jax(o) 25 Joxo)

= [ = [
Qx{0} Qx{0}

Joo 75 (IVeor,u(x, y) P + Vo (x, y) ) dxdy
)2/2;

In turn, we can estimate

(f()x{()} (M1l [wo,nlPt 4+ n2lwn pl2]wws ,|P2) dx
Jeo, V2N wL(x, ) Pdxdy
_ ((ms’;ﬁl * nzs;ﬁz) fo{O} |w1,n|2~:)
Sa2 [ Y E VR (x, ) Pdxdy
(52 + 125272) fryeg PP
> f(s5;1)S(s,N)
> f (o) S(s,N).

Passing to the limit in the last inequality we obtain

2
25

NII\)

£
S

f(70) S(s,N) < Syap-
Which together with (2.14) implies that
Snap = f(70) S(s,N).
O

Let Ry > 0 be a constant such that Q ¢ B(0,Rg), where B(0,Ry) = {x € RN : |x| < Ro}. By

Holder’s inequality and (2.6), for all (wy,w;) € H,1<g<2and 0<y < N +sq— %[, we get

q

4 s 2%
w 2z \= 1 \%- ’
f —Lix < (f [wq |74 dx) f (—) T dx
ax(oy Xl Qx{0} o\l

: 2
g 1 \Z— )
< (ksS(s,N)) 72 [l IT, f (_) ax
(s ( )) |01 ] O,L(CQ) B(O,R,) || (215)

_a Ro yN- S
< (S6N) Hinl, fo dr

= Ol ||’
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and
q
f wZ dx < ®||w2||q (2.16)
axjoy X T Hj, (Ca)’
where
%9
2N —gN +2s N P
= q o q RON Y= 7 +sq (ksS(S,N)) Z (217)
Y

Now we are looking for the solutions of problem (1.1). Equivalently, we consider the solutions
of problem (2.3). Since the energy functional I , is not bounded on H, it is useful to consider the

functional on the Nehari manifold

Ni o= {z € F\{0) - <I;w(z),z> =0}. (2.18)
Thus, z = (wy, w2) € N, if and only if

(13,,(2),2) = Iz, - K(z) - Q(2) = 0, (2.19)

where

Qlz) := f (mlor 1" oo + n2|w1|“2|w2|52)dx
Ox{0}

w1 |7 |7
K(z) := (A— + )dx
@) LX{O} EARTT

Define ®(z) = <I;t H(Z)’Z>’ then for all z = (wy, w2) € Ny, we have

and

(P'(2),2) = 2ll2ll’, ~ 2Q(2) - gK(2)
= 2=z, - (21 -9) Q(z) (2.20)
= (2-2) I, + (22 - 9) K(2).
Thus, it is natural to split NV, ;, into three parts corresponding to local minima, local maxima and
points of inflection, i.e.
N, =1z € N (@'(2),2) > 0},
Ny, =z e Nay: (@ (2),2) <0}, (2.21)
NS, = {z e Ny (@' (2),2) = 0}
It is clear that all critical points of 1, , must, lie on N, , and, as we will see below, local minimizers

on N, , are actually critical points of 7 ,. We have the following results.

Lemma 2.3. The energy functional I, is bounded below and coercive on Ny .



Int. J. Anal. Appl. (2024), 22:107 9

Proof. Letz = (w1, w2) € Ny . From (2.15), (2.16) and (2.19) by the Holder inequality, we get
(1 o1\,., (1 1
1@ = 5 - 2 1, - (2 - 3 )

S _(L_1 ( q q )
> NIIZII(H (q 2;) Ml | S’L(CQ)JrHIIszI : (Co) ® (2.22)
2.

-9
Szl — (L2 L) (a w7
R | CaRa N =)

where @ is given by (2.17). Since 1 < g < 2, the functional 1, , is coercive and bounded below on
N A O

Lemma 2.4. (Natural Constraint). Suppose that zg is a local minimizer of I ,, on Ny , and that zp ¢ Ng w
then I | (z0) = 0in H.

Proof. Suppose that zg = (wo,1,wp2) is a local minimizer of 74, on N, then I,,(z0) =

min 7, ,(z) and (2.20) holds. Furthermore, by the theory of Lagrange multipliers, there exists

ZEN/\,H

0 € R such that 7" y (z0) = 0P’ (20). Aszg € Ny, we get
0= <I;\,H (Zo) ,Zo> = 6(@/ (Zo) ,Zo>.
Since zg ¢ N??/#’ (9’ (20),z0) # 0. Consequently, 6 = 0 and I’Ml (z0) =0in HL. O
Let A; be the positive number defined in (1.4). Then we have the following result.

