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Abstract. We studied a simple mathematical model for the chikungunya virus (CHIKV) spread under the influence of

a seasonal environment with two routes of infection. We investigated the existence and the uniqueness of a bounded

positive solution, and we showed that the system admits a global attractor set. We calculated the basic reproduction

number R0 for the both cases, the fixed and seasonal environment which permits us to characterise both, the extinction

and the persistence of the disease with regard to the values of R0. We proved that the virus-free equilibrium point

is globally asymptotically stable if R0 ≤ 1, while the disease will persist if R0 > 1. Finally, we gave some numerical

examples confirming the theoretical findings.

1. Introduction

Arboviruses constitute a group of viruses which are transmitted to humans or animals by bites

from blood-sucking vectors (mosquitoes, ticks and sandflies). Certain viruses have had a renewed

medical importance in these two recent decades, notably the Dengue virus, the Yellow Fever virus,

the virus Zika disease and Chikungunya virus. The adaptation of the Chikungunya virus to new

vectors (Aedes albopictus), the adaptation of these vectors to new environments, and the severe

clinical forms associated with these arboviruses mean that they have become emerging and urgent

issues around the world, particularly in South America and Europe. Chikungunya and Zika virus

infection have had renewed medical interest following massive epidemics which started respec-

tively in Kenya in 2004 and in the Yap Islands (Micronesia) in 2007. Chikungunya and Zika viruses

are mainly transmitted to man during a blood meal of Aedes mosquitoes whose entomological

surveillance (population of the environment, resistance of mosquitoes to insecticides) remains al-

most completely absent in Mali compared to Anopheles mosquitoes (malaria vectors). The medical

Received: Nov. 16, 2023.

2020 Mathematics Subject Classification. 35B35, 35K57, 35Q92, 37N25.

Key words and phrases. CHIKV transmission; two routes of infection; periodic environment; persistence.

https://doi.org/10.28924/2291-8639-22-2024-6
ISSN: 2291-8639

© 2024 the author(s).

https://doi.org/10.28924/2291-8639-22-2024-6


2 Int. J. Anal. Appl. (2024), 22:6

interest of Chikungunya is in particular linked to serious forms in newborns (encephalitis, derma-

tological bullous lesions in particular), severe forms (hepatitis, neurological forms – uncommon),

complications linked to comorbidities and finally to long-term rheumatological forms.

The mathematical modeling permits for mathematician to use a set of concepts, methods, math-

ematical theories that facilitate the description, the understand and the prediction of the evolution

of phenomena external to mathematics which make a link between reality and mathematics. For

several centuries, mathematics has not only been a tool extremely important for acting on and

modifying nature, one of the main pillars of technique and technology, but also (and perhaps

above all) a major instrument to understand it. In this sense, they are not only a source of utility

but also of "truth". In particular, mathematical modeling is a way for studying the disease, predict-

ing its behavior in the future, and then proposing suitable strategies. Several researchers worked

on some mathematical models for several infectious diseases [1–7]. In particular, the modeling of

the behavior of CHIKV dynamics was studied in several recent works [8–15].

Note that seasonality in infectious is very repetitive [16]. In particular, each year with the

return of cold weather, infectious diseases spread among the population. Although they are

often temporary and harmless, they can nevertheless be much more serious, particularly in the

weakest people. CHIKV epidemics occur in a context marked by seasonal rains and tropical storms

which have caused heavy flooding. Seasonal factors such as the monsoon or rainy season affect

the development of an epidemic. We then talk about seasonality of CHIKV. Climate changes

linked to global warming can interact with seasonal climatic factors, particularly through climatic

anomalies (drought, floods) and be the cause of significant epidemic outbreaks Several sand

simple mathematical models of infectious diseases that take into account of the seasonality were

proposed [17–19]. In such mathematical models, the basic reproduction number can be calculated

either using the time-averaged system (autonomous) as in [20, 21] or other definition as in [22, 23]

where all these definitions are different from the one defined for time-averaged system. In [24], the

authors analysed the seasonal behaviour of an SVEIR epidemic model with vaccination. Similarly,

in [25–29], the authors studied the seasonal behaviour of some epidemic models related to HIV,

chikungunya virus and Typhoid Fever spread.We aim in this paper to study the dynamics of CHIKV
in relation with phages and hosts when it is considered in both, fixed and seasonal environment

and with a nonlinear general incidence rate. We calculated the basic reproduction number as the

spectral radius of an integral operator. We analysed the global stability of the disease-free solution

where we proved that it is globally asymptotically stable if R0 < 1. However, R0 > 1, we proved

that the dynamics is persistent and so the disease-present solution converges to a limit cycle. We

confirmed the theoretical findings by using an intense numerical examples.

The rest of this article is organized as follows. In Section 2, we present a simple epidemic

model of CHIKV taking into of the seasonality. In Section 3, we considered firstly the case of fixed

environment, and we calculated R0 and we investigated the global analysis of both, the disease-

free and the endemic steady states. However, in section 4, we focus on the stability of virus-free
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and virus-present periodic trajectories for the case of seasonal environment. Some numerical tests

are given in Section 5 confirming the theoretical findings. Finally, in section 6, we give some

concluding remarks.

2. CHIKV EpidemicModel

We consider a compartmental mathematical model for the dynamics of a CHIKV. Let us denote

by Xs(t), Xi(t), Xv(t) and Xp(t) the quantities of susceptible hosts, infected hosts, CHIKV and

phages, respectively. Therefore, the model is given by the fourth dimensional system of differential

equations hereafter.
Ẋs(t) = d(t)Θ1(t) − τ1(t)Xi(t)Xs(t) − τ2(t)Xv(t)Xs(t) − d(t)Xs(t),
Ẋi(t) = τ1(t)Xi(t)Xs(t) + τ2(t)Xv(t)Xs(t) − d(t)Xi(t),
Ẋv(t) = ξ(t)Xi(t) − µ(t)Xv(t) − τ3(t)Xv(t)Xp(t),
Ẋp(t) = m(t)Θ2(t) + %(t)τ3(t)Xv(t)Xp(t) −m(t)Xp(t).

(2.1)

with initial conditions given by (Xs(0), Xi(0), Xv(0), Xp(0)) ∈ R4
+. The susceptible hosts have

a periodic recruited rate d(t)Θ1(t), and a periodic death rate d(t) and a periodic incidence rate

τ1(t)Xs(t)Xi(t) + τ2(t)Xs(t)Xv(t), where τ1(t) and τ2(t) are the periodic contact rates. The peri-

odic parameters µ(t) and m(t) describe the periodic death rates of the CHIKV and the phages,

respectively. ξ(t) is the periodic production rate from infected hosts to CHIKV. The phages have a

periodic proliferation rate given by m(t)Θ2(t) + %(t)τ3(t)Xv(t)Xp(t). More details concerning the

significance of the model parameters are given in Table 1.

Notation Definition Notation Definition
Xs(t) Concentration of susceptible hosts Θ1 Hosts recruitment rate

Xi(t) Concentration of infected hosts Θ2 Phage recruitment rate

Xv(t) Concentration of CHIKV µ Death rate of viruses

Xp(t) Concentration of phages d Death rate of hosts

τ1(t) Susceptible-infected contact rate m Death rate of phages

τ2(t) Susceptible-virus contact rate % Burst size of phages per virus

τ3(t) Virus-phage contact rate ξ Proliferation rate of viruses

Table 1. Parameters and variables of system (2.1).

