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Abstract. By the Nehari method and variational method, two positive solutions are obtained for a fractional elliptic

system with strongly coupled critical terms and concave-convex nonlinearities. Recent results from the literature are

extended to the fractional case.

1. Introduction

In this paper, we are concerned with the study of the existence of positive solutions for the

following elliptic system involving the fractional Laplacian for a given 0 < s < 1 :
(−∆)su =

η1α1

2∗s
|u|α1−2

|v|β1u +
η2α2

2∗s
|u|α2−2

|v|β2u + λ
|u|q−2u
|x|γ

, x ∈ Ω,

(−∆)sv =
η1β1

2∗s
|u|α1 |v|β1−2v +

η2β2

2∗s
|u|α2 |v|β2−2v + µ

|v|q−2v
|x|γ

, x ∈ Ω,

u = v = 0, on ∂Ω,

(1.1)

where η1, η2, λ,µ, are positive, 2∗s := 2N
N−2s is the fractional Sobolev critical exponent, N > 2s,

α1 + β1 = 2∗s, α2 + β2 = 2∗s, and (−∆)s is the spectral fractional Laplacian, in Ω, defined in section

2.

|u|αi−2u|v|βi and |u|αi |v|βi−2v, i = 1, 2 are called strongly coupled terms. When η1 = η2 = 1, α1 =

α2 = α, β1 = β2 = β and γ = 0, problem (1.1) becomes the following elliptic system:
(−∆)su = 2α

α+β |u|
α−2u|v|β + λ|u|q−2u in Ω,

(−∆)sv =
2β
α+β |u|

α
|v|β−2v + µ|v|q−2v in Ω,

u = v = 0 on ∂Ω.

(1.2)
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Systems similar to (1.2), but involving Laplacian or p-Laplacian operators, have been studied

extensively in recent years, for example, the authors in [13] proved that the system admits at least

two positive solutions when (λ,µ) belongs to certain subset of R2. Later, Hsu [12] obtained the

same results for the p-Laplacian elliptic system. There are other multiplicity results for critical

elliptic equations involving concave–convex nonlinearities, see for example [2, 4].

Caffarelli and Silvestre [8] gave a new formulation of the fractional Laplacians through Dirichlet-

Neumann maps. This is commonly used in the recent literature since it allows us to write nonlocal

problems in a local way and this permits to us use the variational methods for those kinds. To our

best knowledge, there are just a few results in the literature on the fractional system (1.1) with both

concave-convex nonlinearities and the strongly-coupled critical terms. Motivated by the results

mentioned above, in this paper we extend the work [18], where the fibering and Nehari manifold

methods are applicable to obtain two positive solutions for
−∆u =

η1α1

2∗
|u|α1−2

|v|β1u +
η2α2

2∗
|u|α2−2

|v|β2u + λ
|u|q−2u
|x|γ

, x ∈ Ω,

−∆v =
η1β1

2∗
|u|α1 |v|β1−2v +

η2β2

2∗
|u|α2 |v|β2−2v + µ

|v|q−2v
|x|γ

, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

(1.3)

We point out that we adopt in the paper the spectral (or regional) definition of the fractional

laplacian in a bounded domain and not the integral definition. We shall refer the interested reader

to [14] for a careful comparison between these two different notions. To formulate the main result,

we consider

Cθ = {(λ,µ) ∈ R2
+ : 0 < λ

2
2−q + µ

2
2−q < θ},

Λ1 =

(
2∗s − q
2∗s − 2

Θ
)− 2

2−q
[

2− q
(2∗s − q)

(
ksSη,α,β

) 2∗s
2

] 2
2∗s−2

(1.4)

where ks is a normalization constant and Θ, Sη,α,β are constants that will be introduced later. We

assume that

(F ) : 1 < q < 2 and 0 ≤ γ < N + sq−
qN
2

.

Our main results dealing with the problem (1.1) are the following.

Theorem 1.1. Assume that (F ) holds, Then
(i) system (1.1) has at least one positive solution for all (λ,µ) ∈ CΛ1 .
(ii) there is Λ2 < Λ1 such that (1.1) has at least two positive solutions for (λ,µ) ∈ CΛ2 .

The paper is organized as follows. In a preliminary Section 2 we describe the appropriate

functional setting for the study of problem (1.1), including the definition of an equivalent problem.

In Section 3 we show that the Palais-Smale condition holds for the energy functional associated

with (1.1) at energy levels in a suitable range related to the best Sobolev constants. In Section 4 we

investigate the existence of Palais-Smale sequences and we obtain solutions to some related local

minimization problems. Finally, the proof of Theorem 1.1 is given in Section 5.
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2. Functional setting and definitions

In this section, we collect some preliminary facts in order to establish the functional setting. We

denote the upper half-space in RN+1
+ by

RN+1
+ :=

{
z = (x, y) = (x1, · · · , xN, y) ∈ RN+1 : y > 0

}
,

the half cylinder standing on a bounded smooth domain Ω ⊂ RN by CΩ := Ω× (0,∞) ⊂ RN+1
+ , the

cylinder with base Ω and its lateral boundary by ∂LCΩ := ∂Ω × (0,∞). Let ek be an orthonnormal

basis of L2(Ω) with ‖ek‖L2(Ω) = 1 forming a spectral decomposition of −∆ in Ω with zero Dirichlet

boundary conditions and λk be the corresponding eigenvalues. Let

Hs
0(Ω) =

u =
∞∑

j=1

a je j ∈ L2(Ω) : ‖u‖Hs
0(Ω) =

 ∞∑
j=1

a2
jλ

s
j


1/2

< ∞

 .

For any u ∈ Hs
0(Ω), the spectral fractional Laplacian (−∆)s , is defined by

(−∆)su =
∑
i∈N

aiλ
s
i ei.

Note that ‖u‖Hs
0(Ω) =

∥∥∥(−∆)s/2u
∥∥∥

L2(Ω)
. The dual space H−s(Ω) is defined in the standard way, as

well as the inverse operator (−∆)−s.

Definition 2.1. We say that (u, v) ∈ Hs
0 (Ω) × Hs

0 (Ω) is a weak solution of (1.1) such that for all
(ϕ1,ϕ2) ∈ Hs

0 (Ω) ×Hs
0 (Ω), it holds∫

Ω

(
(−∆)

s
2 u(−∆)

s
2ϕ1 + (−∆)

s
2 v(−∆)

s
2ϕ2

)
dx

=

∫
Ω

(
η1α1

2∗s
|u|α1−2

|v|β1uϕ1 +
η2α2

2∗s
|u|α2−2

|v|β2uϕ1

)
dx

+

∫
Ω

(
η1β1

2∗s
|u|α1 |v|β1−2vϕ2 +

η2β2

2∗s
|u|α2 |v|β2−2vϕ2

)
dx

+

∫
Ω

(
λ
|u|q−2u
|x|γ

ϕ1 + µ
|v|q−2v
|x|γ

ϕ2

)
dx.

(2.1)

Associated with problem (1.1), we consider the energy functional

Jλ,µ(u, v) :=
1
2

∫
Ω

(
|(−∆)

s
2 u|2 + |(−∆)

s
2 v|2

)
dx−

1
2∗s

Q(u, v) −
1
q

K(u, v), (2.2)

where

Q(u, v) :=
∫

Ω

(
η1|u|α1 |v|β1 + η2|u|α2 |v|β2

)
dx

and

K(u, v) :=
∫

Ω

(
λ
|u|q

|x|γ
+ µ
|v|q

|x|γ

)
dx.

The functional is well defined in Hs
0 (Ω)×Hs

0 (Ω), and moreover, the critical points of the functional

Jλ,µ correspond to weak solutions of (1.1).
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We now conclude the main ingredients of a recently developed technique which can deal

with fractional power of the Laplacian. To treat the nonlocal problem (1.1), we will study a

corresponding extension problem, so that we can investigate problem (1.1) by studying a local

problem via classical variational methods.

We first define the extension operator and fractional Laplacian for functions in Hs
0 (Ω). We refer

the reader to [3, 5, 9] and to the referencess therein.

Definition 2.2. For a function u ∈ Hs
0(Ω), we denote its s-harmonic extension w = Es(u) to the cylinder

CΩ as the solution of the problem 
−div

(
y1−2s

∇w
)
= 0 in CΩ

w = 0 on ∂LCΩ

w = u. on Ω × {0},

and

(−∆)su(x) = −ks lim
y→0+

y1−2s∂w
∂y

(x, y),

where ks is a normalization constant. Define Hs
0,L (CΩ) as the closure of C∞0 (CΩ) under the norm

‖w‖Hs
0,L(CΩ) :=

(
ks

∫
CΩ

y1−2s
|∇w|2dxdy

)1/2

.