Lemma 2.5. Assume that (A, 1) € Ca,. Then Ngy =0.

Proof. Assume by contradiction that there exist A > 0 and p > 0 with 0 < ATT 4 yZZTq < Aj and
such that Ng p #0. Letz e Ng " Then, by virtue of (2.20), we get

* *

2s_q 2 _zs_q
> Q) Il = 5

2, = K(2).

By Holder inequality and the Sobolev embedding theorem, we have
2-¢ 2|
121l 2[*— ksSha, } ’
2| =gy (o)

Il <(2;_"®2“’ A% gt
i< (550) (V)
S

which leads to the inequality

2i-q \FI[ 2- 1z
/\Zz_q+yn2(s q@) [ _‘Z] (kss,,,a,ﬁ)Z] = Ay,

contradicting the assumption. m]
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From Lemma 2.5,if 0 < /\2 7+ y 7 < A1, we can write N , = N+ UN and define

+ o s -
apu _zell{lff},‘z—/\y() @y, .—Zellr\llAfr“fA,y(Z), ay, = 1}r\1{)fryfA#()

Moreover, we have the following properties about the Nehari manifold Ny .

Theorem 2.1. The following facts holds

(i) If (A, i) € Ca,, then we have a , < oﬁ <0;

(i) If (A, 1) € Cg/2)2/C-0 p,» then we have a fWe co for some positive constant cy depending on A, u,N, q, s
and ©.

Proof. (i) Letz = (wq,wy) € Njy. By (2.18), (2.20) and (2.21), it follows that

||z||2 > Q(z). (2.23)

2’(—
According to (2.18) and (2.23), we have that

2 q q 2

1 1 1 1\2-q], .
<[(2 q)+(q 2;)2;— ]” i

(2_) 2

el <0

Therefore, by the definition of a, ,, a A We can deduce thata, ;, < aﬁy <0.

(ii) Suppose that /P%q + [uz%q € (O, (%)zf" A1) andz = (wq,wy) € Nf\_u' By (2.9), (2.20) and (2.21), one
has

|

-4
7l < Q@) < (ksSnap) : ||z||

which implies that

1

N

2 — %2 N
llzllz > (ﬁ) (ksSpap)” - (2.24)
S
From the last inequality we infer that

22 2—g
T)u(z) = =I5, - =—K(z)
{J 225 H qzs

S 12 2—q 2 2\ 7
> el | S - (5 (14 u7) T
W[N H 2% H
q

2-q
2_ q b3 gN 2% _9 (2;‘7)1\] 2 — q 2;-2
A me N ks n,a ’ : kS a :
g (2(22—4)) () [ ;. (5hes) (2(2*—q)

2;—q( 2 2\7
—— A" + H) Of.
w0 )
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Thus, if /\2277 + yz%q < (q/Z)ZZTﬂAl, then
I)u(z) >co, forallze N
for some positive constant cp = ¢g (A, 1,4, N, s, ©). O

Theorem 2.2. Let (A, 1) € Cp,. Then, for every z = (wy,w,) € H with Q(z) > 0 then there exist
(unique) t~ =t~ (z) > 0and t+ = 1 (z) > 0 such that

+ + - -
t ZEN/\/H, tzeNA,y.

In particular, we have

Y <tmax <17,  tmax i=

(2- )l |57
-9 Q(Z)}

as well as

Tou (t+z) = min T,,(tz), Ip,(t72) = max Tyu(tz).

0<t<tmax

Proof. For each z € H such that Q(z) > 0, and for all t > 0, we have
(1, (t2), tz) = Pl - #Q(z) — 1K (2).

We define g,h : RT — R by

§(1) = PRI, - BQ(z) - K(2),

2712 _ 2

h(t) = PR, - 579Q(2)

Clearly, we obtain #(0) = 0, and h(t) — —co as t — co. Because
W(t) =1 [2-gllZ, - (2 -q) #72Q(z)], forallt>0,

solving i’(t) = 0, we obtain

%2

(2= q)llzII%
Frnax = [ H > 0.