The model parameters satisfy the following assumption:

Assumption 2.1. The functions Θ1(t), d(t), ξ(t), m(t),µ(t),, τ1(t), τ2(t) and τ3(t) are non-negative
continuous bounded and T-periodic.
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3. Case of Fixed Environment

In this section, we assume that all parameters are positive constant reflecting the case of fixed

environment. Therefore, we obtain the the autonomous form of the dynamics (2.1).
Ẋs(t) = dΘ1 − τ1Xi(t)Xs(t) − τ2Xv(t)Xs(t) − dXs(t),
Ẋi(t) = τ1Xi(t)Xs(t) + τ2Xv(t)Xs(t) − dXi(t),
Ẋv(t) = ξXi(t) − µXv(t) − τ3Xv(t)Xp(t),
Ẋp(t) = mΘ2 + %τ3Xv(t)Xp(t) −mXp(t).

(3.1)

with initial conditions (Xs(0), Xi(0), Xv(0), Xp(0)) ∈ R4
+.

3.1. Basic properties. In this subsection, we give some classical properties for epidemiological

models. Let σ = min(µ, m), then we obtain the following results.

Lemma 3.1. The bounded set Γ1 = {(Xs, Xi, Xv, Xp) ∈ R4
+ : Xs + Xi ≤ Θ1, %Xv + Xp ≤ Θ2 +

ξ%

σ
Θ1} is

a positively invariant and attractor of the dynamics (3.1).

Proof. Assume that Xs = 0 then Ẋs = dΘ1 > 0. Assume that Xi = 0 then Ẋi = τ2XsXv ≥ 0.

Assume that Xv = 0 then Ẋp = ξXi ≥ 0. Assume that Xp = 0 then Ẋp = mΘ2 > 0. Consider

T1(t) = Xs(t) + Xi(t) − Θ1 and T2(t) = %Xv(t) + Xp(t) −
ξ%Θ1

σ
− Θ2. Then, one has Ṫ1(t) ≤

dΘ1 − d(Xs(t) +Xi(t)) = −dT1(t). Hence, T1(t) ≤ T1(0)e−dt. Then, T1(t) ≤ 0 if T1(0) ≤ 0. Similarly,

one has

Ṫ2(t) = %ξXi(t) − %µXv(t) + mΘ2 −mXp(t) ≤ %ξΘ1 − σ

(
%Xv(t) + Xp(t) −Θ2

)
= −σT2(t).

Then T2(t) ≤ T2(0)e−σt. Hence, T2(t) ≤ 0 if T2(0) ≤ 0. Thus, Γ1 is an invariant set for the dynamics

(2.1) since all compartments are non-negative. �

3.2. Basic reproduction number and steady states. As our model has several compartments, the

next-generation matrix method [30–32] will be used to calculate the basic reproduction number as

follows.

F =


τ1Θ1 τ2Θ1 0

0 0 0

0 0 0

 and V =


d 0 0

−ξ µ+ τ3Θ2 0

0 0 m

. Then, the next-generation matrix is

given by FV−1 =


τ1Θ1

d
+

ξτ2Θ1

d(µ+ τ3Θ2)

τ2Θ1

(µ+ τ3Θ2)
0

0 0 0

0 0 0

. Thus, the spectral radius of FV−1

which is the basic reproduction number is expressed by:

R0 =
τ1Θ1

d
+

ξτ2Θ1

d(µ+ τ3Θ2)
=

(µ+ τ3Θ2)τ1 + ξτ2

d(µ+ τ3Θ2)
Θ1. (3.2)

Lemma 3.2. • If R0 ≤ 1, then (3.1) admits only E0 = (Θ1, 0, 0, Θ2) as a steady state.
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• If R0 > 1, then the autonomous dynamics (3.1) admits two steady states; E0 and an endemic steady
state E∗ = (X∗s, X∗i , X∗v, X∗p).

Proof. Consider E = (Xs, Xi, Xv, Xp) to be a steady state then it satisfies:

0 = dΘ1 − τ1XsXi − τ2XsXv − dXs,

0 = τ1XsXi + τ2XsXv − dXi,

0 = ξXi − µXv − τ3XpXv,

0 = mΘ2 + %τ3XpXv −mXp.

(3.3)

From Eq (3.3) we obtain the CHIKV-free steady state E0 = (Θ1, 0, 0, Θ2). Furthermore, we have

Xp =
mΘ2

m− %τ3Xv
,

Xi =
µXv + τ3XvXp

ξ
=
µ

ξ
Xv +

mΘ2τ3Xv

ξ(m− %τ3Xv)
,

Xs = Θ1 −Xi = Θ1 −
µ

ξ
Xv −

mΘ2τ3Xv

ξ(m− %τ3Xv)
,

dXi = τ1XsXi + τ2XsXv.

(3.4)

We define the function

g(Xv) =
τ1XsXi + τ2XsXv − dXi

Xv

=

(
µτ1

ξ
+

mτ1τ3Θ2

ξ(m− %τ3Xv)
+ τ2

) (
Θ1 −

µ

ξ
Xv −

mΘ2τ3Xv

ξ(m− %τ3Xv)

)
−
µd
ξ
−

mdΘ2τ3

ξ(m− %τ3Xv)
.

(3.5)

Then, we obtain

lim
Xv→0+

g(Xv) =
(
τ1
µ

ξ
+ τ2

)
Θ1 −

µd
ξ
−

dτ3Θ2

ξ

=
µd
ξ

(
τ1Θ1

d
+
ξτ2Θ1

µd
+
τ3Θ2

µ
− 1

)
=

µd
ξ
(R0 − 1) > 0 if R0 > 1.

(3.6)

lim

Xv→

 m
%τ3


−

mdΘ2τ3Xv

ξ(m− %τ3Xv)
= −∞ then, lim

Xv→

 m
%τ3


−

g(Xv) < 0. The derivative of the function g is

given by

g′(Xv) =

τ1

(
µ

ξ
Xv +

m2Θ2τ3Xv

ξ(m− %τ3Xv)2

)
−

(
µ

ξ
Xv +

mΘ2τ3Xv

ξ(m− %τ3Xv)

)
X2

v

× (
Θ1 −

µ

ξ
Xv −

mΘ2τ3Xv

ξ(m− %τ3Xv)

)

−

τ1

(
µ

ξ
Xv +

mΘ2τ3Xv

ξ(m− %τ3Xv)

)
Xv

+ τ2

×
(µ
ξ
+

m2Θ2τ3

ξ(m− %τ3Xv)2

)
−

%mdΘ2τ2
3

ξ(m− %τ3Xv)2

≤ −

(
τ1

(
µ

ξ
+

mΘ2τ3

ξ(m− %τ3Xv)

)
+ τ2

)
×

(µ
ξ
+

mΘ2τ3

ξ
m

(m− %τ3Xv)2

)
−

%mdΘ2τ2
3

ξ(m− %τ3Xv)2 .
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Therefore, we deduce that g′(Xv) ≤ 0 for all Xv ∈ (0,
m
%τ3

). Then, the function g(Xv) admits a

unique root X∗v ∈ (0,
m
%τ3

). Therefore, one obtains

X∗p =
mΘ2

m− %τ3X∗v
,

X∗i =
µ

ξ
X∗v +

mΘ2τ3X∗v
ξ(m− %τ3X∗v)

,

X∗s = Θ1 −
µ

ξ
X∗v +

mΘ2τ3X∗v
ξ(m− %τ3X∗v)

.