We will use the following notations:

H := Hs
0 (Ω) ×Hs

0 (Ω) , H̃ := Hs
0,L (CΩ) ×Hs

0,L (CΩ) ,

Lsw = −div
(
y1−2s

∇w
)

,
∂w
∂νs := −ks lim

y→0+
y1−2s∂w

∂y
,

and ‖(w1, w2)‖2
H̃

= ‖w1‖
2
Hs

0,L(CΩ)
+ ‖w2‖

2
Hs

0,L(CΩ)
.

By the arguments above, we can reformulate our problem (1.1) in terms of the extension problem

as follows 

Lsw1 = 0, Lsw1 = 0 in CΩ

w1 = w2 = 0 on ∂LCΩ

w1 = u, w2 = v on Ω × {0}
∂w1
∂νs =

η1α1
2∗s
|w1|

α1−2
|w2|

β1w1 +
η2α2

2∗s
|w1|

α2−2
|w2|

β2w1 + λ |w1|
q−2w1
|x|γ on Ω × {0}

∂w2
∂νs =

η1β1
2∗s
|w1|

α1 |w2|
β1−2w2 +

η2β2
2∗s
|w1|

α2 |w2|
β2−2w2 + µ |w2|

q−2w2
|x|γ on Ω × {0},

(2.3)

where (w1, w2) = (Es(u), Es(v)).
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An energy solution to this problem is a function (w1, w2) ∈ H̃ such that

ks

∫
CΩ

y1−2s
∇w1 · ∇ϕ1dxdy + ks

∫
CΩ

y1−2s
∇w2 · ∇ϕ2dxdy

=

∫
Ω×{0}

(
η1α1

2∗s
|w1|

α1−2
|w2|

β1w1ϕ1 +
η2α2

2∗s
|w1|

α2−2
|w2|

β2w1ϕ1

)
dx

+

∫
Ω×{0}

(
η1β1

2∗s
|w1|

α1 |w2|
β1−2w2ϕ2 +

η2β2

2∗s
|w1|

α2 |w2|
β2−2w2ϕ2

)
dx

+

∫
Ω×{0}

(
λ
|w1|

q−2w1

|x|γ
ϕ1 + µ

|w2|
q−2w2

|x|γ
ϕ2

)
dx,

(2.4)

for all (ϕ1,ϕ2) ∈ H̃ .

If (w1, w2) satisfies (2.3), then the trace (u, v) = (w1(·, 0), w2(·, 0)) ∈ H is an energy solution to

problem (1.1). The converse is also true. By the equivalence of these two formulations, we will use

both formulations in the sequel to their best advantage. Finally, the energy functional associated

with problem (2.3) is the following,

Iλ,µ(w) := Iλ,µ (w1, w2) =
1
2
‖(w1, w2)‖

2
H̃
−

1
q

∫
Ω×{0}

(
λ
|w1|

q

|x|γ
+ µ
|w2|

q

|x|γ

)
dx

−
1
2∗s

∫
Ω×{0}

(
η1|w1|

α1 |w2|
β1 + η2|w1|

α2 |w2|
β2
)

dx.

Clearly, the critical points of Iλ,µ in H̃ correspond to critical points of Jλ,µ : H → R.

The following lemma is due to [5], which reflect the relationship between the spaces Hs
0(Ω) and

Hs
0,L (CΩ) .

Lemma 2.1. i) ‖u‖Hs
0(Ω) =

∥∥∥Es(u)
∥∥∥

Hs
0,L(CΩ)

, for all u ∈ Hs
0(Ω).

ii)For any 1 ≤ r ≤ 2∗s and any w ∈ Hs
0,L (CΩ), it holds(∫

Ω
|u(x)|rdx

) 2
r

≤ C
∫
CΩ

y1−2s
|∇w(x, y)|2dxdy, u := Tr(w), (2.5)

for some positive constant C = C(r, s, N, Ω). Furthermore, the space Hs
0,L (CΩ) is compactly embedded

into Lr(Ω), for every r < 2∗s.

Remark. When r = 2∗s, the best constant in (2.5) is denoted by S(s, N), that is

S(s, N) := inf
w∈Hs

0,L(CΩ)\{0}

∫
CΩ

y1−2s
|∇w(x, y)|2dxdy(∫

Ω |w(x, 0)|2∗sdx
) 2

2∗s

. (2.6)

It is not achieved in any bounded domain and, for all w ∈ Hs
(
RN+1

+

)
,∫

RN+1
+

y1−2s
|∇w(x, y)|2dxdy ≥ S(s, N)

(∫
RN
|w(x, 0)|

2N
N−2s dx

)N−2s
N

. (2.7)
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However, S(s, N) is indeed achieved for the case Ω = RN when wε(x, y) = E(uε), where uε takes

the form

uε(x) :=
ε(N−2s)/2

(ε2 + |x|2)(N−2s)/2
, ε > 0, x ∈ RN. (2.8)

Let U(x) =
(
1 + |x|2

) 2s−N
2 and letW be the extension of U [3, 13]. Then

W(x, y) = Es(U) = CN,sy2s
∫

RN

U(z)dz

(|x− z|2 + y2)
N+2s

2

,

is the extreme function for the fractional Sobolev inequality (2.7). The constant S(s, N) given in

(2.6) takes the exact value

S(s, N) =
2πsΓ

(
N+2s

2

)
Γ(1− s)

(
Γ
(

N
2

)) 2s
N

Γ(s)Γ
(

N−2s
2

)
(Γ(N))s

.

Now, we consider the following minimization problem

Sη,α,β := inf
(w1,w2)∈H̃\{0}

∫
CΩ

y1−2s
(
|∇w1|

2 + |∇w2|
2
)

dxdy(∫
Ω×{0} (η1|w1|

α1 |w2|
β1 + η2|w1|

α2 |w2|
β2) dx

)2/2∗s
. (2.9)

We define

f (τ) :=
1 + τ2

(η1τβ1 + η2τβ2)
2
2∗s

, τ > 0. (2.10)

Since f is continuous on (0,∞) such that lim
τ→0+

f (τ) = lim
τ→+∞

f (τ) = +∞, then there exists τ0 > 0

such that

f (τ0) := min
τ>0

f (τ) > 0. (2.11)

Using ideas from [1], we establish a relationship between S(s, N) and Sη,α,β.

Lemma 2.2. For the constants S(s, N) and Sη,α,β introduced in (2.6) and (2.9), it holds

Sη,α,β = f (τ0)S(s, N). (2.12)

In particular, the constant Sη,α,β is achieved for Ω = RN.

Proof. Let {zn} ⊂ Hs
0,L (CΩ) be a minimization sequence for S(s, N). Consider the sequences

w1,n := zn and w2,n := τ0zn in Hs
0,L (CΩ). By (2.9), we have

1 + τ2
0(

η1τ
β1
0 + η2τ

β2
0

) 2
2∗s

∫
CΩ

y1−2s
|∇zn(x, y)|2dxdy(∫

Ω |zn(x, 0)|2∗sdx
) 2

2∗s

≥ Sη,α,β. (2.13)

Letting n→ +∞ yields

f (τ0)S(s, N) ≥ Sη,α,β. (2.14)
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On the other hand, let
{
(w1,n, w2,n)

}
⊂ H̃\{0} be a minimizing sequence for Sη,α,β. Set hn := snw2,n

for sn > 0 with
∫

Ω×{0} |w1,n|
2∗sdx =

∫
Ω×{0} |hn|

2∗sdx. Then Young’s inequality yields∫
Ω×{0}

|w1,n|
α
|hn|

βdx ≤
α
2∗s

∫
Ω×{0}

|w1,n|
2∗sdx +

β

2∗s

∫
Ω×{0}

|hn|
2∗sdx

=

∫
Ω×{0}

|hn|
2∗sdx =

∫
Ω×{0}

|w1,n|
2∗sdx.

In turn, we can estimate ∫
CΩ

y1−2s
(
|∇w1,n(x, y)|2 + |∇w2,n(x, y)|2

)
dxdy(∫

Ω×{0} (η1|w1,n|α1 |w2,n|
β1 + η2|w1,n|α2 |w2,n|

β2) dx
)2/2∗s

≥

∫
CΩ

y1−2s
|∇w1,n(x, y)|2dxdy((

η1s−β1
n + η2s−β2

n

) ∫
Ω×{0} |w1,n|2

∗
s

) 2
2∗s

+
s−2

n

∫
CΩ

y1−2s
|∇hn(x, y)|2dxdy((

η1s−β1
n + η2s−β2

n

) ∫
Ω×{0} |hn|2

∗
sdx

) 2
2∗s

≥ f
(
s−1

n

)
S(s, N)

≥ f (τ0)S(s, N).

Passing to the limit in the last inequality we obtain

f (τ0)S(s, N) ≤ Sη,α,β.

Which together with (2.14) implies that

Sη,α,β = f (τ0)S(s, N).