(2:-9) Q(z)
Easy computations show that ///(t) > 0 for all 0 < t < Fmax and #/(t) < 0 for all t > Fynax . Thus h(t)

attains its maximum at fray, that is,

h ({max) =

=9
(2- ‘7)||Z||§~{ Sl 2” 2
- ||,
(2%-9)Qz)| Z-q H
Then from (2.17), (2.15) and (2.16), by the Holder inequality, one gets

8 ({max) =h (Emax) - K(Wl, ZUZ)

2-q

(2-q)lIzIZ, zzfzzz_zll - f sz . o ) (2.25)
= zZIl> — _ P X
2-9Q@) | 2-a"" " Jowo "l T Fil
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2-q
252
(2-9) ||Z||2 %-2
) N2, (ksSpap) )
q
(Auwln o Rl )O

qz 0 v 2 2\F
D) g5 Z 220 - (175 %) e

b

where O is as in (2.17) and the last inequality holds for every AT5 + yzi € (0, Ay). It follows that

there exist tTand t~such that

g(t*) =g(t)and ¢ (t*) >0>¢ (1),

for0 < t™ <fmax <t . Wehavettz € N;r#, t7z e NA_Mand

\%

4

Thu(tz) 2Ty ,(tz) 21y, (t+z),
foreacht € [t*,t7],and I, (t7z) < I ,(tz) for each t € [0,t"]. Thus

IM,(t*z): min 1, ,(tz), Z,,(tz)= maxI,,(tz).

0<t<tm1x t>Fmax

3. THE PALAIS-SMALE CONDITION

In this section, we will find the range of ¢ where the (PS), condition holds for the functional
Thu

Definition 3.1. Let c € Rand I, € C}(H,R).

(i) {2y} is a (PS)-sequence in H for TyuifIpu(zn) =c+o(1)and I;\,,u (zn) = o(1) strongly in H~" as
n — oo,

(ii) We say that I, satisfies the (PS). condition if any (PS).-sequence {z,} for I, , has a convergent

subsequence in H.
We shall need the following preliminary result.

Lemma 3.1. (Uniform Lower Bound). Let {z,} C H is a (PS).-sequence for T Ay With z;, — zin H and

I y (z) = 0 and there exists a positive constant Cy such that

Tou(2) 2 ~Co (275 + i), (3.1)

where

2
2- N +2sq\ =
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Proof. Considerz, = (w1, wy,) € Handz = (wy,w,) € H. If {z,}isa (PS).-sequence for T Au With
z, — z in H, then w1, — w1 and wp, — wy in HS,L (Ca), as n — oo. Then, by virtue of Sobolev
embedding theorem (Lemma 2.1), we also have w;,(-,0) — wi(-,0) and wy,(-,0) — wy(-,0)
strongly in L7(Q)), as n — oo. Of course, up to a further subsequence, w; ,(-,0) — wi(-,0) and
wyn(+,0) — wy(-,0) ae. in Q. It is standard to check that 7 :w(z) = 0 . This implies that

<I ;W(z),z> = 0, namely
b [y (VP + Vo) ey = K 02) + Qe w2). (32)
Ca

Consequently, we get

11
Iu(z) = (5 - f)ks fc Y7 (IVaor P + Voo ) dxdy
S Q

q q
(L[
9  2) Jaxy VXl |x[”

Combining (2.15), (2.16) and the Young inequality, we have

g q
K(z) < (/\ l[zor s (Ca) T p Il 5,L(Cn))®

1
25 (1 1\,
pvd el
qN q 25 O,L(CQ)

(3.3)

with

N
4
I
N
N |
L)
||
—_
=
|
E
+
N
1)
B
N —
NI
| —
N
<

We obtain

S S 2 2
> TIAIE, - S IElE, - Co (175 + i)

— Gy (Aﬁq ﬂﬁ).

Then (3.1) follows from (3.3) with Cy = (% - %) C. O
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Lemma 3.2. If {z,} C Hisa (PS)-sequence for T )y, then {z,} is bounded in H.

Proof. Let z, = (w1, w2,) C H be a (PS).-sequence for I Au and suppose, by contradiction, that

l|zllz — o0, as n — oo. Put

_ — Zn Win Won
Zn = (W1, Wop) = = , -
lIzllz Izl " llzllz

We may assume thatz, — z = (w1, wy) in H. This implies that w1 ,,(-,0) — w1 (-,0) and wy (-, 0) —
wy(+,0) strongly in L"(Q)) for all 1 < r < 2 and, thus,

Alwy |7 Wy |7 Al wo 1
f w1l +ul 21l )dx:f Al | +ul 2| )dx+on(1).
axo, X7 |x[” axqoy Xl |x[”

Since {z,} is a (PS). sequence for I Au and ||zllz — oo, there following hold:

ks

> f Y2 (V@ uf? + V) dxddy -
Ca

q-2 ~ —
el f Mialt | planlt)
oxior 1l ||
x{0} (3.4)

f T [Bonl + 1211 T nledx = 0n(1),
Ox{0}

and

_ _ — - AMwy | ulws )
kf 125 (V@1 uf? + Voo ) dxd —||z||”’~2f A R
“Jeo? (v 2ol iy H Joxoy Il x|

