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Abstract. Let B(H) be the algebra of all bounded linear operators on a complex Hilbert space H and n € IN. An operator
T € B(H) with closed range, is called n-EP operator if T" commutes with T". In this paper, we present some new
characterizations of n-EP operators, using Moore-penrose and Drazin inverse. Also, the problem of determining when
the product of two operators is n-EP will be considered. As a consequence, we generalize a famous result on products

of normal operators, due to I. Kaplansky to n-EP operators.

1. INTRODUCTION AND PRELIMINARIES

Let B(H) be the Banach algebra of all bounded linear operators on a complex Hilbert space H.
For T € B(H), we use symbols R(T), N(T) and T*, the range, the null subspace and the adjoint
operator of T, respectively. It is known that every operator T € B(H) can be decomposed as
T = U|T|, where |T| = (T*T)% is the modulus of T and U is an appropriate partial isometry (i.e.
Uuu*u = U), such that N(U) = N(T) = N(|T|). Now, we recall the definitions of some generalized
inverses. For T € B(H), The Moore-Penrose inverse of T is the unique operator T+ € B(H), which

satisfies the four operator equations :
TT*T =T, T'TT* =T, (TT*)" =TT", (T*T)'=T"'T. (1.1)

As we know, T has a Moore-Penrose inverse if and only if R(T) is closed. From (1.1), it can be
proved that R(T+) = R(T*) and that TT* and T*T are orthogonal projections into R (T) and
R (T*), respectively. Notice that if R(T) is closed, then T* and |T| and have closed ranges, in this
case (T*)" = (T")*and T" = |T|"U*, where T = U|T| is the polar decomposition of T.

The Drazin inverse of T € B(H), is the unique operator AP that satisfies :

TTP = TPT ,TPTTP = TP ,TF1TD = T for some k > 1.
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The smallest such k is called the Drazin index of T and denoted by ind(A). In particular, when
ind(A) = 1, the Drazin inverse TP is called the group inverse of T and it is denoted by T*. Recall
that T € B(H) is Drazin invertible if and only if a(T) and d(T) are finite, where a(T), the ascent of
T is the the minimal integer n such that N(T") = N(T"*1) and d(T), the descent of T the minimal
integer n such that R(T") = R(T"*1). 1f a(T) and d(T) are finite, they are equal and their common
value is the index of T [9, Proposition 38.3].

An operator T € B(H) is said to be normal if TT* = T*T, n-normal if T"T* = T*T", for some n € N
and EP operator if its range, R(T), is closed and R(T) = R(T*). One of the interests of the EP
operator lies in the fact that it commutes with its Moore-Penrose inverse. Clearly, every normal
operator with closed range is EP but the converse is not true even in a finite dimensional space.
Various known characterizations of EP matrices and EP operators were collected in [2-5]. Recently,
Malik et al. [14] introduced the notion of n-EP matrices, generalizing the notion of EP matrices
and later it was extended to closed range operators on an arbitrary Hilbert space by Wang and
Deng [15]. An operators T € B(H) with closed range, is called n-EP if it satisfies T"T+ = T*T", for
some 1 € IN. In [15], the authors obtained interesting characteristics of n-EP operators, also they
studied the properties of the particular case of n-EP operators that are Drazin invertible in terms
of the operator matrix decomposition. The goal of this paper is to explore futher characterizations
of n-EP operators using the Moore-Penrose inverse and Drazin inverse.

The paper is organized as follow: In section 2, at first we review certain known fundamental
properties of the class of n-EP operators and then establish new ones. Afterwards, we study
the relationship between this class and the class of n-normal operators. Finally, we provide new
characterizations of n-EP operators by certain conditions that relate to their powers and their
Moore-Penrose and Drazin inverse. In particular, we show that if ind(T) = n and TPT is self-
adjoint then T is n-EP. In section 3, it will be considered the problem of determining when the
product of two operators is n-EP. As a consequence, we generalize the famous result on products
of normal operators, due to I. Kaplansky [12] to n-EP operators. Also, some recent results obtained
for EP complex matrices by P. Sam Johnson et al. [11] are extended to n-EP operators on an arbitrary
Hilbert space.