(3.7)

Therefore, the infected equilibrium E∗ = (X∗s, X∗i , X∗v, X∗p) exists and is unique if R0 > 1. �

3.3. Local analysis. We aim, in this section, to analyse the local stability of the equilibria of the

dynamics (3.1).

Theorem 3.1. In the case where R0 < 1, the phage-free E0 is locally asymptotically stable, and in the case
where R0 > 1, E0 is unstable.

Proof. The linearisation of the dynamics (3.1) at the steady state E0 is:

J0 =


−d −τ1Θ1 −τ2Θ1 0

0 τ1Θ1 − d τ2Θ1 0

0 ξ −(µ+ τ3Θ2) 0

0 0 τ3Θ2 −m

 .

J0 admits four eigenvalues; Θ1 = −d < 0 and Θ2 = −m < 0. Θ3 and Θ4 are eigenvalues of the

sub-matrix

M0 :=

 τ1Θ1 − d τ2Θ1

ξ −(µ+ τ3Θ2)

 .

The trace of the matrix M0 is:

tr(M0) = τ1Θ1 − d− (µ+ τ3Θ2)

≤ −(µ+ τ3Θ2) − d
(
1−

τ1Θ1

d
−

τ2Θ1

d(µ+ τ3Θ2)

)
= −(µ+ τ3Θ2) − d

(
1−R0

)
and the determinant of M0 is:

det(M0) = −(τ1Θ1 − d)
(
µ+ τ3Θ2

)
− ξτ2Θ1

= −d
(
µ+ τ3Θ2

)(
τ1Θ1

d
− 1 +

ξτ2Θ1

d(µ+ τ3Θ2)

)
= −d

(
µ+ τ3Θ2

)(
R0 − 1

)
.

Then, E0 is locally asymptotically stable once R0 < 1, however, it is unstable once R0 > 1. �

Theorem 3.2. If R0 > 1, therefore E∗ is locally asymptotically stable.
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Proof. The linearisation of the dynamics (3.1) at the steady state E∗ = (X∗s, X∗i , X∗v, X∗p) is:

J∗ =


−d− τ1X∗i − τ2X∗v −τ1X∗s −τ2X∗s 0

τ1X∗i + τ2X∗v τ1X∗s − d τ2X∗s 0

0 ξ −(µ+ τ3X∗p) −τ3X∗v
0 0 %τ3X∗p %τ3X∗v −m

 .

The characteristic polynomial is then given by:

Q(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣
−λ− d− τ1X∗i − τ2X∗v −τ1X∗s −τ2X∗s 0

τ1X∗i + τ2X∗v −λ+ τ1X∗s − d τ2X∗s 0

0 ξ −λ− (µ+ τ3X∗p) −τ3X∗v
0 0 %τ3X∗p −λ+ %τ3X∗v −m

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣
−(λ+ d) −(λ+ d) 0 0

τ1X∗i + τ2X∗v −λ+ τ1X∗s − d τ2X∗s 0

0 ξ −λ− (µ+ τ3X∗p) −τ3X∗v
0 0 %τ3X∗p −λ+ %τ3X∗v −m

∣∣∣∣∣∣∣∣∣∣∣∣∣
= −(λ+ d)

∣∣∣∣∣∣∣∣∣∣
−λ+ τ1X∗s − d τ2X∗s 0

ξ −λ− (µ+ τ3X∗p) −τ3X∗v
0 %τ3X∗p −λ+ %τ3X∗v −m

∣∣∣∣∣∣∣∣∣∣
+(λ+ d)

∣∣∣∣∣∣∣∣∣∣
τ1X∗i + τ2X∗v τ2X∗s 0

0 −λ− (µ+ τ3X∗p) −τ3X∗v
0 %τ3X∗p −λ+ %τ3X∗v −m

∣∣∣∣∣∣∣∣∣∣
= −(λ+ d)

[
(−λ+ τ1X∗s − d)

(
(−λ− (µ+ τ3X∗p))(−λ+ %τ3X∗v −m)

+%τ3X∗pτ3X∗v
)
− ξτ2X∗s(−λ+ %τ3X∗v −m)

]
+ (λ+ d)(τ1X∗i + τ2X∗v)(

(−λ− (µ+ τ3X∗p))(−λ+ %τ3X∗v −m) + %τ3X∗pτ3X∗v
)
.

The characteristic polynomial Q(λ) = 0 if, and only if[
(λ+ d)(τ1X∗i + τ2X∗v) − (λ+ d)(λ+ d− τ1X∗s)

](
(λ+ (µ+ τ3X∗p))(X + m− %τ3X∗v) + %τ3X∗pτ3X∗v

)
= ξτ2X∗s(λ+ d)(λ+ m− %τ3X∗v)

or if[
(λ+ d)(τ1X∗i + τ2X∗v) + (λ+ d)(λ+ d− τ1X∗s)

]
=

ξτ2X∗s(λ+ d)(λ+ m− %τ3X∗v)(
(λ+ (µ+ τ3X∗p))(λ+ m− %τ3X∗v) + %τ3X∗pτ3X∗v

) .

Suppose that the eigenvalue λ is with positive real part. Therefore, since d − τ1X∗s =
τ2X∗sX∗v

X∗i
and

X∗v
X∗i
≥

ξ

(µ+ τ3X∗p)
, then, by considering the left-hand side, we obtain
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∣∣∣(λ+ d)(τ1X∗i + τ2X∗v) + (λ+ d)(X + d− τ1X∗s)
∣∣∣ > (d− τ1X∗s)|λ+ d| ≥

τ2X∗sX∗v
X∗i

|λ+ d|

≥
ξτ2X∗s

(µ+ τ3X∗p)
|λ+ d|

however, by considering the right-hand side, we obtain∣∣∣∣ ξτ2X∗s(λ+ d)(λ+ m− %τ3X∗v)(
(λ+ (µ+ τ3X∗p))(λ+ m− %τ3X∗v) + %τ3X∗pτ3X∗v

) ∣∣∣∣ <
∣∣∣∣ ξτ2X∗s(λ+ d)(λ+ m− %τ3X∗v)(
(λ+ (µ+ τ3X∗p))(λ+ m− %τ3X∗v)

∣∣∣∣
= ξτ2X∗s

∣∣∣∣ (λ+ d)(
(λ+ (µ+ τ3X∗p))

∣∣∣∣
≤

ξτ2X∗s
(µ+ τ3X∗p)

|λ+ d|.

(3.8)

This is a contradiction and then λ has non-positive real-part and then the endemic equilibrium

point E∗ should be locally asymptotically stable. �

3.4. Global analysis. Our aim, in this section, is to prove the global stability of the equilibria of

the dynamics (3.1). Consider the function G(x) = x− 1− ln x that we will use is this section.