�

Let R0 > 0 be a constant such that Ω ⊂ B (0, R0), where B (0, R0) = {x ∈ RN : |x| < R0

}
. By

Hölder’s inequality and (2.6), for all (w1, w1) ∈ H̃, 1 < q < 2 and 0 ≤ γ < N + sq− qN
2 , we get

∫
Ω×{0}

wq
1

|x|γ
dx ≤

(∫
Ω×{0}

|w1|
q·

2∗s
q dx

) q
2∗s


∫

Ω

( 1
|x|γ

) 2∗s
2∗s−q

dx


2∗s−q

2∗s

≤ (ksS(s, N))−
q
2 ‖w1‖

q
Hs

0,L(CΩ)


∫

B(0,R0)

( 1
|x|γ

) 2∗s
2∗s−q

dx


2∗s−q

2∗s

≤ (ksS(s, N))−
q
2 ‖w1‖

q
Hs

0,L(CΩ)


∫ R0

0

rN−1

|r|
2∗sγ

2∗s−q

dr


2∗s−q

2∗s

= Θ‖w1‖
q
Hs

0,L(CΩ)

(2.15)
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and ∫
Ω×{0}

wq
2

|x|γ
dx ≤ Θ‖w2‖

q
Hs

0,L(CΩ)
, (2.16)

where

Θ :=

 2N − qN + 2sq

2N
(
N − γ− qN

2 + sq
)

2∗s−q
2∗s

RN−γ− qN
2 +sq

0 (ksS(s, N))−
q
2 . (2.17)

Now we are looking for the solutions of problem (1.1). Equivalently, we consider the solutions

of problem (2.3). Since the energy functional Iλ,µ is not bounded on H̃ , it is useful to consider the

functional on the Nehari manifold

Nλ,µ :=
{
z ∈ H̃\{0} :

〈
I
′

λ,µ(z), z
〉
= 0

}
. (2.18)

Thus, z = (w1, w2) ∈ Nλ,µ if and only if〈
I
′

λ,µ(z), z
〉
= ‖z‖2

H̃
−K(z) −Q(z) = 0, (2.19)

where

Q(z) :=
∫

Ω×{0}

(
η1|w1|

α1 |w2|
β1 + η2|w1|

α2 |w2|
β2
)

dx

and

K(z) :=
∫

Ω×{0}

(
λ
|w1|

q

|x|γ
+ µ
|w2|

q

|x|γ

)
dx.

Define Φ(z) =
〈
I
′

λ,µ(z), z
〉
, then for all z = (w1, w2) ∈ Nλ,µ, we have

〈
Φ′(z), z

〉
= 2‖z‖2

H̃
− 2∗sQ(z) − qK(z)

= (2− q)‖z‖2
H̃
− (2∗s − q)Q(z)

= (2− 2∗s) ‖z‖
2
H̃
+ (2∗s − q)K(z).

(2.20)

Thus, it is natural to split Nλ,µ into three parts corresponding to local minima, local maxima and

points of inflection, i.e.

N
+
λ,µ =

{
z ∈ Nλ,µ :

〈
Φ′(z), z

〉
> 0

}
,

N
−

λ,µ =
{
z ∈ Nλ,µ :

〈
Φ′(z), z

〉
< 0

}
,

N
0
λ,µ =

{
z ∈ Nλ,µ :

〈
Φ′(z), z

〉
= 0

}
.

(2.21)

It is clear that all critical points of Iλ,µ must, lie onNλ,µ and, as we will see below, local minimizers

onNλ,µ are actually critical points of Iλ,µ. We have the following results.

Lemma 2.3. The energy functional Iλ,µ is bounded below and coercive onNλ,µ.
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Proof. Let z = (w1, w2) ∈ Nλ,µ. From (2.15), (2.16) and (2.19) by the Hölder inequality, we get

Iλ,µ(z) =
(

1
2
−

1
2∗s

)
‖z‖2
H̃
−

(
1
q
−

1
2∗s

)
K(z)

≥
s
N
‖z‖2
H̃
−

(
1
q
−

1
2∗s

) (
λ‖w1‖

q
Hs

0,L(CΩ)
+ µ‖w2‖

q
Hs

0,L(CΩ)

)
Θ

≥
s
N
‖z‖2
H̃
−

(
1
q
−

1
2∗s

) (
λ

2
2−q + µ

2
2−q

) 2−q
2
‖z‖q
H̃

Θ,

(2.22)

where Θ is given by (2.17). Since 1 < q < 2, the functional Iλ,µ is coercive and bounded below on

Nλ,µ. �

Lemma 2.4. (Natural Constraint). Suppose that z0 is a local minimizer ofIλ,µ onNλ,µ and that z0 < N0
λ,µ,

then I′λ,µ (z0) = 0 in H̃−1.

Proof. Suppose that z0 = (w0,1, w0,2) is a local minimizer of Iλ,µ on Nλ,µ, then Iλ,µ (z0) =

min
z∈Nλ,µ

Iλ,µ(z) and (2.20) holds. Furthermore, by the theory of Lagrange multipliers, there exists

θ ∈ R such that I′λ,µ (z0) = θΦ′ (z0). As z0 ∈ Nλ,µ, we get

0 =
〈
I
′

λ,µ (z0) , z0

〉
= θ

〈
Φ′ (z0) , z0

〉
.

Since z0 < N0
λ,µ,

〈
Φ′ (z0) , z0

〉
, 0. Consequently, θ = 0 and I′λ,µ (z0) = 0 in H̃−1. �

Let Λ1 be the positive number defined in (1.4). Then we have the following result.

Lemma 2.5. Assume that (λ,µ) ∈ CΛ1 . ThenN0
λ,µ = ∅.

Proof. Assume by contradiction that there exist λ > 0 and µ > 0 with 0 < λ
2

2−q + µ
2

2−q < Λ1 and

such thatN0
λ,µ , ∅. Let z ∈ N0

λ,µ. Then, by virtue of (2.20), we get

‖z‖2
H̃

=
2∗s − q
2− q

Q(z), ‖z‖2
H̃

=
2∗s − q
2∗s − 2

K(z).

By Hölder inequality and the Sobolev embedding theorem, we have

‖z‖
H̃
≥

[
2− q

(2∗s − q)

(
ksSη,α,β

) 2∗s
2

] 1
2∗s−2

,

‖z‖
H̃
≤

(
2∗s − q
2∗s − 2

Θ
) 1

2−q (
λ

2
2−q + µ

2
2−q

) 1
2

,

which leads to the inequality

λ
2

2−q + µ
2

2−q ≥

(
2∗s − q
2∗s − 2

Θ
)− 2

2−q
[

2− q
(2∗s − q)

(
ksSη,α,β

) 2∗s
2

] 2
2∗s−2

= Λ1,

contradicting the assumption. �
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From Lemma 2.5, if 0 < λ
2

2−q + µ
2

2−q < Λ1, we can writeNλ,µ = N+
λ,µ ∪N

−

λ,µand define

αλ,µ := inf
z∈Nλ,µ

Iλ,µ(z), α+
λ,µ := inf

z∈N+
λ,µ

Iλ,µ(z), α−λ,µ := inf
z∈N−

λ,µ

Iλ,µ(z).

Moreover, we have the following properties about the Nehari manifoldNλ,µ.

Theorem 2.1. The following facts holds
(i) If (λ,µ) ∈ CΛ1 , then we have αλ,µ ≤ α

+
λ,µ < 0;

(ii) If (λ,µ) ∈ C(q/2)2/(2−q)Λ1
, then we have α−λ,µ > c0 for some positive constant c0 depending on λ,µ, N, q, s

and Θ.

Proof. (i) Let z = (w1, w2) ∈ N
+
λ,µ. By (2.18), (2.20) and (2.21), it follows that

2− q
2∗s − q

‖z‖2
H̃
> Q(z). (2.23)

According to (2.18) and (2.23), we have that

Iλ,µ(z) =
(

1
2
−

1
q

)
‖z‖2
H̃
+

(
1
q
−

1
2∗s

)
Q(z)

<

[(
1
2
−

1
q

)
+

(
1
q
−

1
2∗s

)
2− q
2∗s − q

]
‖z‖2
H̃

= −
(2− q)s

qN
‖z‖2
H̃
< 0.

Therefore, by the definition of αλ,µ, α+
λ,µ, we can deduce that αλ,µ ≤ α

+
λ,µ < 0.