To prove the main results, we shall begin with some lemmas.

Lemma 1.1. [8] Let T € B(H) with closed range. If S € B(H) such that ST = TS and ST* = TS, then
STt =T7"S.
Lemma 1.2. [3] Let T € B(H) be an EP operator and S € B(H) such that ST = TS, then ST*™ = T™S.

Lemma1.3. [10]LetT,S € B(H) have closed ranges. Then TS has a closed range ifand only if R(TTTSS™)
is closed.

Lemma1.4. [6]Let T,S € B(H ) such that T, S and TS have closed ranges. Then the following statements
are equivalent:

) (TS)* = S+T+.
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(i) R(T*TS) c R(S) and R(SS'T*) c R(T*).
2. ON THE cLASS OF n-EP OPERATORS
In this section, first we give some fundamental properties of n-EP operators.

Proposition 2.1. let T € B(H) be an n-EP operator. Then the following statements hold

(1) AT is n-EP operator, for all scalar A.
(2) T* is n-EP operator.
(3) If S € B(H) is unitary equivalente to T, then S is n-EP operator.

Proof. (1) It is trivial in case A = 0.
Now we suppose A # 0. Then
1 1

(AT)'(AT)* = (V)" T'T* = A" T*T" = (AT)*(AT)"

Hence, AT is n-EP operator.

(2) Since T is n-EP, then T"T" = T*T". By taking the adjoint, we find (T*)"(T*)* = (T*) " (T*)".So
T" is n-EP operator.

(3) Since S is unitary equivalente to T, then there exists an unitary operator U € B(H) such that
S = UTU*. So R(UTU*) is closed and S* = UT*U". It follows that

S"St =UuT"'"Ttu = UTtT"ur = S*tS".
Thus, S is is n-EP operator. m]

Proposition 2.2. If T is k-EP operator for a positive integer k, then T is k + 1-EP. Hence T is n-EP for all
n>k.

Proof. Since TT*T = T, then T"T*T = T* and TT*T¢ = T*. According to T is k-EP, we find
THIT+ = TFand T+ T*+! = TX. Thus, T*!1T+ = T+T**1. Therefore, T is k + 1-EP. O

Remark 2.1. Following [1], an operator T € B(H) is said to be n-normal operator if T"T* = T*T". By
lemma 1.1 every n-normal operator with closed range is n-EP, but the converse is not true even in a finite

11 1
dimensional space. Indeed, consider T = [O 1] € C2 Then TH = [0 l By a direct calculation, we

have
T’T+ = e = T2T+.
0 1] |0 1]
Hence, T is 2-Ep , while T is not 2-normal because
3 2] [1 2]
T°T* = # = T*T?
1 1] [1 3

Next, we provide a necessary and sufficient condition under which an n-EP operator becomes
n-normal. In the case n = 1, we obtain one well-known characterization of normal operators [3,
Theorem 3.5].
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Theorem 2.1. Let T € B(H) with closed range. Then T is n-normal if and only if T is n-Ep and
(T"yT+ =T+ (T")"

Proof. If T is n-normal with closed range, then it’s n-Ep. Applying involution to T"T* = T*T", we
have (T")*T = T(T")* and since (T")*T* = T*(T")*, by Lemma 1.1, we get (T")*'T" = T+ (T")*.

Conversely, we Assume That T is n Ep operator. Then T"T+ = T*T". From the the hypothesis
(T")*T+ = TT(T")*, by taking the adjoint we get (T*)*T" = T"(T*)". By using again Lemma 1.1,
we obtain T"T* = T*T" and so T is n-normal operator. O

Proposition 2.3. Let T be a partial isometry. Then T is n-normal if and only if T is n-EP.