Theorem 3.3. E0 is a globally asymptotically stable steady state if R0 ≤ 1.

Proof. Let us define the Lyapunov function F0(Xs, Xi, Xv, Xp) given by:

F0(Xs, Xi, Xv, Xp) = Xs −Θ1 −

∫ Xs

Θ1

Θ1

v
dv + Xi +

τ2Θ1

µ+ τ3Θ2

(
Xv +

Θ2

%
G

(
Xp

Θ2

) )
.

Note that F0(Xs, Xi, Xv, Xp) > 0 for all Xs, Xi, Xv, Xp > 0 and F0(Θ1, 0, 0, Θ2) = 0. Furthermore,

we have

Ḟ0 =
(
1−

Θ1

Xs

)(
dΘ1 − dXs − τ1XsXi − τ2XsXv

)
+ τ1XsXi + τ2XsXv − dXi

+
τ2Θ1

µ+ τ3Θ2

(
ξXi − µXv − τ3XvXp +

1
%
(1−

Θ2

Xp
)(mΘ2 + %τ3XvXp −mXp)

)
=

(
1−

Θ1

Xs

)
(dΘ1 − dXs) + τ1Θ1Xi + τ2Θ1Xv − dXi

+
τ2Θ1

µ+ τ3Θ2

(
ξXi +

1
%
(1−

Θ2

Xp
)(mΘ2 −mXp) − µXv − τ3XvΘ2

)
=

(
1−

Θ1

Xs

)
(dΘ1 − dXs) + τ1Θ1Xi + τ2Θ1Xv − dXi

+
τ2Θ1

µ+ τ3Θ2

(
ξXi +

1
%
(1−

Θ2

Xp
)(mΘ2 −mXp)

)
−
τ2Θ1τ3XvΘ2

µ+ τ3Θ2

≤ −d
(Xs −Θ1)

2

Xs
−

τ2Θ1

µ+ τ3Θ2

m
%

(Xp −Θ2)2

Xp
+ d(R0 − 1)Xi.

If R0 ≤ 1, thus Ḟ0 ≤ 0, ∀ Xi, Xi, Xv, Xp > 0. Let W0 = {(Xs, Xi, Xv, Xp) : Ḟ0 = 0} = {E0}. Using

LaSalle’s invariance principle [33], one can deduces that E0 is globally asymptotically stable if

R0 ≤ 1. �
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Theorem 3.4. E∗ is globally asymptotically stable for the dynamics (3.1) once R0 > 1.

Proof. Let us define the Lyapunov function F∗(Xs, Xi, Xv, Xp) given by:

F∗(Xs, Xi, Xv, Xp) = Xs −X∗s −
∫ S

X∗s

X∗s
v

dv + X∗i G
(Xi

X∗i

)
+
τ1X∗s
ξ

X∗vG
(Xv

X∗v

)
+
τ1X∗s
%ξ

X∗pG
(Xp

X∗p

)
.

Clearly, F∗(Xs, Xi, Xv, Xp) > 0 for all variables Xs, Xi, Xv, Xp > 0 and F∗(X∗s, X∗i , X∗v, X∗p) = 0. The

derivative of F∗ with respect to time is given by:

Ḟ∗ =
(
1−

X∗s
Xs

)(
dΘ1 − τ1XsXi − τ2XvXs − dXs

)
+

(
1−

X∗i
Xi

)(
τ1XsXi + τ2XvXs − dXi

)
+
τ1X∗s
ξ

(
1−

X∗v
Xv

)(
ξXi − µXv − τ3XvXp

)
+
τ1X∗s
%ξ

(
1−

X∗p
Xp

)(
mΘ2 + %τ3XvXp −mXp

)
=

(
1−

X∗s
Xs

)
(dΘ1 − dXs) + τ1XiX∗s + τ2XvX∗s − τ1X∗i Xs − τ2

X∗i
Xi

XsXv − dXi + dX∗i

+τ1X∗sXi −
τ1µ

ξ
X∗sXv − τ1

X∗v
Xv

XiX∗s +
τ1µ

ξ
X∗vX∗s +

τ3τ1

ξ
X∗sX∗vXp −

τ1τ3

ξ
X∗sXvX∗p

+
τ1X∗s
%ξX∗i

(
1−

X∗p
Xp

)(
mΘ2 −mXp

)
Since the steady state E∗ satisfies dΘ1 = τ1X∗i X

∗
s + τ2X∗vX∗s + dX∗s, τ1X∗i X

∗
s + τ2X∗vX∗s = dX∗i , µX∗v =

ξX∗i − τ3X∗vX∗p, and mΘ2 = mX∗p − %τ3X∗vX∗p,then we obtain

Ḟ∗ = −d
(Xs −X∗s)2

Xs
+ τ1X∗i X

∗
s + τ2X∗vX∗s − τ1X∗i X

∗
s
X∗s
Xs
− τ2X∗vX∗s

X∗s
Xs

+ τ1XiX∗s + τ2XvX∗s − τ1X∗i Xs

−τ2Xv
X∗i
Xi

Xs − τ1X∗i X
∗
s
Xi

X∗i
− τ2X∗vX∗s

Xi

X∗i
+ τ1X∗i X

∗
s + τ2X∗vX∗s + τ1X∗sX∗i Xi − τ1X∗sX∗i

Xv

X∗v

−
τ1τ3

ξ
X∗sXvX∗p − τ1X∗sX∗i Xi

X∗v
Xv

+ τ1X∗sX∗i +
τ1τ3

ξ
X∗sX∗vX∗p +

τ1τ3

ξ
X∗sX∗vXp −

τ1τ3

ξ
X∗sXvX∗p

−
mτ1X∗s
%ξ

(Xp −X∗p)2

Xp
−
τ1τ3

ξ
X∗sX∗vX∗p +

τ1τ3

ξ

X∗p
Xp

X∗sX∗vX∗p

≤ −d
(Xs −X∗s)2

Xs
−

mτ1

%ξ

(Xp −X∗p)2

Xp
X∗s + τ1X∗i X

∗
s

(
5−

X∗s
Xs
−

Xs

X∗s
−

Xv

X∗v
−

XiX∗v
XvX∗i

−
X∗i
Xi

)
+τ2X∗vX∗s

(
4−

X∗s
Xs
−

X∗i
Xi

XvXs

X∗vX∗s
−

Xi

X∗i
−

X∗v
Xv

)
.