(ii) Suppose that λ
2

2−q + µ
2

2−q ∈

(
0,

( q
2

) 2
2−q Λ1

)
and z = (w1, w2) ∈ N−λ,µ. By (2.9), (2.20) and (2.21), one

has
2− q
2∗s − q

‖z‖2
H̃
< Q(z) ≤

(
ksSη,α,β

)− 2∗s
2
‖z‖2

∗
s

H̃
,

which implies that

‖z‖
H̃
>

(
2− q
2∗s − q

) 1
2∗s−2 (

ksSη,α,β

) N
4s . (2.24)

From the last inequality we infer that

Iλ,µ(z) =
2∗s − 2

22∗s
‖z‖2
H̃
−

2∗s − q
q2∗s

K(z)

≥ ‖z‖q
H̃

 s
N
‖z‖2−q
H̃
−

(
2∗s − q

2∗sq

) (
λ

2
2−q + µ

2
2−q

) 2−q
2

Θ


>

(
2− q

2 (2∗s − q)

) q
2∗s−2 (

ksSη,α,β

) qN
4s

2∗s − 2
22∗s

(
ksSη,α,β

) (2−q)N
4s

(
2− q

2 (2∗s − q)

) 2−q
2∗s−2

−
2∗s − q

q2∗s

(
λ

2
2−q + µ

2
2−q

) 2−q
2

Θ

 .
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Thus, if λ
2

2−q + µ
2

2−q < (q/2)
2

2−q Λ1, then

Iλ,µ(z) > c0, for all z ∈ N−λ,µ,

for some positive constant c0 = c0 (λ,µ, q, N, s, Θ). �

Theorem 2.2. Let (λ,µ) ∈ CΛ1 . Then, for every z = (w1, w2) ∈ H̃ with Q(z) > 0 then there exist
(unique) t− = t−(z) > 0 and t+ = t+(z) > 0 such that

t+z ∈ N+
λ,µ, t−z ∈ N−λ,µ.

In particular, we have

t+ < tmax < t−, tmax :=

 (2− q)‖z‖2
H̃

(2∗s − q)Q(z)


1

2∗s−2

as well as

Iλ,µ

(
t+z

)
= min

0<t<tmax
Iλ,µ(tz), Iλ,µ (t−z) = max

t>0
Iλ,µ(tz).

Proof. For each z ∈ H̃ such that Q(z) > 0, and for all t ≥ 0, we have〈
I
′

λ,µ(tz), tz
〉
= t2
‖z‖2
H̃
− t2∗sQ(z) − tqK(z).

We define g, h : R+
→ R by

g(t) := t2−q
‖z‖2
H̃
− t2∗s−qQ(z) −K(z),

h(t) := t2−q
‖z‖2
H̃
− t2∗s−qQ(z).

Clearly, we obtain h(0) = 0, and h(t)→ −∞ as t→∞. Because

h′(t) = t1−q
[
(2− q)‖z‖2

H̃
− (2∗s − q) t2∗s−2Q(z)

]
, for all t > 0,

solving h′(t) = 0, we obtain

t̄max =

 (2− q)‖z‖2
H̃

(2∗s − q)Q(z)


1

2∗s−2

> 0.

Easy computations show that h′(t) > 0 for all 0 < t < t̄max and h′(t) < 0 for all t > t̄max . Thus h(t)
attains its maximum at t̄max, that is,

h (t̄max) =

 (2− q)‖z‖2
H̃

(2∗s − q)Q(z)


2−q

2∗s−2 2∗s − 2
2∗s − q

‖z‖2
H̃

.

Then from (2.17), (2.15) and (2.16), by the Holder inequality, one gets

g (t̄max) = h (t̄max) −K(w1, w2)

=

 (2− q)‖z‖2
H̃

(2∗s − q)Q(z)


2−q

2∗s−2 2∗s − 2
2∗s − q

‖z‖2
H̃
−

∫
Ω×{0}

λ wq
1

|x|γ
+ µ

wq
2

|x|γ

 dx
(2.25)
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≥


(2− q)‖z‖2

H̃

(2∗s − q) ‖z‖2
∗
s

H̃

(
ksSη,α,β

)− 2∗s
2


2−q

2∗s−2

2∗s − 2
2∗s − q

‖z‖2
H̃

−

(
λ‖w1‖

q
Hs

0,L(CΩ)
+ µ‖w2‖

q
Hs

0,L(CΩ)

)
Θ

≥

(
2− q
2∗s − q

) 2−q
2∗s−2 (

ksSη,α,β

) 2∗s(2−q)

2(2∗s−2)
2∗s − 2
2∗s − q

‖z‖q
H̃
−

(
λ

2
2−q + µ

2
2−q

) 2−q
2
‖z‖q
H̃

Θ

> 0,

where Θ is as in (2.17) and the last inequality holds for every λ
2

2−q + µ
2

2−q ∈ (0, Λ1). It follows that

there exist t+and t−such that

g
(
t+

)
= g (t−) and g′

(
t+

)
> 0 > g′ (t−) ,

for 0 < t+ < t̄max < t−. We have t+z ∈ N+
λ,µ, t−z ∈ N−λ,µand

Iλ,µ (t−z) ≥ Iλ,µ(tz) ≥ Iλ,µ

(
t+z

)
,

for each t ∈ [t+, t−], and Iλ,µ (t+z) ≤ Iλ,µ(tz) for each t ∈ [0, t+]. Thus

Iλ,µ

(
t+z

)
= min

0≤t≤t̄max
Iλ,µ(tz), Iλ,µ (t−z) = max

t≥t̄max

Iλ,µ(tz).

�

3. The Palais-Smale condition

In this section, we will find the range of c where the (PS)c condition holds for the functional

Iλ,µ.

Definition 3.1. Let c ∈ R and Iλ,µ ∈ C1(H̃ , R).
(i) {zn} is a (PS)c-sequence in H̃ for Iλ,µ if Iλ,µ (zn) = c + o(1) and I′λ,µ (zn) = o(1) strongly in H̃−1 as
n→∞.
(ii) We say that Iλ,µ satisfies the (PS)c condition if any (PS)c-sequence {zn} for Iλ,µ has a convergent
subsequence in H̃ .

We shall need the following preliminary result.

Lemma 3.1. (Uniform Lower Bound). Let {zn} ⊂ H̃ is a (PS)c-sequence for Iλ,µ with zn ⇀ z in H̃ and
I
′

λ,µ (z) = 0 and there exists a positive constant C0 such that

Iλ,µ(z) ≥ −C0

(
λ

2
2−q + µ

2
2−q

)
, (3.1)

where

C0 =
2− q

2

[(
2N − qN + 2sq

4s

)
Θ
] 2

2−q

.
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Proof. Consider zn = (w1,n, w2,n) ⊂ H̃ and z = (w1, w2) ∈ H̃ . If {zn} is a (PS)c-sequence forIλ,µ with

zn ⇀ z in H̃ , then w1,n ⇀ w1 and w2,n ⇀ w2 in Hs
0,L (CΩ), as n → ∞. Then, by virtue of Sobolev

embedding theorem (Lemma 2.1), we also have w1,n(·, 0) → w1(·, 0) and w2,n(·, 0) → w2(·, 0)

strongly in Lq(Ω), as n → ∞. Of course, up to a further subsequence, w1,n(·, 0) → w1(·, 0) and

w2,n(·, 0) → w2(·, 0) a.e. in Ω. It is standard to check that I′λ,µ(z) = 0 . This implies that〈
I
′

λ,µ(z), z
〉
= 0, namely

ks

∫
CΩ

y1−2s
(
|∇w1|

2 + |∇w2|
2
)

dxdy = K(w1, w2) + Q(w1, w2). (3.2)

Consequently, we get

Iλ,µ(z) =
(

1
2
−

1
2∗s

)
ks

∫
CΩ

y1−2s
(
|∇w1|

2 + |∇w2|
2
)

dxdy

−

(
1
q
−

1
2∗s

) ∫
Ω×{0}

(
λ
|w1|

q

|x|γ
+ µ
|w2|

q

|x|γ

)
dx.

Combining (2.15), (2.16) and the Young inequality, we have

K(z) ≤
(
λ ‖w1‖

q
Hs

0,L(CΩ)
+ µ ‖w2‖

q
Hs

0,L(CΩ)

)
Θ

=


2

q
s
N

(
1
q
−

1
2∗s

)−1
q
2

‖w1‖
q
Hs

0,L(CΩ)



2

q
s
N

(
1
q
−

1
2∗s

)−1−
q
2

λΘ


+


2

q
s
N

(
1
q
−

1
2∗s

)−1
q
2

‖w2‖
q
Hs

0,L(CΩ)



2

q
s
N

(
1
q
−

1
2∗s

)−1−
q
2

µΘ


≤

s
N

(
1
q
−

1
2∗s

)−1 (
‖w1‖

2
Hs

0,L(CΩ) + ‖w2‖
2
Hs

0,L(CΩ)

)
+ Ĉ

(
λ

2
2−q + µ

2
2−q

)
=

s
N

(
1
q
−

1
2∗s

)−1

‖z‖2
H̃
+ Ĉ

(
λ

2
2−q + µ

2
2−q

)
,

(3.3)

with

Ĉ =
2− q

2


2

q
s
N

(
1
q
−

1
2∗s

)−1−
q
2

Θ


2

2−q

=
2− q

2

(2N − qN + 2sq
4s

) q
2

Θ


2

2−q

.