Proof. Since T partial isometry, T™ = T*. Then the equivalence clearly holds. m|

The following proposition generalizes Lemma 2.28 obtained for n-normal operators in [1] to n-

EP operators.
Proposition 2.4. let T € B(H) be an n-EP operator. If either T or T* is injectif, then T is EP.

Proof. Since T is n-EP, Then T"TT™ = T"T*T. That is T"(TT* — T*T) = 0. Since T is injective,
TTT —T+T = 0. Thus, T is EP. In case T* is injective, since T* is n-EP, then T* is EP. Hence T is
EP. ]

Proposition 2.5. Let T € B(H) with closed range. Then T is 2-EP if and only if T is 2-EP.

Proof. Suppose that T is 2-EP. It follows from [15, Theorem 3.5] that T2 is EP and (T?)* = (T1)>2.
Since T°T = TT?, by Lemma 1.2, (T?)*T = T(T?)* and so (T*)?T = T(T*)?. Hence, T is 2-EP.
Conversely, If T+ is 2-EP, then (T*)" = T is also 2-EP. o

Next, we show that Proposition 2.5 is not valid when the power 2 is replaced by 3.

0 00
Example 2.1. Consider T={1 0 0|€ C>. Then T® = 0. which implies that T is 3-EP. It is easy to see
1 10
that
0 1 0 0 1 -1
Tt =10 -1 1|and (TT)* =0 -1
0 0 O 0 0 O
Hence

0 -1 0 0 0 O
(T**T=10 1 o|#[|0 1 —-1|=T(T")>.
0 0 O 00 O
Thus, TT is not 3-EP.

Now, we prove a version of [1, Proposition 2.33 | for n- EP operators.
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Proposition 2.6. Let T € B(H with closed range, F = T" + T* and G = T" = T" . Then T is n- EP

operator if and only if G commute with F.

Proof. We have
FG=GF& (T"+TH)(T"-T") =(T"-T")(T"+T")
& T — T"T+ £ TT" — (TT)2 = T? 4 T"T+ — T+T" — (T+)2
e T'TT =TT
Hence, T is n- EP operator if and only FG = GF. m]

In [15], Wang and Deng showed that if T is an n-EP operator, then T is Drazin invertible with
Ind(T) < nand TP = T*(T+)"*!. In what follows, the ascent and the descent of a Hilbert space

operators will be used to characterize n-EP operators.

Theorem 2.2. Let T € B(H) with closed range, B=T"T* ,C =T T, F=T"+T",and G=T"-T".
Then the following statements are equivalent.

(1) T is n-Ep operator.

(2) a(T) < nand B commute with F and G.

(3) d(T) < nand C commute with F and G.

Proof. (1) = (2). Suppose that T is n-EP operator. Then T*T""! = T"T*T = T" . which means
that N(T"*1) c N(T"). As the converse inclusion is obvious it follows that N(T"*!) = N(T").

Hence, a(T) < n. Again, since T is n-EP, we have
BE = T"T*(T" + T")
=T'T"T"+T'T*T*
=T'T"T* + T T'T*
— (T" +T)T"T* = FB.

By similar way we can prove that BG = GB.
(2) = (1). If BF = FB and BG = GB, then we get

T"T T+ T'T*TT = T'"T"TT + TTT"T+
and
T —T'T Tt = T"T"T" = TTT"T*
It follows that
T"THTH =TTT"T+ and T"TTT" = T"T"T.

Hence, from the first equality we get T"T" = TTT" on R(T") = R(T*) and from the second we
deduce that T>"T*(x) = 0, for all x € N(T). In addition, since a(T) < n, then N(T") = N(T?").
Which implies
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T?"T*(x) = T"T*(x) = 0, for all x € N(T).
So, T"T*™ = T*T" = 0, on N(T). Consequently,
T"T+ = T+T" on H = R(T") & N(T).
Therefore, T is n-EP.
(1) = (3). The hypothesis T is n-EP implies
T = TT'"T+ = TTTT" = T".