Using the rule that
1
n

n∑
i=1

ai ≥
n

√√
n∏

i=1

ai, we get
1
5

(X∗s
Xs

+
Xs

X∗s
+

Xv

X∗v
+

XiX∗v
XvX∗i

+
X∗i
Xi

)
≥ 1 and

1
4

(X∗s
Xs

+

X∗i
Xi

XvXs

X∗vX∗s
+

Xi

X∗i
+

X∗v
Xv

)
≥ 1 . Thus, Ḟ∗ ≤ 0, ∀ Xs, Xi, Xv, Xp > 0 and Ḟ∗ = 0 if and only if Xs = X∗s, Xi =

X∗i , Xv = X∗v and Xp = X∗p. One can deduce easily that E∗ is globally stable by using the LaSalle’s

invariance principle [33]. �

4. Influence of Periodic Environment

Let return to the main dynamics (2.1) for a seasonal environment. For any continuous, positive

T-periodic function g(t), we define gu = max
t∈[0,T)

g(t) and gl = min
t∈[0,T)

g(t).
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4.1. Preliminary. Let A(t) to be a T-periodic m×m matrix continuous function that it is irreducible

and cooperative. Let βA(t) to be the fundamental matrix with positive entries, solution of

ẇ(t) = A(t)w(t). (4.1)

Let us denote the spectral radius of the matrix βA(T) by r(βA(T)). By using the Perron-Frobenius

theorem, one can define r(βA(T)) to be the principal eigenvalue of βA(T). According to [34], we

have:

Lemma 4.1. [34]. (4.1) admits a positive T-periodic function x(t) such that w(t) = x(t)eat with

a =
1
T

ln(r(βA(T))).

In order to define the disease-free periodic trajectory of model (2.1), let us consider the subsystem Ẋs(t) = d(t)Θ1(t) − d(t)Xs(t),
Ẋp(t) = m(t)Θ2(t) −m(t)Xp(t).

(4.2)

with the initial condition (Xs(0), Xp(0)) ∈ R2
+. The dynamics (4.2) has a unique T-periodic

trajectory (X∗s(t), X∗p(t)) such that X∗s(t) > 0 and X∗p(t) > 0. This solution is globally attractive in

R2
+; therefore, the dynamics (2.1) admits a unique disease-free periodic trajectory (X∗s(t), 0, 0, X∗p(t)).

Let us define σ(t) = min
t≥0

(µ(t), m(t)) and then we have

Proposition 4.1. The compact set

Γ2 =

{
(Xs, Xi, Xv, Xp) ∈ R4

+ / Xs + Xi ≤ Θu
1 ; %Xv + Xp ≤

%uξu

σl
Θu

1 +
mu

σl
Θu

2

}
is a positively invariant and attractor of trajectories of dynamics (2.1) with

lim
t→∞

Xs(t) + Xi(t) −X∗s(t) = 0,

lim
t→∞

%(t)Xv(t) + Xp(t) −X∗p(t) = 0.
(4.3)

Proof. Using the dynamics (2.1), we obtain

Ẋs(t) + Ẋi(t) = d(t)Θ1(t) − d(t)(Xs(t) + Xi(t))

≤ d(t)
(
Θu

1 − (Xs(t) + Xi(t))
)
≤ 0, if Xs(t) + Xi(t) ≥ Θu

1 ,

and

%(t)Ẋv(t) + Ẋp(t) =%(t)ξ(t)Xi(t) − %(t)µ(t)Xv(t) + m(t)Θ2(t) −m(t)Xp(t)

≤ %uξuΘu
1 + muΘu

2 − %(t)σ(t)Xv(t) − σ(t)Xp(t)

≤ %uξuΘu
1 + muΘu

2 − σ
l(%(t)Xv(t) + Xp(t)).
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Let Z1(t) = Xs(t) + Xi(t) and Z2(t) = %(t)Xv(t) + Xp(t). For x1(t) = Z1(t)−X∗s(t), t ≥ 0, it follows

that ẋ1(t) = −d(t)x1(t), and thus lim
t→∞

x1(t) = lim
t→∞

(Z1(t) −X∗s(t)) = 0. By the same way, let x2(t) =

Z2(t) −X∗p(t), t ≥ 0, then ẋ2(t) ≤ −σ(t)x2(t), and thus lim
t→∞

x2(t) = lim
t→∞

(Z2(t) −X∗p(t)) = 0. �

In section 4.2, we aim to define the basic reproduction number; R0, the disease-free and then its

global stability forR0 ≤ 1. Later, in section 4.3, we aim to prove that compartments Xi(t) and Xv(t)
persists if R0 > 1.

4.2. Disease-free trajectory. By using the definition of R0 given by the theory in [23]. For Y =

(Xi, Xv, Xs, Xp), let

F (t, Y) =


τ1(t)Xi(t)Xs(t) + τ2(t)Xv(t)Xs(t)

ξ(t)Xi(t)
0

0

,V+(t, Y) =


0

0

d(t)Θ1(t)
m(t)Θ2(t) + %(t)τ3(t)Xv(t)Xp(t)


andV−(t, Y) =


d(t)Xi(t)

µ(t)Xv(t) + τ3(t)Xv(t)Xp(t)
τ1(t)Xi(t)Xs(t) + τ2(t)Xv(t)Xs(t) + d(t)Xs(t)

m(t)Xp(t)

.

Our aim is to satisfy conditions (A1)–(A7) in [23, Section 1]. The dynamics (2.1) can take the form

hereafter:

Ẏ = F (t, Y) −V(t, Y) = F (t, Y) −V−(t, Y) +V+(t, Y). (4.4)

Thus, the first five conditions (A1)–(A5) are satisfied.

The dynamics (4.4) has a disease-free periodic solution Y∗(t) = (0, 0, X∗s(t), X∗p(t)). Let

f (t, Y(t)) = F (t, Y) − V−(t, Y) +V+(t, Y) and M(t) =

(
∂ fi(t, Y∗(t))

∂Y j

)
3≤i, j≤4

where fi(t, Y(t))

and Yi are the i-th components of f (t, Y(t)) and Y, respectively. A simple calculation give us

M(t) =

 −d(t) 0

0 −m(t)

 and thus r(βM(T)) < 1. Therefore, the trajectory Y∗(t) is linearly asymp-

totically stable in Ωs =
{
(0, 0, Xs, Xp) ∈ R4

+

}
. Therefore, the condition (A6) in [23, Section 1] is also

fulfilled.

Let us define F(t) and V(t) to be two matrices defined by F(t) =
(
∂Fi(t, Y∗(t))

∂Y j

)
1≤i, j≤2

and

V(t) =

(
∂Vi(t, Y∗(t))

∂Y j

)
1≤i, j≤2

where Fi(t, Y) and Vi(t, Y) are the i-th components of F (t, Y) and

V(t, Y), respectively. A simple calculation by using (4.4) give us the expressions of matrices F(t)
and V(t) as the following:

F(t) =

 τ1(t)X∗s(t) τ2(t)X∗s(t)
ξ(t) 0

 , V(t) =

 d(t) 0

0 µ(t) + τ3(t)X∗p(t)

 .
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Consider Z(t1, t2) to be the two by two matrix solution of the system
d
dt

Z(t1, t2) = −V(t1)Z(t1, t2)

for any t1 ≥ t2, with Z(t1, t1) = I2, i.e., the 2 × 2 identity matrix. Therefore, condition (A7) is also

fulfilled.

Denote by CT the ordered Banach space of T-periodic functions that are defined on R 7→ R2,

with the maximum norm ‖.‖∞ and the positive cone C+
T = {ψ ∈ CT : ψ(s) ≥ 0, for any s ∈ R}.