We obtain

Iλ,µ(z) =
(

1
2
−

1
2∗s

)
‖z‖2
H̃
−

(
1
q
−

1
2∗s

)
K(z)

≥
s
N
‖z‖2
H̃
−

s
N
‖z‖2
H̃
−C0

(
λ

2
2−q + µ

2
2−q

)
= −C0

(
λ

2
2−q + µ

2
2−q

)
.

Then (3.1) follows from (3.3) with C0 =
(

1
q −

1
2∗s

)
Ĉ. �

.
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Lemma 3.2. If {zn} ⊂ H̃ is a (PS)c-sequence for Iλ,µ, then {zn} is bounded in H̃ .

Proof. Let zn = (w1,n, w2,n) ⊂ H̃ be a (PS)c-sequence for Iλ,µ and suppose, by contradiction, that

‖z‖
H̃
→∞, as n→∞. Put

z̃n = (w̃1,n, w̃2,n) :=
zn

‖z‖
H̃

=

(
w1,n

‖z‖
H̃

,
w2,n

‖z‖
H̃

)
.

We may assume that z̃n ⇀ z̃ = (w̃1, w̃2) in H̃ . This implies that w̃1,n(·, 0)→ w̃1(·, 0) and w̃2,n(·, 0)→

w̃2(·, 0) strongly in Lr(Ω) for all 1 ≤ r < 2∗s and, thus,∫
Ω×{0}

λ|w̃1,n|
q

|x|γ
+
µ|w̃2,n|

q)

|x|γ
dx =

∫
Ω×{0}

λ|w̃1|
q

|x|γ
+
µ|w̃2|

q)

|x|γ
dx + on(1).

Since {zn} is a (PS)c sequence for Iλ,µ and ‖z‖
H̃
→∞, there following hold:

ks

2

∫
CΩ

y1−2s
(
|∇w̃1,n|

2 + |∇w̃2,n|
2
)

dxdy−
‖z‖q−2

H̃

q

∫
Ω×{0}

λ|w̃1,n|
q

|x|γ
+
µ|w̃2,n|

q)

|x|γ
dx

−

‖z‖2
∗
s−2
H̃

2∗s

∫
Ω×{0}

η1|w̃1,n|
α1 |w̃2,n|

β1 + η2|w̃1,n|
α2 |w̃2,n|

β2dx = on(1),

(3.4)

and

ks

∫
CΩ

y1−2s
(
|∇w̃1,n|

2 + |∇w̃2,n|
2
)

dxdy− ‖z‖q−2

H̃

∫
Ω×{0}

λ|w̃1,n|
q

|x|γ
+
µ|w̃2,n|

q)

|x|γ
dx

− ‖z‖2
∗
s−2
H̃

∫
Ω×{0}

(
η1|w̃1,n|

α1 |w̃2,n|
β1 + η2|w̃1,n|

α2 |w̃2,n|
β2
)

dx = on(1).
(3.5)

Combining (3.4) and (3.5), as n→∞, we obtain

ks

∫
CΩ

y1−2s
(
|∇w̃1,n|

2 + |∇w̃2,n|
2
)

dxdy

=
2 (2∗s − q)
q (2∗s − 2)

‖z‖q−2

H̃

∫
Ω×{0}

λ|w̃1,n|
q

|x|γ
+
µ|w̃2,n|

q)

|x|γ
dx + on(1).

(3.6)

In view of 1 < q < 2 and ‖z‖
H̃
→∞, (3.6) implies that

ks

∫
CΩ

y1−2s
(
|∇w̃1,n|

2 + |∇w̃2,n|
2
)

dxdy→ 0,

as n→∞, which contradicts to the fact that
∥∥∥̃zn

∥∥∥ = 1 for any n ≥ 1. �

Lemma 3.3. Suppose that (F ) holds and 0 ≤ γ < N + sq − qN
2 , for all −∞ < c < c∞ = s

N

(
Sη,α,β

) N
2s
−

C0

(
λ

2
2−q + µ

2
2−q

)
, then Iλ,µ satisfies the (PS)c condition in H̃ , where C0 is given by Lemma 3.1.

Proof. Let {zn} ⊂ H̃ be a (PS)c-sequence satisfying Iλ,µ (zn) = c + o(1) and I′λ,µ (zn) = o(1), where

zn = (w1,n, w2,n). By Lemma 3.2 , we see that {zn} is bounded in H̃ . Passing to a subsequence (still
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denoted by {zn} ), there exists z = (w1, w2) ∈ H̃ such that
w1,n ⇀ w1, w2,n ⇀ w2, weakly in Hs

0,L (CΩ) ,

w1,n(·, 0)→ w1(·, 0), w2,n(·, 0)→ w2(·, 0), strongly in Lr(Ω) (1 ≤ r < 2∗s) ,

w1,n(·, 0)→ w1(·, 0), w2,n(·, 0)→ w2(·, 0), a.e. in Ω.

(3.7)

Hence, we have ∫
Ω×{0}

λ|w1,n|
q

|x|γ
+
µ|w2,n|

q)

|x|γ
dx =

∫
Ω×{0}

λ|w1|
q

|x|γ
+
µ|w2|

q)

|x|γ
dx + on(1).

Set ŵ1,n := w1,n − w1, ŵ2,n := w2,n − w2 and ẑn := (ŵ1,n, ŵ2,n). From Brézis-Lieb’s lemma [6], it

follows that ∥∥∥̂zn
∥∥∥2
H̃

= ‖z‖2
H̃
− ‖z‖2

H̃
+ on(1), (3.8)

and by Lemma (2.1) in [11] one has∫
Ω×{0}

|ŵ1,n|
αi |ŵ2,n|

βidx =

∫
Ω×{0}

|w1,n|
αi |w2,n|

βidx−
∫

Ω×{0}
|w1|

αi |w2|
βidx + o(1), i = 1, 2. (3.9)

Since Iλ,µ (zn) = c + o(1) and I′λ,µ (zn) = o(1), and by (3.7) to (3.9), we can deduce that

1
2

∥∥∥̂zn
∥∥∥2
H̃
−

1
2∗s

∫
Ω×{0}

(
η1|ŵ1,n|

α1 |ŵ2,n|
β1 + η2|ŵ1,n|

α2 |ŵ2,n|
β2
)

dx = c−Iλ,µ(z) + on(1), (3.10)

and ∥∥∥̂zn
∥∥∥2
H̃
−

∫
Ω×{0}

(
η1|ŵ1,n|

α1 |ŵ2,n|
β1 + η2|ŵ1,n|

α2 |ŵ2,n|
β2
)

dx

=
〈
I
′

λ,µ
(zn) , zn

〉
−

〈
I
′

λ,µ(z), z
〉
+ on(1) = on(1).

(3.11)

Now, we can assume that

lim
n→∞

∥∥∥̂zn
∥∥∥2

= lim
n→∞

Q (̂zn) = l. (3.12)

If l = 0, the proof is complete. Assume l > 0, then it follows from (3.12) and the definition of Sη,α,β

that ∥∥∥̂zn
∥∥∥2
H̃
≥ Sη,α,βQ

2
2∗s (̂zn) ,

ksSη,α,β`
2
2∗s = ksSη,α,β lim

n→∞
Q

2
2∗s (̂zn) ≤ lim

n→∞

∥∥∥̂zn
∥∥∥2
H̃

= `,

which implies that

` ≥
(
ksSη,α,β

) N
2s . (3.13)

In addition, from (3.12) to (3.13) and Lemma 3.1, we have

c =
(

1
2
−

1
2∗s

)
`+ Iλ,µ(z) ≥

s
N

(
ksSη,α,β

) N
2s
−C0

(
λ

2
2−q + µ

2
2−q

)
= c∞,

which contradicts the definition of c. Therefore, l = 0 and (w1,n, w2,n) → (w1, w2) strongly in H̃ .

The proof is complete. �
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4. Existence of Palais-Smale sequences

Lemma 4.1. Let (λ,µ) ∈ CΛ1 . Then, for any z ∈ Nλ,µ, there exists r > 0 and a differentiable map
ξ : B(0; r) ⊂ H̃ → R+such that ξ(0) = 1 and ξ(h)(z− h) ∈ Nλ,µ for every h ∈ B(0; r). Let us set

D1 := 2ks

∫
Ω

y1−2s (∇w1 · ∇h1 +∇w2 · ∇h2) dxdy

D2 := q
∫

Ω×{0}

(
λ|w1|

q−2w1h1

|x|γ
+
µ|w2|

q−2w2h2

|x|γ

)
dx

D3 :=
∫

Ω×{0}

(
α1η1|w1|

α1−2w1h1|w2|
β1 + β1η1|w1|

α1 |w2|
β1−2w2h2

)
dx

+

∫
Ω×{0}

(
α2η2|w1|

α2−2w1h1|w2|
β2 + β2η2|w1|

α2 |w2|
β2−2w2h2

)
dx,

for all (h1, h2) ∈ H̃ and (w1, w2) ∈ H̃ . Then〈
ξ′(0), h

〉
=

D3 +D2 −D1

(2− q)‖z‖2
H̃
− (2∗s − q)Q(w1, w2)

(4.1)

for all (h1, h2) ∈ H̃ .