Then R(T") = R(T"T!1T+) c R(T"*!). Sine the inclusion R(T"*!) c R(T") is obvious, R(T"*!) =
R(T"). Thus d(T) < n. Itis easy to check that the second part of (3)
(3) = (1). First, since d(T) < n, then R(T") = R(T"*!). This implies that N((T*)"*!) = N((T*)")
and so a(T*) < n. Next, by Applying adjoints of operators to CF = FC and CG = GC and using the
relation (T*)" = (T")*, we obtain

(T)"(T) " (T7)" + (1) ") = ((T")" + (T7) ") (T)"(T") "
and

(T)"(T) " ((T7)" = (T) ") = ((T)" = (T) ") (T)"(T") "

Therefore, by the implication (2) = (1) and Proposition 2.1 (2), we deduce that T is n-EP. ]
Remark 2.2. Notice that the conditions a(T) < n and d(T) < n in Theorem 2.2 are indispensable, even if
n = 1. This can be seen from the next example.

Example 2.2. Consider the left shift operator S, defined on the Hilbert space £2(IN)) by

S(x1,x2,...) = (x2,x3,...).
Then
S*(x1,x2,...) = (0,x1, x2, ...).
For ;11 = (0,..,0,1,0,...), where 1 is the n+1-th term, e,;1 € N(S"T!) while e,.1 ¢ N(S"). So
a(S) = oo. On the other hand, since SS* = I, then S is a partial isometry. This means that ST = S* and
SS* commute with S+ ST and S — S, but S is not EP because STS # SS*. With similar arguments, we
have d(S*) = co and S* satisfies the second part of (3), while S* is not EP.

In [13, Theorem 7.3] it was proved that if a is an element of a ring R with involution, then a is
EP if and only if 4 is group invertible and a*a is symmetric. The following proposition generalizes

one implication of this result to n-EP Hilbert space operators.
Theorem 2.3. Let T € B(H) with closed range such that ind(T) = n. If TPT is self-adjoint then T is n-EP.

Proof. 1f ind(T) = n then T is Drazin invertible and T°TT = TTPT. Since TPT is self-adjoint, it
follows that TPTT* = T*TPT. According to lemma 1.1, we deduce that T°TT+ = T*TPT, which

implies the following two equations:
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T+ = T ITPT+ = T"TPTT+ = T"T+TTP = T"TP
and
T+1" = T+ TP = T+TPTT" = TPTT+T" = TPT™.

Therefore, T"T+t = THT", because T"TP = TPT". Hence T is n-EP.
O

In Theorem 2.3, the reverse implication does not hold as it is shown by the following example

Example 2.3. Consider the matrix

-1 1 00 1 O
1 -1 00 -1 0
0O 0 01 -1 1
T =
-1 -1 00 1 -1
1 -1 00 -1
1 -1 00 0 O
This matrix wa studied in [14], where it was shown, that
o0 o0F L o0
000 F 1
T+ — 0 0 00 0 O
0 01 0 1 -1
13200 0 1
1 -1
7 5 0 0 -1 2
and T is 3-EP. On the other hand, since TP = T3(T*+)*, By a direct calculation, we get
0000 0 1%
0000 0 F
0 0 0 00 O O
0O 0 00 1 -1
1 -1
7 5 00 0 1
1 -1
7 5 00 -1 2
It follows that
1 2000 0 1 30 0 00
-1 1 -1 1
> 3 000 O > 32 0 0 00
0O 0 00O O 0O 0 0 0 00O
TPT = # = (TPT)*
0 0 001 -1 0O 0 0 0 00O
0 0 001 O 0O 0 0 1 10
0 0 00O 1 0 0 0 -1 01

Hence, T is not self-adjoint.
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Now, we provide a condition under which the reciprocal implication of Theorem 2.3 holds.

Proposition 2.7. Let T € B(H) with closed range. If T is n-EP such that (T"*1)* = (T*)"*!, then TPT
is self-adjoint.