Consider the linear operator K : CT → CT given by

(Kφ)(ω) =
∫
∞

0
Z(ω,ω− z)F(ω− z)φ(ω− z)dz, ∀ω ∈ R,φ ∈ CT (4.5)

Therefore, the basic reproduction number, R0, of dynamics (2.1) is given by R0 = r(K).
Thus, the local stability of the disease-free periodic trajectory, E0(t) = (X∗s(t), 0, 0, X∗p(t)), of the

dynamics (2.1) with respect to R0 is given hereafter.

Theorem 4.1. [23, Theorem 2.2] The following statements are satisfied: R0 < 1 ⇔ r(βF−V(T)) < 1,
R0 = 1 ⇔ r(βF−V(T)) = 1 and R0 > 1 ⇔ r(βF−V(T)) > 1.

Then, E0(t) is asymptotically stable if R0 < 1, however, it is unstable if R0 > 1.

Theorem 4.2. E0(t) is globally asymptotically stable if R0 < 1. It is unstable if R0 > 1.

Proof. By Theorem 4.1, one has E0(t) is locally stable if R0 < 1 however it is unstable if R0 > 1.

Therefore, it remains to satisfy the global attractivity ofE0(t) onceR0 < 1. Using (4.3) in Proposition

4.1, for any m1 > 0,∃ T1 > 0 such that Xs(t)+Xi(t) ≤ X∗s(t)+m1 and %(t)Xv(t)+Xp(t) ≤ X∗p(t)+m1

for t > T1. Therefore, Xs(t) ≤ X∗s(t) + m1 and Xp(t) ≤ X∗p(t) + m1; and Ẋi(t) ≤ τ1(t)Xi(t)(X∗s(t) + m1) + τ2(t)Xv(t)(X∗s(t) + m1) − d(t)Xi(t),
Ẋv(t) ≤ ξ(t)Xi(t) − µ(t)Xv(t) − τ3(t)Xv(t)(X∗p(t) + m1)

(4.6)

for t > T1. Let M2(t) be the two by two matrix function given hereafter

M2(t) =

 τ2(t)(X∗s(t) + m1) τ1(t)(X∗s(t) + m1)

ξ(t) 0

 . (4.7)

using the equivalences in Theorem 4.1, one has r(ϕF−V(T)) < 1. By choosing m1 > 0 satisfying

r(ϕF−V+m1M2(T)) < 1 and we consider the dynamics hereafter, ˙̄Xi(t) = τ1(t)X̄i(t)(X∗s(t) + m1) + τ2(t)X̄v(t)(X∗s(t) + m1) − d(t)X̄i(t),
˙̄Xv(t) = ξ(t)X̄i(t) − µ(t)X̄v(t) − τ3(t)X̄v(t)(X∗p(t) + m1).

(4.8)

Using Lemma 4.1, there exists a positive T-periodic function x1(t) such that w(t) ≤ x1(t)ea1t with

w(t) =

 Xi(t)
Xv(t)

 and a1 =
1
T

ln (r(ϕF−V+m1M2(T)) < 0. Thus, lim
t→∞

Xi(t) = 0 and lim
t→∞

Xv(t) = 0.

Furthermore, we have that lim
t→∞

Xs(t) − X∗s(t) = lim
t→∞

Z1(t) − Xi(t) − X∗s(t) = 0 and lim
t→∞

Xp(t) −

X∗p(t) = lim
t→∞

Z2(t)− %(t)Xv(t)−X∗p(t) = 0. Then, we deduce that the disease-free periodic trajectory

E0(t) is globally attractive. �
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4.3. Endemic trajectory . Note that the dynamics (2.1) admits Γ2 as an invariant compact set.

Let Y0 = (Xs(0), Xi(0), Xv(0), Xp(0)) and Y1 = (X∗s(0), 0, 0, X∗p(0)). Define P : R4
+ → R4

+ to be

the Poincaré map related to the dynamics (2.1) with Y0 7→ u(T, Y0), where u(t, Y0) is the unique

solution of dynamics (2.1) and initial condition u(0, Y0) = Y0
∈ R4

+. Let us define

Ω =
{
(Xs, Xi, Xv, Xp) ∈ R4

+

}
, Ω0 = Int(R4

+) and ∂Ω0 = Ω \Ω0.

Ω and Ω0 are both positively invariant. P is point dissipative. Define

M∂ =
{
(Y0) ∈ ∂Ω0 : Pk(Y0) ∈ ∂Ω0, for any k ≥ 0

}
.

By using the persistence theory given in [35] (also in [34, Theorem 2.3]), we have

M∂ =
{
(Xs, 0, 0, Xp), Xs ≥ 0, Xp ≥ 0

}
. (4.9)

It is easy to see that M∂ ⊇

{
(Xs, 0, 0, Xp), Xs ≥ 0, Xp ≥ 0

}
. To prove that M∂ \{

(Xs, 0, 0, Xp), Xs ≥ 0, Xp ≥ 0
}
= ∅, consider (Y0) ∈M∂ \

{
(Xs, 0, 0, Xp), Xs ≥ 0, Xp ≥ 0

}
. If Xv(0) = 0

and 0 < Xi(0), then Xi(t) > 0 for all t > 0. Then Ẋv(t)|t=0 = m(0)Xi(0) > 0. If Xv(0) > 0 and

Xi(0) = 0, then Xv(t) > 0 and Xs(t) > 0 for all t > 0. Thus, for all t > 0, we obtain

Xi(t) =
[
Xi(0) +

∫ t

0
(τ1(ω)S(ω)Xi(ω) + τ2S(ω)Xv(ω))e

∫ ω

0
d(u)du

dω
]
e
−

∫ t

0
d(u)du

> 0

for all t > 0. This means that Y(t) < ∂Ω0 for 0 < t � 1. Therefore, Ω0 is positively invariant from

which we deduce (4.9). Using the previous discussion, we deduce that there exists one fixed point

Y1 of P in M∂. We deduce, therefore, the uniform persistence of the disease as follows.

Theorem 4.3. Assume that R0 > 1. The dynamics (2.1) admits at least one periodic solution such that
there exists ε > 0 that satisfies ∀ Y0 ∈ R+ × Int(R2

+) ×R+ and lim inf
t→∞

Xi(t) ≥ ε > 0.

Proof. We aim to prove that P is uniformly persistent with respect to (Ω0, ∂Ω0) which permits to

prove that the solution of the dynamics (2.1) is uniformly persistent with respect to (Ω0, ∂Ω0) by

using [35, Theorem 3.1.1]. From Theorem 4.1, we have r(ϕF−V(T)) > 1. Therefore, there exists

ξ > 0 such that r(ϕF−V−ξM2(T)) > 1. Define the system of equations: Ẋsα(t) = d(t)Θ1(t) − d(t)Xsα(t) − (τ1(t)α+ τ2(t)α)Xsα(t),
Ẋpα(t) = m(t)Θ2(t) −m(t)Xpα(t) + %(t)τ3(t)αXpα(t).