Proof. The proof is almost the same as in [17]. For z = (w1, w2) ∈ Nλ,µ, define a function Fz :

R× H̃ → R by

Fz(ξ, w) =
〈
I
′

λ,µ(ξ(z− p)), ξ(z− p)
〉

=ξ2
‖z− p‖2

H̃
− ξ2∗sQ(z− p) − ξqK(z− p).

Then Fz(1, 0) =
〈
I
′

λ,µ(z), z
〉
= 0 and, by Lemma 2.5 , we have

d
dξ

Fz(1, 0) =
〈
Φ′(z), z

〉
= (2− 2∗s) ‖z‖

2
H̃
+ (2∗s − q)Q(z) , 0.

According to the implicit function theorem, there exist η > 0 and a differentiable function ξ :

B(0; η) ⊂ H̃ → R such that ξ(0) = 1 and formula (4.1) holds, via direct computation. Moreover,

Fz(ξ(h), h) = 0 for all h ∈ B(0; η),

which is equivalent to〈
I
′

λ,µ(ξ(h)(z− h)), ξ(h)(z− h)
〉
= 0 for all h ∈ B(0; η),

that is ξ(h)(z− h) ∈ Nλ,µ. �

Lemma 4.2. Let (λ,µ) ∈ CΛ1 . Then, for any z ∈ N−λ,µ, there exists r > 0 and a differentiable map

ξ− : B(0; r) ⊂ H̃ → R+such that ξ−(0) = 1 and ξ−(h)(z− h) ∈ N−λ,µ for every h ∈ B(0; r).
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Proof. Arguing as for the proof of Lemma 4.1, there exists r > 0 and a differentiable function

ξ− : B(0; r) ⊂ H̃ → R+such that ξ−(0) = 1, ξ−(h)(z− h) ∈ Nλ,µ for all h ∈ B(0; r) and formula (4.1)

holds. Since 〈
Φ′(z), z

〉
= (2− q)‖z‖2

H̃
− (2∗s − q)Q(z) < 0,

by the continuity of the functions Φ′ and ξ−, up to reducing the size of r > 0, we get〈
Φ′ (ξ−(h)(z− h)) , ξ−(h)(z− h)

〉
< 0.

This implies that the functions ξ−(h)(z− h) belong toN−λ,µ. �

Proposition 4.1. The following facts hold.
(i) Let (λ,µ) ∈ CΛ1 . Then there is a (PS)αλ,µ-sequence {zn} ⊂ Nλ,µ for Iλ,µ.
(ii) Let (λ,µ) ∈ C(q/2)2/(2−q)Λ1

. Then there is a (PS)α−
λ,µ

-sequence {zn} ⊂ Nλ,µ for Iλ,µ.

Proof. (i) By Lemma 2.3 and Ekeland Variational Principle [10], there exists a minimizing sequence

{zn} ⊂ Nλ,µ such that

Iλ,µ (zn) < αλ,µ +
1
n

,

Iλ,µ (zn) < Iλ,µ(w) +
1
n
‖w− zn‖H̃ , for each w ∈ Nλ,µ. (4.2)

Taking n large and using αλ,µ < 0, we have

Iλ,µ (zn) =

(
1
2
−

1
2∗s

)
‖z‖2
H̃
−

(
1
q
−

1
2∗s

) ∫
Ω×{0}

(
λ
|w1,n|

q

|x|γ
+ µ
|w2,n|

q

|x|γ

)
dx

< αλ,µ +
1
n
<
αλ,µ

2
.

(4.3)

This yiclds that

−
q2∗s

2 (2∗s − q)
αλ,µ <

∫
Ω×{0}

(
λ
|w1,n|

q

|x|γ
+ µ
|w2,n|

q

|x|γ

)
dx

≤

(
λ

2
2−q + µ

2
2−q

) 2−q
2
‖z‖q
H̃

Θ.

(4.4)

Consequently, zn , 0 and combining with (4.3) and (4.4) and using Hölder inequality

‖z‖
H̃
>

− q2∗s
2 (2∗s − q)Θ

αλ,µ

(
λ

2
2−q + µ

2
2−q

) q−2
2


1
q

,

and

‖z‖
H̃
<

2 (2∗s − q)
q (2∗s − 2)

Θ
(
λ

2
2−q + µ

2
2−q

) 2−q
2


1

2−q

. (4.5)

Now we prove that ∥∥∥∥I′λ,µ (zn)
∥∥∥∥
H̃−1
→ 0, as n→∞.
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Fix n ∈N. By applying Lemma 4.2 to zn, we obtain the function ξn : B (0; rn)→ R+for some rn > 0,

such that ξn(h) (zn − h) ∈ Nλ,µ. Take 0 < σ < rn. Let w ∈ H̃ with w , 0 and put h∗ = σw
‖w‖

H̃

. We set

hρ = ξn (h∗) (zn − h∗), then hσ ∈ Nλ,µ, and we have from (4.2) that

Iλ,µ (hσ) −Iλ,µ (zn) ≥ −
1
n
‖hσ − zn‖H̃ .

By the Mean Value Theorem, we get〈
I
′

λ,µ (zn) , hσ − zn
〉
+ o

(
‖hσ − zn‖H̃

)
≥ −

1
n
‖hσ − zn‖H̃ .

Thus, we have〈
I
′

λ,µ (zn) ,−h∗
〉
+ (ξn (h∗) − 1)

〈
I
′

λ,µ (zn) , zn − h∗
〉
≥ −

1
n
‖hσ − zn‖H̃ + o

(
‖hσ − zn‖H̃

)
.

Whence, from ξn (h∗) (zn − h∗) ∈ Nλ,µ, it follows that

−σ

〈
I
′

λ,µ (zn) ,
w
‖w‖

H̃

〉
+ (ξn (h∗) − 1)

〈
I
′

λ,µ (zn) −I
′

λ,µ (hσ) , zn − h∗
〉

≥ −
1
n
‖hσ − zn‖H̃ + o

(
‖hσ − zn‖H̃

)
.

So, we get 〈
I
′

λ,µ (zn) ,
w
‖w‖

H̃

〉
≤

1
nσ
‖hσ − zn‖H̃ +

o
(
‖hσ − zn‖H̃

)
σ

+
(ξn (h∗) − 1)

σ

〈
I
′

λ,µ (zn) −I
′

λ,µ (hσ) , zn − h∗
〉

.

(4.6)

Since ‖hσ − zn‖H̃ ≤ σ|ξn (h∗) |+ |ξn (h∗) − 1|‖z‖
H̃

and

lim
σ→0

|ξn (h∗) − 1|
σ

≤

∥∥∥ξ′n(0)∥∥∥H̃ .

For fixed n ∈ N, if we let σ → 0 in (4.6), then by virtue of (4.5) we can choose a constant C > 0

independent of σ such that 〈
I
′

λ,µ (zn) ,
w
‖w‖

H̃

〉
≤

C
n

(
1 +

∥∥∥ξ′n(0)∥∥∥H̃ )
.

Thus, we are done once we prove that
∥∥∥ξ′n(0)∥∥∥H̃ remains uniformly bounded. By (4.1), (4.5) and

Hölder inequality, we have

|
〈
ξ′n(0), h

〉
| ≤

C1‖h‖H̃
(2− q)‖z‖2

H̃
−Q(w1,n, w2,n)

for some C1 > 0. We only need to prove that

|(2− q)‖z‖2
H̃
− (2∗s − q) −Q(w1,n, w2,n) |≥ C2,

for some C2 > 0 and n large enough. We argue by contradiction. Suppose that there exists a

subsequence {zn} such that

(2− q)‖z‖2
H̃
− 2 (2∗s − q)Q(w1,n, w2,n) = on(1). (4.7)
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By virtue of (4.7) and the fact that zn ∈ Nλ,µ, we have

‖z‖2
H̃

=
(2∗s − q)

2− q
Q(w1,n, w2,n) + on(1), ‖z‖2

H̃
=

2∗s − q
2∗s − 2

K (zn) + on(1).

Taking into account that Iλ,µ (zn) → αλ,µ < 0 as n → ∞, we have ‖z‖
H̃
9 0 as n → ∞. Then,

arguing as in the proof of Lemma 2.5 yields (λ,µ) < CΛ1 , a contradiction. Then,〈
I
′

λ,µ (zn) ,
w
‖w‖

H̃

〉
≤

C
n

.

This proves (i). By Lemma 4.2, one can prove (ii), but we shall omit the details here. �

Now, we establish the existence of a local minimizer for Iλ,µ inN+
λ,µ.

Proposition 4.2. Let (λ,µ) ∈ CΛ1 . Then Iλ,µ has a local minimizer z+ in N+
λ,µsatisfying the following

conditions:
(i) Iλ,µ (z+) = αλ,µ = α+

λ,µ < 0;
(ii) z+is a positive solution of (2.3).