Proof. If T is n-EP, then TP exists and TP = (T*)"*1T" Since (T"*!)* = (T*)"!, we get that
TPT = (TT)"H 1! = (T"+1)+ T+ is self-adjoint. mi

As a consequence of Theorem 2.3, we obtain the following corollary.
Corollary 2.1. Let T € B(H) with closed range. If T" is EP, then T is n-EP.

Proof. If T" is EP, then ind(T") < 1 which implies ind(T) < n. So TP exists and (T")* = (T")P.

Hence, we have
TDT — (TDT)n — (TD)nTn — (Tn)DTn — (T”)+T”.
Since (T")"T" is self-adjoint, by Theorem 2.3 we conclude that T is n-EP. o

3. CONDITIONS THAT THE PRODUCT OF OPERATORS IS AN #1-EI° OPERATOR

In [12], Kaplansky showed that if S, T € B(H) such that S and ST are normal, then TS is normal
if and only if T commutes with |S|. Inspired by his work, we generalize this famous result to n-EP

operators.

Theorem 3.1. Let T, S € B(H) such that R(T), R(S) and R(ST) are closed. If S is normal and ST is n-EP,
then

S'ST =T5'S = TS is n-EP.
Proof. Since S is normal, then by [7, Theorem 3] there exists a unitary operator U such that
S = u|S| = |S|U.
From the assumption S*ST = TS*S, we get |S|T = T|S|. Consequently, we have
TS =TU|S| = |S|TU = UUIS|TU = U*STU.

Therefore, TS is unitary equivalent to ST. Since ST is n-EP, according to Proposition 2.1, we
conclude that TS is also n-EP. m]

Remark 3.1. In Theorem 3.1, the reverse implication is false. Indeed, Consider the two matrices

S:[O O)QndT:[O 1)
0 1 10

Then S is normal and by a simple computation, we have (ST)? = (TS)? = 0. Hence ST and TS are 2-EP,

but
00 0 1
S*ST = * = TS§*S.
10 00
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We now prove the following Lemma which is needed in the proof of Theorem 3.2.

Lemma 3.1. Let S € B(H) with closed ranges and T € B(H). If (ST)" is EP operator, then (ST)"S has
closed range.

Proof. By lemma 1.3, it is enough to prove that R[((ST)") " (ST)"SS"] is closed . Since (ST)" is EP,
then we have

(SST((ST)") ™ (ST)")']

(SST(ST)"((ST)")*)"]

R[(ST)"((ST)")* )]

R[(ST)"((ST)")"]

Hence, R[((ST)")*(ST)"SS™] is closed . mi

RI((ST)")™(ST)"SST] = R]
R[

The next result reformulates and extends Theorem 4.6 of [11] to n-EP operators.

Theorem 3.2. Let T,S € B(H) and n € N such that T, S, ST and TS have closed ranges. Then the
following statements hold
(i) If(ST)"and (TS)" are EP operators, then we have St (ST)" = (TS)"S™ and (ST)"T* = T*(TS)".
(ii) If (ST)" = T*S*, SH(ST)" = (TS)"S™ and (ST)"T+ = T*(TS)", then ST is n-EP.
(iii) If (TS)* = StT*, ST (ST)" = (TS)"S™ and (ST)"T+ = T*(TS)", then TS is n-EP.

Proof. (i) By Lemma 3.1, R((ST)"S) and R((TS)"T) are closed. Now, we poof that the reverse order

law ST[(ST)"]* = [(ST)"S]" holds. According to Lemma 1.4, this equality is equivalent to
R([(ST)"*(ST)"S) c R(S) and R(SS*[(ST)"]*) < R([(ST)"]*).