(4.10)

P associated with the dynamics (4.10) admits a unique fixed point (X̄0
sα, X̄0

pα) which is globally

attractive in R2
+. By using the implicit function theorem, α 7→ (X̄0

sα, X̄0
pα) is continuous. Thus, α > 0

can be chosen small enough such that X̄sα(t) > X̄s(t) − ξ, and X̄pα(t) > X̄p(t) − ξ, ∀ t > 0. Using

the continuity property of the solution with respect to the initial condition, ∃α∗ such that Y0 ∈ Ω0

with ‖Y0 − u(t, Y1)‖ ≤ α∗; then ‖u(t, Y0) − u(t, Y1)‖ < α for 0 ≤ t ≤ T. We prove by contradiction

that

lim sup
k→∞

d(Pk(Y0), Y1) ≥ α
∗
∀ Y0 ∈ Ω0. (4.11)
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Suppose that lim sup
k→∞

d(Pk(Y0), Y1) < α
∗ for some Y0 ∈ Ω0. We can assume that d(Pk(Y0), Y1) < α∗

for all k > 0. Therefore ‖u(t,Pk(Y0)) − u(t, Y1)‖ < α ∀ k > 0 and 0 ≤ t ≤ T.

For t ≥ 0, let t = kT + t1, where t1 ∈ [0, T) and k = b
t
T
c . Therefore

‖u(t, Y0) − u(t, Y1)‖ = ‖u(t1,Pk(Y0)) − u(t1, Y1)‖ < α for all t ≥ 0.

Set (Xs(t), Xi(t), Xv(t), Xp(t)) = u(t, Y0). Therefore 0 ≤ Xi(t), Xv(t) ≤ α, t ≥ 0 and Ẋs(t) ≥ d(t)Θ1(t) − d(t)Xs(t) − (τ1(t)α+ τ2(t)α)Xs(t),
Ẋp(t) ≥ m(t)Θ2(t) −m(t)Xp(t).

(4.12)

P applied to the dynamics (4.10) admits a fixed point X̄0
sα that it is globally attractive with X̄sα(t) >

X̄s(t) − ξ, and X̄pα(t) > X̄p(t) − ξ; then, ∃ T2 > 0 such that Xs(t) > X̄s(t) − ξ and Xp(t) > X̄p(t) − ξ
for t > T2. Then, for t > T2, we have Ẋi(t) ≥ τ1(t)Xi(t)(X̄s(t) − ξ) + τ2(t)Xv(t)(X̄s(t) − ξ) − d(t)Xi(t),

Ẋv(t) = ξ(t)Xi(t) − µ(t)Xv(t) − τ3(t)Xv(t)Xp(t).
(4.13)

Since r(ϕF−V−ξM2(T)) > 1, then by using Lemma 4.1, there exists a positive T-periodic function

x2(t) such that J(t) ≥ ea2tx2(t) where a2 =
1
T

ln r (ϕF−V−ξM2(T)) > 0, then lim
t→∞

Xi(t) = ∞ which

contradicts the boundedness of the solution. Therefore, (4.11) is satisfied andP is weakly uniformly

persistent with respect to (Ω0, ∂Ω0). By applying Proposition 4.1, P has a global attractor. We

deduce that Y1 is an isolated invariant set inside Ω and that Ws(Y1)∩Ω0 = ∅. All trajectories inside

M∂ converges to Y1 which is acyclic in M∂. Applying [35, Theorem 1.3.1 and Remark 1.3.1], we

deduce that P is uniformly persistent with respect to (Ω0, ∂Ω0). Moreover, by using [35, Theorem

1.3.6], P has a fixed point Ỹ0 = (X̃0
s , X̃0

i , X̃0
v, X̃0

p) ∈ Ω0 with Ỹ0 ∈ R+ × Int(R2
+) × R+. Suppose that

X̃0
s = 0. From the first equation of the dynamics (2.1), X̃s(t) satisfies

˙̃Xs(t) = d(t)Θ1(t) − τ1(t)X̃i(t)X̃s(t) − τ2(t)X̃v(t)X̃s(t) − d(t)X̃s(t), (4.14)

where X̃0
s = X̃s(nT) = 0, n = 1, 2, 3, · · · . By using Proposition 4.1, ∀ m3 > 0, ∃ T3 > 0 such that

X̃i(t) ≤ Θu
1 + m3 and X̃v(t) ≤

%uξu

%lσl
Θu

1 +
mu

%lσl
Θu

2 + m3 for t > T3. Then, we obtain

˙̃Xs(t) ≥ d(t)Θ1(t) − d(t)X̃s(t) −
(
τ1(t)(Θu

1 + m3) + τ2(t)
(Θu

2

kl
+

mukuΘu
1

klml
a

+ m3

))
X̃s(t), for t ≥ T3. (4.15)

∃ n̄ such that nT > T3 for all n > n̄. Therefore

X̃s(nT) ≥
[
X̃0

s +

∫ nT

0
d(ω)Θ1(ω)e

∫ ω

0

(
τ1(u)(Θu

1 + m3) + τ2(u)
(Θu

2

kl
+

mukuΘu
1

klml
a

+ m3

)
+ d(u)

)
du

dω
]

× e
−

∫ nT

0

(
τ1(u)(Θu

1 + m3) + τ2(u)
(Θu

2

kl
+

mukuΘu
1

klml
a

+ m3

)
+ d(u)

)
du

for all n > n̄ which contradicts the fact that X̃s(nT) = 0. Then, S̃0 > 0 and Ỹ0 is a positive T-periodic

solution of the dynamics (2.1). �
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5. Numerical Examples

The periodic functions are given by
d(t) = d0(1 + d1 cos(2πt)), µ(t) = µ0(1 + µ1 cos(2πt)), ξ(t) = ξ0(1 + ξ1 cos(2πt)),

m(t) = m0(1 + m1 cos(2πt)), Θ1(t) = Θ0
1(1 + Θ1

1 cos(2πt)), Θ2(t) = Θ0
2(1 + Θ1

2 cos(2πt)),

τ1(t) = τ0
1(1 + τ1

1 cos(2πt)), τ2(t) = τ0
2(1 + τ1

2 cos(2πt)), τ3(t) = τ0
3(1 + τ1

3 cos(2πt)),

ρ(t) = ρ0(1 + ρ1 cos(2πt)).

with |d1
|, |ξ1
|, |m1

|, |Θ1
1|, |Θ

1
2|, |τ

1
1|, |τ

1
2|, |τ

1
3|, |µ

1
| and |ρ1

| describe the seasonal cycles frequencies.

The numerical values of all used parameters are given in Table 2. Three cases were consider

Table 2. Used values for the numerical simulations.

d0 ξ0 m0 Θ0
1 Θ0

2 µ0 ρ0 d1 ξ1 m1 Θ1
1 Θ1

2 τ1
1 τ1

2 τ1
3 µ1 ρ1

1.3 1.7 1.9 5 2.5 1.2 0.2 −0.6 −0.8 0.3 0.8 −0.5 0.2 0.6 −0.7 −0.7 0.5

here. The first one was dedicated to the case of fixed environment. However, the second was

concentrated on the case where only the contact rates are seasonal. Finally, the last case were

allocated to the case where all parameters are periodic.