Proof. By (i) of Proposition 4.1, there exists a minimizing sequence {zn} =
{
(w1,n, w2,n)

}
for Iλ,µ in

Nλ,µ such that, as n→∞,

Iλ,µ (zn) = αλ,µ + on(1) and I′λ,µ (zn) = on(1) in H̃−1. (4.8)

By Lemma 2.3, we see that Iλ,µ is coercive on Nλ,µ, and {zn} is bounded in H̃ . Then there exists a

subsequence, still denoted by {zn} and z+ =
(
w+

1 , w+
2

)
∈ H̃ such that, as n→∞,

w1,n ⇀ w+
1 , w2,n ⇀ w+

2 , weakly in Hs
0,L (CΩ) ,

w1,n → w+
1 , w2,n → w+

2 , strongy in Lr(Ω) for all 1 ≤ r < 2∗s,

w1,n → w+
1 , w2,n → w+

2 , a.e. in Ω,

up to subsequences. This implies that, as n→∞,

K (zn) = K
(
z+

)
+ on(1). (4.9)

We claim that z+is a nontrivial solution of (2.3). From (4.8) and (4.9), it is easy to verify that z+is a

weak solution of (2.3). From zn ∈ Nλ,µ and (2.3) we deduce that

K (zn) =
q (2∗s − 2)
2 (2∗s − q)

‖z‖2
H̃
−

q2∗s
2∗s − q

Iλ,µ (zn) . (4.10)

Let n→∞ in (4.10), by (4.8), (4.9) and αλ,µ < 0, we have

K
(
z+

)
≥ −

q2∗s
2∗s − q

αλ,µ > 0.
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Therefore, z+ ∈ Nλ,µ is a nontrivial solution of (2.3). Now we show that zn → z+strongly in H̃ and

Iλ,µ (z+) = αλ,µ. Since z+ ∈ Nλ,µ, then by (4.10), we obtain

αλ,µ ≤ Iλ,µ

(
z+

)
=

s
N
‖z+‖2

H̃
−

2∗s − q
q2∗s

K
(
z+

)
≤ lim

n→∞

(
s
N
‖z‖2
H̃
−

2∗s − q
q2∗s

K (zn)

)
= lim

n→∞
Iλ,µ (zn) = αλ,µ.

This implies that Iλ,µ (z+) = αλ,µ and limn→∞ ‖z‖2
H̃

= ‖z+‖2
H̃

. Set ẑn = zn − z+. Then, that∥∥∥̂zn
∥∥∥2
H̃

= ‖z‖2
H̃
− ‖z+‖2

H̃
+ on(1).

Hence, zn → z+in H̃ . We claim that z+ ∈ N+
λ,µ. Assume by contradiction that z+ ∈ N−λ,µ. Then, by

Theorem 2.2 , there exist (unique) t+1 and t−1 with t+1 z+ ∈ N+
λ,µand t−1 z+ ∈ N−λ,µ In particular, we have

t+1 < t−1 = 1. Since
d
dt
Iλ,µ

(
tz+

)
|t=t+1

= 0, and
d2

dt2Iλ,µ

(
tz+

)
|t=t+1

> 0,

there exists t+1 < t∗ ≤ t−1 such that Iλ,µ

(
t+1 z+

)
< Iλ,µ (t∗z+). By Theorem 2.2, we have

Iλ,µ

(
t+1 z+

)
< Iλ,µ

(
t∗z+

)
≤ Iλ,µ

(
t−1 z+

)
= Iλ,µ

(
z+

)
,

a contradiction. Since Iλ,µ (z+) = Iλ,µ

(
|w+

1 |, |w
+
2 |

)
and

(
|w+

1 |, |w
+
2 |

)
∈ Nλ,µ, by Lemma 2.4 we may

assume that z+is a nontrivial nonnegative solution of (2.3). Then by the Strong Maximum Principle

[ [9], Lemma 2.4], we have w+
1 , w+

2 > 0 in CΩ, hence, z+is a positive solution for (2.3). �

Next we will use wε = Es (uε), the family of minimizers for the trace inequality (2.7), where uε
is given in (2.8). Without loss of generality, we may assume that 0 ∈ Ω. We then define the cut-off

function φ ∈ C∞0 (CΩ) , 0 ≤ φ ≤ 1 and for small fixed ρ > 0,

φ(x, y) =

1, (x, y) ∈ Bρ,

0, (x, y) < B2ρ,

where Bρ =
{
(x, y) : |x|2 + y2 < ρ2, y > 0

}
. We take ρ so small that B2ρ ⊂ CΩ. Recall W is the

extension of U introduced in Section 2, we have (cf. [3]) |∇W(x, y)| ≤ Cy−1
W(x, y). Let

Uε(x) =
1

(ε2 + |x|2)
N−2s

2

, ε > 0.

Then the extension of Uε(x) has the form

Wε(x, y) = cN,sy2s
∫

RN

Uε(z)dz

(|x− z|2 + y2)
N+2s

2

= ε2s−N
W

(x
ε

,
y
ε

)
.

Notice that φWε ∈ Hs
0,L (CΩ), for ε > 0 small enough.
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Lemma 4.3. There is z ∈ H̃\{0} nonnegative and Λ∗ > 0 such that for (λ,µ) ∈ CΛ∗ .

sup
t≥0
Iλ,µ(tz) < c∞,

where c∞ is given in Lemma 3.3. In particular, α−λ,µ < c∞ for all (λ,µ) ∈ CΛ∗ .

Proof. By an argument similar to that of the proof of [ [3], formula (3.26)], we get∥∥∥φWε

∥∥∥2
Hs

0,L(CΩ)
= ks

∫
RN+1

+

y1−2s
|∇Wε|

2dxdy +O(1)

= ε2s−Nks

∫
RN+1

+

y1−2s
|∇W(x, y)|2dxdy +O(1).

(4.11)

We notice that ∥∥∥φUε

∥∥∥2∗s
2∗s
=

∫
Ω
|φUε|

2∗sdx =

∫
Ω

φ(x)2∗s

(ε2 + |x|2)N dx,

‖Uε‖
2∗s
2∗s
=

∫
RN

1

(ε2 + |x|2)N dx = ε−N
‖U‖2

∗
s

2∗s

Then, one has that∥∥∥φUε

∥∥∥2∗s
2∗s
− ε−N

‖U‖2
∗
s

2∗s
=

∫
Ω

φ2∗s(x) − 1

(ε2 + |x|2)N dx−
∫

RN\Ω

dx

(ε2 + |x|2)N ,

which yields

|

∥∥∥φUε

∥∥∥2∗s
2∗s
− ε−N

‖U‖2
∗
s

2∗s
| ≤

∫
Ω\B(0;ρ)

1

(ε2 + |x|2)N dx +
∫

RN\Ω

dx

(ε2 + |x|2)N

=

∫
RN\B(0;ρ)

dx

(ε2 + |x|2)N ≤

∫
RN\B(0;ρ)

dx
|x|2N = C3.

This implies that

1−C3ε
N
‖U‖−2∗s

2∗s
≤ εN

∥∥∥φUε

∥∥∥2∗s
2∗s
‖U‖−2∗s

2∗s
≤ 1 + C3ε

N
‖U‖−2∗s

2∗s

Taking ε so small that C3εN
‖U‖−2∗s

2∗s
< 1, since 2/2∗s = (N − 2s)/N < 1, we obtain

1− εNC3‖U‖
−2∗s
2∗s
≤

(
1− εNC3‖U‖

−2∗s
2∗s

)2/2∗s
≤ εN−2s

∥∥∥φUε

∥∥∥2
2∗s
‖U‖−2

2∗s

≤

(
1 + εNC3‖U‖

−2∗s
2∗s

)2/2∗s
≤ 1 + εNC3‖U‖

−2∗s
2∗s

.

Hence
∥∥∥φUε

∥∥∥2
2∗s
= ε2s−N

‖U‖22∗s +O
(
ε2s

)
. SinceW = Es(U) optimizes (2.7), by (4.11) we have

∥∥∥φWε

∥∥∥2
Hs

0,L(CΩ)∥∥∥φUε

∥∥∥2
2∗s

=

ε2s−Nks

∫
RN+1

+

y1−2s
|∇W(x, y)|2dxdy +O(1)

ε2s−N‖U‖22∗s +O (ε2s)
(4.12)
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=

ks

∫
RN+1

+

y1−2s
|∇W(x, y)|2dxdy

‖U‖22∗s

(
1 +O

(
εN−2s

))
= ksS(s, N) +O

(
εN−2s

)
.

Now we consider the function J : H̃ → R defined by

J(z) :=
1
2
‖z‖2
H̃
−

1
2∗s

Q(z).