22 ~ ~ —~ ~
— Il f (111l |l + 2l 0|2 012 e = 04 (1),
Ox{0}

Combining (3.4) and (3.5), as n — oo, we obtain
o [ 9 (VP V) ity
Ca

2(2% — _ Al |7 Wo 4|1
_ ( ,S, 5])”2“17~ 2f |w1,n| n [J| 2,n| )dx—l—on(l).
7(2-2)""H Jaxoy =l [x[”

(3.6)

In view of 1 < g <2 and |lzllz — oo, (3.6) implies that
ksf y' (|V51,n|2 + IVﬁz,nlz) dxdy — 0,
Ca

as n — oo, which contradicts to the fact that |r2n|| =1foranyn >1. O

N

Lemma 3.3. Suppose that (F) holds and 0 <y < N 4 sq — @,for all —o0 < ¢ <o = g (Sq,a,ﬁ)% -
Co (/\Zifq + y’A‘ZTq), then I, satisfies the (PS). condition in H, where Cy is given by Lemma 3.1.

Proof. Let {z,} € H be a (PS)-sequence satisfying 7, , (z4) = ¢ +0(1) and T hu (zn) =0(1), where

2y = (w1, W2, ). By Lemma 3.2, we see that {z,} is bounded in . Passing to a subsequence (still
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denoted by {z,} ), there exists z = (wq, wy) € H such that

Wiy = W1, Wap — W, weakly in H} , (Ca),
w1,(+,0) = wi(-,0), wan(-,0) = wa(-,0), stronglyinL’(Q)(1<r<2;), (3.7)
w1,(-,0) = wi1(-,0), wru(-,0) = wy(-,0), ae. inQ.

Hence, we have

Alwq |7 wa, 7 Al |7 wlf
f w1, i plws, )dx _ f |ow1] n plws| )dx+0n(1)-
ax{0) Qx{0}

|x” |x[” |x[” |x[”
Set Wy 1= Wy, — W, Way := Way —wp and z, := (W1, Wo,). From Brézis-Lieb’s lemma [6], it
follows that
2
[l = 213, = ll21, + 0a (1), (3.8)

and by Lemma (2.1) in [11] one has

f B [ it — f 1l 0 il — f il loafidx +o(1), i=12  (39)
Qx{0} Qx{0} Qx{0}

Since I, (zq) = ¢ +o0(1) and I} u (zx) = 0(1), and by (3.7) to (3.9), we can deduce that
1 2 1 —~ —~ —~ —~
SRl - = (111l 2 0l + M2l 0|2 012 dx = € = T () + 04 (1), (3.10)
2 25 Jaxo)

and
El7, - f (M1l @2l + 1212010l 2 0,0/ )
Qx{0}

(3.11)
= (T}, (), 2) = (T ,(2),2) + 0u(1) = 04(1).
Now, we can assume that
lim [ = lim Q@) =1 (3.12)

If | = 0, the proof is complete. Assume ! > 0, then it follows from (3.12) and the definition of S; 4
that

[Eully > 10005 Go),

2 . 2 . 2
ksSq,a,ﬁfzs = ksSq,oc,ﬁ nlglolo Q% (An) < nlgrc}o |rz\n||7:[ ={,
which implies that
N
02 (kSyap)® - (3.13)
In addition, from (3.12) to (3.13) and Lemma 3.1, we have
1 1 s ot 2 2
c= (E - 2—;)5 + (2 2 (kSpap)™ = Co (AH + w) = Coo,

which contradicts the definition of c. Therefore, I = 0 and (w1, w2,,) — (w1, w2) strongly in H.

The proof is complete. o
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4. EXISTENCE OF PALAIS-SMALE SEQUENCES

Lemma 4.1. Let (A, u) € Ca,. Then, for any z € N, there exists r > 0 and a differentiable map
&:B(0;r) € H — Rt such that £(0) = 1 and E(h)(z—h) € Ny, for every h € B(0;r). Let us set

q-2 2wk
Dy i qf (/\lel w1y i [le2| wy Z)dx
Qx{0} |x|” [x|”

D5 := f (é‘flfhlwl|D”_2wlhl|7«02|ﬁl + il | |w2|ﬁ]_2w2h2) dx
QOx{0}

+ f (0(2772|w1|a2_2w1h1|w2|ﬁ2 + ﬁzﬂzlwllazlwzlﬁz_zwzhz) dx,
Ox{0}

forall (hy,hy) € H and (wy,wy) € H. Then

D3+ Dy — Dy

(€01 = (2= )llall’, - (25— 9) Qw1 w2)

(4.1)

for all (hy,hy) € H.