5.1. Case of fixed environment. Let us start by the simple case where there is no influence of the

seasonality on the dynamics. Thus, we restrict our attention on the autonomous dynamics (3.1),

i.e., all parameters are positive constants.
Ẋs(t) = d0Θ0

1 − τ
0
1Xi(t)Xs(t) − τ0

2Xv(t)Xs(t) − d0Xs(t),
Ẋi(t) = τ0

1Xi(t)Xs(t) + τ0
2Xv(t)Xs(t) − d0Xi(t),

Ẋv(t) = ξ0Xi(t) − µ0Xv(t) − τ0
3Xv(t)Xp(t),

Ẋp(t) = m0Θ0
2 + %0τ0

3Xv(t)Xp(t) −m0Xp(t).

(5.1)

with an initial condition (S0, I0, V0, P0) ∈ R4
+ . In Figures 1 and 2, the trajectories of dynamics

(5.1) converge asymptotically to E∗ if R0 > 1. However, in Figures 3 and 4, the trajectories of the

dynamics (5.1) converge to the disease-free steady state E0, then confirming the global asymptotic

stability of E0 if R0 ≤ 1.
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Figure 1. Behavior of the dynamics (2.1) for τ0
1 = 1.2, τ0

2 = 0.8 and τ0
3 = 0.9 then

R0 ≈ 2.57 > 1.

Figure 2. Behavior of the dynamics (2.1) for τ0
1 = 1.2, τ0

2 = 0.8 and τ0
3 = 0.9 then

R0 ≈ 2.57 > 1.
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Figure 3. Behavior of the dynamics (2.1) for τ0
1 = 0.3, τ0

2 = 0.2 and τ0
3 = 0.1 then

R0 ≈ 0.86 < 1.

Figure 4. Behavior of the dynamics (2.1) for τ0
1 = 0.3, τ0

2 = 0.2 and τ0
3 = 0.1 then

R0 ≈ 0.86 < 1.
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5.2. Case of seasonal contact. The second was allocated to the case where only the contact rates,

τ1, τ2 and τ3 are seasonal functions. All the rest of parameters are fixed. We obtain the following

system. 
Ẋs(t) = d0Θ0

1 − τ1(t)Xi(t)Xs(t) − τ2(t)Xv(t)Xs(t) − d0Xs(t),
Ẋi(t) = τ1(t)Xi(t)Xs(t) + τ2(t)Xv(t)Xs(t) − d0Xi(t),
Ẋv(t) = ξ0Xi(t) − µ0Xv(t) − τ3(t)Xv(t)Xp(t),
Ẋp(t) = m0Θ0

2 + %0τ3(t)Xv(t)Xp(t) −m0Xp(t).

(5.2)

with the positive initial condition (S0, I0, V0, P0) ∈ R4
+ .

We give the results of some numerical simulations confirming the stability of the steady states of

system (5.2). The approximation of the basic reproduction number R0 was performed using the

time-averaged system.

Figure 5. Behavior of the dynamics (2.1) for τ0
1 = 1.2, τ0

2 = 0.8 and τ0
3 = 0.9 then

R0 ≈ 2.57 > 1.
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Figure 6. Behavior of the dynamics (2.1) for τ0
1 = 1.2, τ0

2 = 0.8 and τ0
3 = 0.9 then

R0 ≈ 2.57 > 1.

In Figures 5 and 6, the trajectories of the dynamics (5.2) converge asymptotically to the periodic

solution corresponding to the disease-persistence. In Figures 7 and 8, the trajectories of the

dynamics (5.2) converge to the disease-free trajectory if R0 < 1.

Figure 7. Behavior of the dynamics (2.1) for τ0
1 = 0.3, τ0

2 = 0.2 and τ0
3 = 0.1 then

R0 ≈ 0.86 < 1.
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Figure 8. Behavior of the dynamics (2.1) for τ0
1 = 0.3, τ0

2 = 0.2 and τ0
3 = 0.1 then

R0 ≈ 0.86 < 1.

5.3. Case of periodic parameters. In the third step, we performed numerical simulations for the

system (2.1) where all parameters were set as T-periodic functions. Thus the model is given by
Ẋs(t) = d(t)Θ1(t) − τ1(t)Xi(t)Xs(t) − τ2(t)Xv(t)Xs(t) − d(t)Xs(t),
Ẋi(t) = τ1(t)Xi(t)Xs(t) + τ2(t)Xv(t)Xs(t) − d(t)Xi(t),
Ẋv(t) = ξ(t)Xi(t) − µ(t)Xv(t) − τ3(t)Xv(t)Xp(t),
Ẋp(t) = m(t)Θ2(t) + %(t)τ3(t)Xv(t)Xp(t) −m(t)Xp(t).

(5.3)

with the positive initial condition (S0, I0, V0, P0) ∈ R4
+ .

We give the results of some numerical simulations confirming the stability of the steady states of

system (5.3). The basic reproduction number R0 was approximated by using the time-averaged

system.
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Figure 9. Behavior of the dynamics (2.1) for τ0
1 = 1.2, τ0

2 = 0.8 and τ0
3 = 0.9 then

R0 ≈ 2.57 > 1.

Figure 10. Behavior of the dynamics (2.1) for τ0
1 = 1.2, τ0

2 = 0.8 and τ0
3 = 0.9 then

R0 ≈ 2.57 > 1.

In Figures 9 and 10, the trajectories of the dynamics (5.3) converge asymptotically to the periodic

solution corresponding to the disease persistence if R0 > 1. In Figures 11 and 12, the trajectories

of the dynamics (5.3) converge to the disease-free periodic solution E0(t) = (X∗s(t), 0, 0, X∗p(t)) for

the case where R0 ≤ 1.
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Figure 11. Behavior of the dynamics (2.1) for τ0
1 = 0.3, τ0

2 = 0.2 and τ0
3 = 0.1 then

R0 ≈ 0.86 < 1.

Figure 12. Behavior of the dynamics (2.1) for τ0
1 = 0.3, τ0

2 = 0.2 and τ0
3 = 0.1 then

R0 ≈ 0.86 < 1.
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6. Conclusions

In order to more understand the CHIKV dynamics when describing the contamination of unin-

fected hosts, an important way is to take into account of both, contact with CHIKV (CHIKV-to-host

transmission) and contact with infected hosts (host-to-host transmission). The marked seasonality

of CHIKV, impose the consideration of this property when modelling its dynamics. In this article,

we proposed and analysed a mathematical model for CHIKV dynamics reflecting the seasonality

observed in real life. The basic reproduction number was defined and the steady states of the

dynamics were calculated for the first step when considering the autonomous dynamics. We

characterised the existence and uniqueness of the steady states. We characterised also the stability

conditions for these steady states. Later, we concentrated on the non-autonomous dynamics and

we defined the basic reproduction number, R0 by using an integral operator. It is proved that once

R0 ≤ 1, all solution of the dynamics converge to the disease-free periodic trajectory and that the

disease persists if R0 > 1. We performed the theoretical findings by some numerical examples us-

ing explicit Runge-Kutta formulas of orders 4 and 5 under Matlab for three cases, the autonomous

dynamics, the seasonal contact dynamics and the fully seasonal dynamics. As it is seen in the

numerical simulations and proved theoretically that for the first case, the solution converge to one

of the equilibria of the dynamics (5.1) regarding Theorems 3.3 and 3.4. However, for the second

and third cases, the solutions converge to a limit cycle regarding Theorems 4.2 and 4.3.
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