Set w0,1 := φWε, w0,2 := τ0φWε and z0 := (w0,1, w0,2) ∈ H̃ . Notice that J(0) = 0, J (tz0) > 0 for

t > 0 small and J (tz0) < 0 for t > 0 large. The map t 7→ J (tz0) maximizes at

t0 :=

‖z0‖
2
H̃

Q(z0)


1

2∗s−2

. (4.13)

Then from (2.12), (4.12) and (4.13), we conclude that

sup
t≥0

J (tz0) = J (t0z0) =

(
1
2
−

1
2∗s

)
‖z0‖

22∗s
2∗s−2

H̃

(Q(z0))
2

2∗s−2

=
s
N


(
1 + τ2

0

)
ks

∫
CΩ

y1−2s
|∇ (φWε) |

2dxdy

(
η1τ

β1
0 + η2τ

β2
0

) (∫
Ω
|φUε|

2∗sdx
) 2

2∗s



2∗s
2∗s−2

=
s
N


f (τ0)ks

∫
CΩ

y1−2s
|∇ (φWε) |

2

(∫
Ω
|φUε|

2∗sdx
) 2

2s



N
2s

=
s
N

[
f (τ0)

(
ksS(s, N) +O

(
εN−2s

))] N
2s

=
s
N

(
ksSη,α,β

) N
2s +O

(
εN−2s

)
.

(4.14)

We now choose δ1 > 0 so small that, for all (λ,µ) ∈ Cδ1 , we get

c∞ =
s
N
(ksSη,α,β)

N
2s −C0(λ

2
2−q + µ

2
2−q ) > 0.

By the definition of Iλ,µ and z0, we have

Iλ,µ (tz0) ≤
t2

2
‖z0‖

2
H̃

, for all t ≥ 0 and λ,µ > 0,

which implies that there exists t0 ∈ (0, 1) satisfying

sup
t∈[0,t0]

Iλ,µ (tz0) < c∞, for all (λ,µ) ∈ Cδ1 .
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Hence, from (4.14) we see that

sup
t≥t0

Iλ,µ (tz0) = sup
t≥t0

(
J (tz0) −

tq

q
K (tz0)

)

≤
s
N

(
ksSη,α,β

) N
2s +O

(
εN−2s

)
−

tq
0

q

(
λ+ µτ

q
0

) ∫
B(0;ρ)

|Uε|
q

|x|γ
dx.

(4.15)

Letting 0 < ε ≤ ρ, we have∫
B(0;ρ)

|Uε|
q

|x|γ
dx =

∫
B(0;ρ)

1

|x|γ (ε2 + |x|2)
(N−2s)q

2

dx

=

∫ ρ

0

rN−1

rγε(N−2s)q
[
1 +

(
r
ε

)2
] (N−2s)q

2

dr

=εN−γ+(2s−N)q
∫ ρ

ε

0

rN−1

rγ (1 + r2)
(N−2s)q

2

dr

=εN−γ+2sq−qN
∫ 1

0

rN−1

rγ (1 + r2)
(N−2s)q

2

dr

+ εN−γ+2sq−qN
∫ ρ

ε

1

rN−1

rγ (1 + r2)
(N−2s)q

2

dr.

(4.16)

From (4.16), we get

tq
0

q

∫
B(0;ρ)

|Uε|
q

|x|γ
dx ≥


C3εN−γ+sq− qN

2 , γ > N − (N − 2s)q,

C4ε
qN
2 −sq
| ln ε|, γ = N − (N − 2s)q,

C5ε
qN
2 −sq, γ < N − (N − 2s)q,

(4.17)

where Ci > 0(i = 3, 4, 5) are positive constants (Ci independent of ε).

The case of γ > N − (N − 2s)q, combining (4.14) with (4.17), one has

sup
t≥0
Iλ,µ (tz0) ≤

s
N

(
ksSη,α,β

) N
2s +O

(
εN−2s

)
+ C2ε

N−2s
−C3

(
λ+ µτ

q
0

)
εN−γ+sq− qN

2 .

Let λ
2

2−q + µ
2

2−q = εN−2s, that is, ε =
(
λ

2
2−q + µ

2
2−q

) 1
N−2s

, then we can choose δ1 > 0 such that

O

(
εN−2s

)
+ C2ε

N−2s
−C3

(
λ+ µτ

q
0

)
εN−γ+sq− qN

2

=O

((
λ

2
2−q + µ

2
2−q

)N−2s
)
+ C2

(
λ

2
2−q + µ

2
2−q

)
−C3

(
λ+ µτ

q
0

) (
λ

2
2−q + µ

2
2−q

) 2N−2γ+2sq−qN
2(N−2s)

<−C0

(
λ

2
2−q + µ

2
2−q

)
,

for all λ
2

2−q + µ
2

2−q ∈ (0, δ1). Then, for (λ,µ) ∈ Cδ1 , one gets

sup
t≥0
Iλ,µ (tz0) < c∞.
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The case of γ = N − (N − 2s)q, it follows from (4.14) and (4.17) that

sup
t≥0
Iλ,µ (tz0) ≤

s
N

(
ksSη,α,β

) N
2s +O

(
εN−2s

)
+ C2ε

N−2s
−C4

(
λ+ µτ

q
0

)
ε

qN
2 −sq
| ln ε|.

Let λ
2

2−q + µ
2

2−q = εN−2s, that is, ε =
(
λ

2
2−q + µ

2
2−q

) 1
N−2s

, choosing δ2 > 0 such that for all λ
2

2−q + µ
2

2−q ∈

(0, δ2), then one has

O

(
εN−2s

)
+ C2ε

N−2s
−C4

(
λ+ µτ

q
0

)
ε

qN
2 −sq
| ln ε|

=O
(
λ

2
2−q + µ

2
2−q

)
+ C2

(
λ

2
2−q + µ

2
2−q

)
−C4

(
λ+ µτ

q
0

) (
λ

2
2−q + µ

2
2−q

) q
2
| ln

(
λ

2
2−q + µ

2
2−q

)
|

<−C0

(
λ

2
2−q + µ

2
2−q

)
.

Consequently, for (λ,µ) ∈ Cδ2 , we obtain

sup
t≥0
Iλ,µ (tz0) < c∞.

If we set Λ∗ = min
{
δ1,ρN−2s, δ2

}
> 0, then for (λ,µ) ∈ CΛ∗ ,

sup
t≥0
Iλ,µ (tz0) < c∞. (4.18)

Finally, we prove that α−λ,µ < c∞ for all (λ,µ) ∈ CΛ∗ . Recall that

z0 = (w0,1, w0,2) = (φWε, τ0φWε) .

Since Q(z0) > 0, by Theorem 2.2 there exists t0 > 0 such that t0z0 ∈ N
−

λ,µ. By the definition of

α−λ,µand (4.18), we conclude that

α−λ,µ ≤ Iλ,µ (t0z0) ≤ sup
t≥0
Iλ,µ (tz0) < c∞

for all (λ,µ) ∈ CΛ∗ . �

Let Λ∗ be as in Lemma 4.3. We prove the existence a local minimizer for Iλ,µ onN−λ,µ.

Proposition 4.3. Let Λ∗ > 0 be as in Lemma 4.3 and set

Λ2 := min
{
Λ∗, (

q
2
)

2
2−q Λ1

}
.

For (λ,µ) ∈ CΛ2 ,Iλ,µ has a minimizer z−in N−λ,µwith Iλ,µ (z−) = α−λ,µ. Furthermore, z− is a positive
solution of (2.3).

Proof. By (ii) of Proposition 4.1, there is a (PS)α−
λ,µ

sequence {zn} ⊂ N
−

λlµ
for Iλ,µ for all (λ,µ) ∈

C
(

q
2 )

2
2−q Λ1

. By Lemmas 3.3 and 4.3 and (ii) of Theorem 2.1, for all (λ,µ) ∈ CΛ∗ ,Iλ,µ satisfies the

(PS)α−
λ,µ

condition and α−λ,µ > 0. Then, there exists a subsequence still denoted by {zn} and z− =(
w−1 (x, y), w−2 (x, y)

)
∈ N

−

λ,µsuch that zn → z−strongly in H̃ and Iλ,µ (z−) = α−λ,µ > 0, for all

(λ,µ) ∈ CΛ2 . Arguing as in the proof of Proposition 4.2, for (λ,µ) ∈ CΛ2 , we obtain that z−is a

positive solution of (2.3). �
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5. The proof of Theorem 1.1

By Proposition 4.2, for (λ,µ) ∈ CΛ1 , system (2.3) admits a positive solution z+ ∈ N+
λ,µ. By

Proposition 4.3, a positive solution z− ∈ N−λ,µexists for all (λ,µ) ∈ CΛ2 . Furthermore, since

N
+
λ,µ ∩N

−

λ,µ = ∅, then z+, z−are distinct positive solutions of system (2.3). In turn, (u±(x), v±(x)) =(
w±1 (x, 0), w±2 (x, 0)

)
are distinct positive solutions of (1.1).
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