Proof. The proof is almost the same as in [17]. For z = (wy,w;) € N, 2\u, define a function F; :
R xH — R by

F:(&w) =(I} ,(E(z=p)),E(z - p))
=&z - pll, - £*Q(z - p) - EK(z - p).

Then F,(1,0) = <I’A y(z),z> = 0 and, by Lemma 2.5, we have

AP (1,0) = (¥ (2),2)

de
= (2=2) ll2llZ, + (25 - 9) Q(z) # 0.

According to the implicit function theorem, there exist 7 > 0 and a differentiable function ¢ :
B(0;17) ¢ H — R such that £(0) = 1 and formula (4.1) holds, via direct computation. Moreover,

F.(£(h),h) =0 forallh € B(0;n),
which is equivalent to
(7}, (E(W)(z=h)),E()(z=h)) =0 forall h € B(0;n),
thatis £(h)(z—h) € Ny 4. o

Lemma 4.2. Let (A, u) € Cp,. Then, for any z € N " there exists r > 0 and a differentiable map
& :B(0;7) € H — Rtsuch that £~ (0) = 1and E~(h)(z—h) € N;yfor every h € B(0;r).
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Proof. Arguing as for the proof of Lemma 4.1, there exists r > 0 and a differentiable function
& :B(0;r) ¢ H — Rtsuch that £(0) = 1, E(h)(z— ) € Ny, for all i € B(0;r) and formula (4.1)
holds. Since

(@'(2),2) = 2-lllZ, - (21 - 9) Q(z) <0,
by the continuity of the functions &’ and £, up to reducing the size of r > 0, we get
(¥ (& (W) (z=h)), & (h)(z=h)) <0.
This implies that the functions £~ (h)(z — h) belong to NXM. m]

Proposition 4.1. The following facts hold.
(i) Let (A, 1) € Cn,. Then thereis a (PS)a, ,~sequence {zy} C Ny for Iy .
(ii) Let (A, ) € C g py2/2-0)p,- Then thereis a (PS)aq#—sequence {zn} C Ny for Iy,

Proof. (i) By Lemma 2.3 and Ekeland Variational Principle [10], there exists a minimizing sequence
{zn} € N, such that

1
IA,y (Zn) < QA u + EI

1
Thu(zn) < Ihu(w)+ - lw—zullg, foreachw e N ,. (4.2)

Taking 7 large and using @, , < 0, we have

1 1 1 1 w1l Jwynl?
Tru(zn)=|z—= Z2~——__f (A T | )dx
A (2n) (2 2;)” I (”l 22) axiop\ Xl S (4.3)

This yiclds that

4925 f ( 1,7 Iwz,nl")
—_——ayy < A + dx
2(2:-9) M axioy \ ¥ H

2

(4.4)

2\ 2 q
P yz—q) lll’. ©.

2
-

(1
Consequently, z, # 0 and combining with (4.3) and (4.4) and using Holder inequality

*

~ 72 )|
llzll.z > —mm,y A%+ 2 ,
S

and

Now we prove that
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Fixn € N. By applying Lemma 4.2 to z,,, we obtain the function &, : B (0;7,) — R*for somer, > 0,
such that &, (1) (zo —h) € Ny . Take 0 <o <71y Letw € H with w # 0 and put h* = ”;ﬁ;’{' We set
hy = &n (B) (zy — "), then hy € N ,, and we have from (4.2) that

1
I)\,y (he) = I/\,y (zn) 2 L lIho — Zn |l -

By the Mean Value Theorem, we get

’ 1
(T ) o =2} + 0 (lha = zallzg) = = o = Zullg
Thus, we have
4 * * /4 % 1
(Lo (@), =1 )+ (&0 () = 1) (T}, (2n) 2w = 1) = =l = zallgg + 0 (1Mo = zullz).
Whence, from &, (h*) (z, — ") € Ny, it follows that

—o <I’M (zn), W> + (& (H) = 1)(T} , (20) = T, (o) 20— H°)
1
> =~y = zullgg + 0 (Mo — zlly) -
So, we get
, w 1 o(llhg _Zn”ﬂ
I (z0) =) < — e = zullg + o(Ih. =)
A wllg | T no (4.6)

I/

e p =T, )z ),

Since [|h — zullg < 0l&n (B) | + €0 (B) = 1llIzll¢ and

& (h7) -1 ,
im =0 ¢ 0

For fixed n € IN, if we let 0 — 0 in (4.6), then by virtue of (4.5) we can choose a constant C > 0
independent of ¢ such that

4 w C ’
(71 ta0) i) < = (14 2O
Thus, we are done once we prove that ||€,’1(0)|| 4, Temains uniformly bounded. By (4.1), (4.5) and
Holder inequality, we have
Callhllg

(€0 (0), B) | < (2= IR, = Qw1 wa)

for some C; > 0. We only need to prove that

2= @)l ~ (25— ) = Qg w2,) |2 Ca,

for some C, > 0 and n large enough. We argue by contradiction. Suppose that there exists a

subsequence {z,} such that

(2 - q)”Z”(zi{ -2 (2: - ‘1) Q(wl,n/ w2,n) - On(1)~ (4.7)
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By virtue of (4.7) and the fact that z, € N, ,, we have

(25 -9)
2-q

2-q
2 -2

Iz, = Q(win, won) +0u(1), I, = K (zu) + 0u(1).