Since (ST)" and (TS)" are EP, the first inclusion follows as

R([(ST)"]*(8T)"S)

I N
» =
PN
33
= =

n N

and the second inclusion follows as

R(SS*[(ST)"]") = SR(S'[(ST)"]")

I N
=
==
wnn
=3
_3 <
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Thus, ST[(ST)"]* = [(ST)"S]*. In a similar way we have
[(TS)")7ST = [S(TS)"]T, [(ST)"|TT™ = [T(ST)"]" and [(TS)"T]" = TT[(TS)"]",
and consequently, we get that
STIST)"]T = [(T$)"] ST and [(ST)"|"TT = T*[(TS)"]".
Since (ST)" and (TS)" are EP, By Lemmal.2, we obtain
S*+(ST)" = (TS)"S* and (ST)"T* = T+(TS)".

(ii) if ST(ST)" = (TS)"S* and (ST)"T* = T+ (TS)", then multiplying the first equation from the
left by T* and the second one by S* from the right, we get

T+S+(ST)" = T*(TS)"S* and (ST)"T*+S* = T+(TS)"S+.

Using the fact (ST)™ = T+S™, we have (ST)"(ST)* = (ST)*(ST)". Therefore ST is n-EP.

(iii) It can be proved in a similar way to (ii). m]

Also, the last result generalizes [11, Corollary 4.6] for EP matrices to n-EP operators on arbitrary
Hilbert spaces.

Proposition 3.1. Let S € B(H) wih closed range and S = US| be its polar decomposition, where U
is unitary and let T € B(H) such that T, ST, and TS have closed ranges. If (ST)* = T+S* and
(TS)™ = STTT, then the following statements hold

(i) Let n € N, if TU is EP and (ST)"U = U(TS)", then ST and TS are n-EP.
(i) Let n € N, if (ST)" and (TS)" are EP, then (ST)"U = U(TS)".

Proof. (i) First, by the hypothesis (ST)"U = U(TS)" and since U is unitary, we observe

(ST)"U = U(TS)" <= ST(ST)"'U = UT(ST)"'s
& UIS|IT(ST)" U = UT(ST)"*uls|
& WU|S|IT(ST)" U = UruT(sT)"tu|s|
& |S|T(ST)" U = T(ST)" ‘US| (3.1)

Since |S| is EP, by using (3.1) and Lemma 1.2, it follows
(ST)"U = U(TS)" < |S|"T(ST)"'U = T(ST)"'U|s|*. (3.2)
Obviously, by (3.1) and (3.2), we obtain

(ST)"U = U(TS)" < [S|IS|TT(ST)"*U = T(ST)"*us||S|". (3.3)
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Now, the equivalence (3.3) gives

(TS)"'ST = T(ST)""1ss*
= T(ST)"'u|s||s|*u-
= |S|ISIT T(ST)"tuur
= SIISITT(ST)""
= ISITISIT(ST)"!
= |S|TUrU|S|T(ST)"
= st(sT)".

On the other hand by (2.1), we have

IS|(TS)""'TU = |S|T(ST)" ‘U
= T(ST)"'uys|
= (Ts)"
= TU|IS|(TS)" L.

Applying Lemma 1.2, the fact that TU is EP, we obtain
(TU)*IS|(TS)"™" = IS(TS)* ! (TU) *.
Since (TU)* = U*T, by using the previous equality, we get

(ST)"TT = S(TS)"'TT+
= uls|(ts)"‘tuurt*
= uls|(Ts)"‘tu(ru)*
= u|s|(TS)"Y(Tu)*TU (TU is EP)
= u(tu)t|s|(Ts)tu
= uurT|s|(TS)"'TuU
= THTu|S|(TS)" !
= TH(TS)".
Finally, from the given facts (ST)* = T*S" and (TS)* = STT*, it follows by Theorem 3.2, ST and

TS are n-EP.
(i) By (3.3) it is sufficient to prove that

ISIISIFT(ST)"1U = T(ST)""'U|S|IS|*.
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Since (ST)" and (TS)" are EP, according to Theorem 3.2, we have
ISIISIHT(ST)"1U = |S[ISIT(ST)" ‘U

= |S|TuruIS|IT(ST) tu

= S*ST(ST)"U

= ST(ST)"U

= (TS)"s*U

= T(ST)""'sstu

= T(ST)"tu|s||s|*.

mi
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