Taking into account that 7, , (z,) — ay, < 0asn — oo, we have |z|lz + 0 asn — co. Then,

arguing as in the proof of Lemma 2.5 yields (A, i) ¢ Cx,, a contradiction. Then,

w C
I (zn), ——) < —.
< v (3) ||w||¢~{> "
This proves (i). By Lemma 4.2, one can prove (ii), but we shall omit the details here. m]

Now, we establish the existence of a local minimizer for 7 A in NI#.

Proposition 4.2. Let (A, i) € Ca,. Then I, has a local minimizer z* in N/{rysutisﬁ/ing the following
conditions:
; — — ot ,
(1) I/\,H (Z+) =0\u = a/\,# <0
(ii) z"is a positive solution of (2.3).

Proof. By (i) of Proposition 4.1, there exists a minimizing sequence {z,,} = {(w1,n, w2,,)} for I Ap Iin

Nju such that, as n — oo,

Ty (zn) = ap, +o0,(1) and ij (zn) = 0,(1) in HL. (4.8)

By Lemma 2.3, we see that I , is coercive on N, ,,, and {z,} is bounded in . Then there exists a

subsequence, still denoted by {z,} and z™ = (w;“, w;“ ) € H such that, as n — oo,
W1y = W, Wy, — w,, weakly in Hy (Ca),
W1y = W, W, — Wy, strongy in L'(Q)) forall 1 < r < 2,
Ir , 5 a.e. inQ),

Win = Wy, Wy > W

up to subsequences. This implies that, as n — oo,
K (za) = K(z") + 0a(1). (4.9)

We claim that z*is a nontrivial solution of (2.3). From (4.8) and (4.9), it is easy to verify that z*is a
weak solution of (2.3). From z, € N, ;, and (2.3) we deduce that
q(25-2)

q2;
K(zy) = =L |z|2, -
(zn) 2(2;—51)”2”71 Z-7

Tap(z). (4.10)

Let n — oo in (4.10), by (4.8), (4.9) and a, ,, < 0, we have

*

K(Z+) > _21]25 Apu > 0.

*_
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Therefore, zt € N, 2,u 18 a nontrivial solution of (2.3). Now we show that z, — z T strongly in H and
Ty, (z") = ay,. Since z* € N, ,, then by (4.10), we obtain

*

S 2 Tq 0 o
_N”Z ”(H—EK(Z)

.S _2;_‘1
< ,;ggo(Nuznﬂ oy K(zn>)

= lim 7, (z0) = app.

n—oo

This implies that 7, , (z") = ay , and lim; e ”Z”?f( = ||z+||fi{. Setz, = z, —z". Then, that

[l = V212, = 1212, + 00 (1):

Hence, z,, — zTin H. We claim that z*+ € N;’y. Assume by contradiction that z* € NA_#' Then, by

Theorem 2.2, there exist (unique) £ and t; with £z* € NJ and t;z" € N In particular, we have
p o

t| < t; = 1. Since

d . b

EI/\,F (tZ )|t:t;r = 0, and E

there exists £ < t* < t7such that 7 , (t‘;r z+) < I, (t'z"). By Theorem 2.2, we have

Thu (tfzJ“) <Iyu (t*er) <Thyu (t;z*) =T, (z+),

.Z—)\,” (t2+) |t:t;r >0,

a contradiction. Since 7 , (zt) = Ihu (Iwi’l, Iwgl)and (Iwi’l, Iwzrl) € N),u, by Lemma 2.4 we may

assume that z"is a nontrivial nonnegative solution of (2.3). Then by the Strong Maximum Principle

+

[ [9], Lemma 2.4], we have wy,

w; > 0 in Cq, hence, z*is a positive solution for (2.3). m]

Next we will use w, = E; (u.), the family of minimizers for the trace inequality (2.7), where u,
is given in (2.8). Without loss of generality, we may assume that 0 € (). We then define the cut-off
function ¢ € C° (Ca),0 < ¢ <1 and for small fixed p > 0,

1, (xy)€B,

P(x,y) = o
0, (x,y)¢ By,

where B, = {(x, y) P +y? < p?y> O}. We take p so small that By, ¢ Cn. Recall ‘W is the
extension of U introduced in Section 2, we have (cf. [3]) [VW (x, y)| < Cy ' W(x,y). Let
1

Ue(x) = ————5, €>0.
(e2+xP) =
Then the extension of U, (x) has the form
U, (z)d
W, (x/ y) — CN,syzs a(Z) Z — = 625—Nrw(3€_cl %) )

RV (|x — 22 + yz)Nﬁ
Notice that gW, € Hj | (Cq), for & > 0 small enough.
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Lemma 4.3. There is z € H\{0} nonnegative and A* > 0 such that for (A, ) € Ca-.

sup J),(tz) < Ceo,
120

where ce is given in Lemma 3.3. In particular, ) < Coo forall (A, 1) € Ca-.

Proof. By an argument similar to that of the proof of [ [3], formula (3.26)], we get

2 = 1-2s 2
Hy, (Ca) — ks f]R _— VW, [“dxdy + O(1)
+ (4.11)
= gZS—Nks f yl—Zslvfw(x, y)lzdxdy + O(l)
]RIJ\rHl

We notice that

(f)llg lpU, %dx =
” f T (

€2 + |x|2)

2 _ 1 _ N
||u&||2; - LN (82 n |x|2)Ndx =& “u||2:

_ dx
— MU = f Lialtha f _
24 |x|2 RM\Q (€2 4 |x]?)

Then, one has that

which yields
_ . 1 dx
1l —¢ N||U||§z|sf —Ndx+f P
* o JoBOp) (2 + [x?) RMO (€2 4 [x]2)
d d
:f —xN Sf ;CN GCs.
RN\B(0;p) (€2 + [x[2) RN\B(0;p) X
This implies that

Ny =22 2: -2 Nig =22
1- GoeMUIR® < N U2 U™ < 1+ CaeVul,>
S S 'S S

Taking ¢ so small that C3eN IIUII;ZE < 1,since2/2; = (N -2s)/N < 1, we obtain

N -2 N ~2\¥/% _ N2 2 =2
1= NGl < (1 - NGl ) < V72 lpUe ;. Ul

—20\2/2 -2
< (14 eNGlU™) " < 14 eNGlul*.

Hence ||¢LIS|| e25~ N||ll||2 + O( ) Since W = E;(U) optimizes (2.7), by (4.11) we have

“(P(W:S“f{s (Ca) gzs_Nks LNH y1_25|V(W(X' y)|2dXdy T O<1)
0,L\~Q +

e N|UIZ + O (e%)

(4.12)
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ks f yl_ZSIV‘W(x, y)lzdxdy
]RN+]

o + N-2s
_ i (1+0(eN))

= k:S(s,N) + O (eN%).

Now we consider the function | : H — R defined by
Ll 1
J(2) = 3l - Q).

Set wo1 1= ¢ W, wop == 10 W, and zg := (wo1,wo2) € H. Notice that J(0) =0, J (tzo) > O for
t > 0small and ] (tz9) < 0 for t > 0 large. The map t — J (tzg) maximizes at

ol )5
= . 4.13
to [Q(zo)] (4.13)

Then from (2.12), (4.12) and (4.13), we conclude that

22}

llzoll

>0 Q(ZO))zg—z
) (1 +T f yUEWV (g We) Pdxdy -

== 7

(m + mf?) ( f lpU. |25dx)5

_ . (4.14)
1-2s
[ J, v ewor
== ;
( f lpU,|> dx)

= 2 [f(r0) (kS(s,N) +O(N2)) |
- %(kssmﬁ)%i +0(eN%).
We now choose 61 > 0 so small that, for all (A, u) € Cs,, we get

L
2-

Coo = o (keSpap) ® — Co(ATT + uZ7) >

N
By the definition of I’ , and zp, we have

12
T (tzo) < ||ZQ||(H, forallt>0and A, u >0,
which implies that there exists ty € (0, 1) satisfying

sup 1), (tzo) < e, forall (A, ) € Cs,.
t€[0,t0]
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Hence, from (4.14) we see that
£
sup ), (tzo) = sup (] (tzo) — =K (tzo))
£t Et q
(4.15)
<= +O0le" 7 )——=|A+urt X
N s 77/0‘/5 q lu 0 B(O;p) |x|y
Letting 0 < ¢ < p, we have
U] 1
f i dx = =y dx
B(0;p) BOP) |xfy (&2 + |x2) "2
P AN-1
= j; RNCEET dr
77 e(N=25)q [1 + (g) ]
£ N-1
_ Ny +(s-N)g f  ar (4.16)
O (14?7
Ney2sg-aN [ N
— - S—
—NTVTes—q f (N—2<)q dr
Ol
N—y+2sg—gN : Nt
~IN— Sq—
+ Ty f -
Loyr(1+1r2) 2
From (4.16), we get
t CgeN‘V“‘/‘@, y>N-(N-2s)g,
U,
—f llxli x > C48@‘s‘7|1n e, y=N-(N-2s)g, (4.17)
B(0;p)

q N
Csez ™, y <N-(N-2s)g,

where C; > 0(i = 3,4,5) are positive constants (C; independent of ¢).
The case of y > N — (N — 2s)q, combining (4.14) with (4.17), one has

sup I (tz0) < —(k Sqaﬁ)zs ~|—0( N= 25)~|—C eN=2s C3(A+HT ) N—y+sq—%

t>0

1
L 2 2 \N-2s
Let A2 + uZ1 = eN7% thatis, e = (/\ 4+ yz-@) , then we can choose 6; > 0 such that

( N- 25)+C N2, (/\+#Tg) gN—y+sq—%

2

N-2s 5 5
(2_ ,q )+c2(Aﬂ+y2fz) Cg,(/H—yT)(A

L
%)

for all AZ7 + yzi € (0,61). Then, for (A, u) € Cs,, one gets

+ p2

sup 7, (t20) < Coo-
£20

2N-2y+2sq—qN
2L 2 ) 2(N-2s)
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The case of y = N — (N — 2s)g, it follows from (4.14) and (4.17) that
sup 1), (tz) < (k Snaﬁ)zs + O( N- 25) + CreN"Z —Cy ()\ + ut )e 7| n ¢|.
£20

2 2

Let AZ 7+ ‘uzi = ¢N"% thatis, ¢ = (/\2-‘7 + yz-q)N zs, choosing 6, > 0 such that for all )\2 7+ yzi
(0,062), then one has

o (SN_ZS) 4 CeNE ¢y (/\ -+ yTg) eg_sql In ¢
2 2 2 2 2 2 3 2 2
—O( A% ‘uz-ﬂ)—kcz(/\z-‘? +u2—‘7) C4(/\+/JT)(/\2 + ) Iln( Az +u2“7)|

2

< - Co( AT+ % ﬂ)
Consequently, for (A, i) € Cs,, we obtain

sup 7 a, (tz0) < Coo.
120

If we set A* = min {61, pN'zs, 62} > 0, then for (A, u) € Ca-,
sup Z ), (tz0) < Coo- (4.18)
t>0

Finally, we prove that o i < Coo for all (A, u) € Ca-. Recall that
zo = (wo, wo2) = (PWe, 1o W) .

Since Q(zg) > 0, by Theorem 2.2 there exists fop > 0 such that tyzp € N;#. By the definition of
@ “and (4.18), we conclude that
ay < T (tozo) <sup Ty (t20) < Coo
£>0
for all (A, u) € Ca-. o

Let A" be as in Lemma 4.3. We prove the existence a local minimizer for 7, , on N;H

Proposition 4.3. Let A* > 0 be as in Lemma 4.3 and set
- fax 4\
Ay = mm{A , (E)Z—ﬂAl}.
For (A, u) € Cpy, L)y has a minimizer z”in Ny with T, (z7) = ay - Furthermore, z~ is a positive
solution of (2.3).

Proof. By (ii) of Proposition 4.1, there is a (PS)ahsequence fzu} € Ny for I, for all (A u) e
C . By Lemmas 3.3 and 4.3 and (ii) of Theorem 2.1, for all (A, u) € Ca-, I, satisfies the

‘7
(z)
2
(PS ) - condltlon and a; [ 0. Then, there exists a subsequence still denoted by {z,} and z= =
( w; (x, y)) € Ny such that z, — z strongly in A and Iyu(z7) = a3
(

2
2A1

FW i 0, for all
A, y) € C A,- Arguing as 1n the proof of Proposition 4.2, for (A, i) € Cp,, we obtain that z7is a

positive solution of (2.3). m]
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5. THE prOOF OF THEOREM 1.1

By Proposition 4.2, for (A, 1) € Cp,, system (2.3) admits a positive solution z* € N;H. By
Proposition 4.3, a positive solution z~ € N;’uexists for all (/\,y) € Cp,. Furthermore, since
N+

Au
(wf(x, 0), w5 (x, O)) are distinct positive solutions of (1.1).

N NA_# =, then z ™, z"are distinct positive solutions of system (2.3). In turn, (u*(x), v*(x)) =
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