Int. J. Anal. Appl. (2024), 22:78

Some Results of n-EP Operators on Hilbert Spaces

Safa Menkad*, Anissa Elgues
LTM, Departement of mathematics, Faculty of Mathematics and Informatics, University of Batna 2, 05078, Batna, Algeria
*Corresponding author: s.menkad@univ-batna2.dz

Abstract

Let $B(H)$ be the algebra of all bounded linear operators on a complex Hilbert space H and $n \in \mathbb{N}$. An operator $T \in B(H)$ with closed range, is called n-EP operator if T^{n} commutes with T^{+}. In this paper, we present some new characterizations of n-EP operators, using Moore-penrose and Drazin inverse. Also, the problem of determining when the product of two operators is n-EP will be considered. As a consequence, we generalize a famous result on products of normal operators, due to I. Kaplansky to n-EP operators.

1. Introduction and preliminaries

Let $B(H)$ be the Banach algebra of all bounded linear operators on a complex Hilbert space H. For $T \in B(H)$, we use symbols $R(T), N(T)$ and T^{*}, the range, the null subspace and the adjoint operator of T, respectively. It is known that every operator $T \in B(H)$ can be decomposed as $T=U|T|$, where $|T|=\left(T^{*} T\right)^{\frac{1}{2}}$ is the modulus of T and U is an appropriate partial isometry (i.e. $\left.U U^{*} U=U\right)$, such that $N(U)=N(T)=N(|T|)$. Now, we recall the definitions of some generalized inverses. For $T \in B(H)$, The Moore-Penrose inverse of T is the unique operator $T^{+} \in B(H)$, which satisfies the four operator equations :

$$
\begin{equation*}
T T^{+} T=T, T^{+} T T^{+}=T^{+}, \quad\left(T T^{+}\right)^{*}=T T^{+}, \quad\left(T^{+} T\right)^{*}=T^{+} T . \tag{1.1}
\end{equation*}
$$

As we know, T has a Moore-Penrose inverse if and only if $\mathcal{R}(T)$ is closed. From (1.1), it can be proved that $\mathcal{R}\left(T^{+}\right)=\mathcal{R}\left(T^{*}\right)$ and that $T T^{+}$and $T^{+} T$ are orthogonal projections into $\mathcal{R}(T)$ and $\mathcal{R}\left(T^{*}\right)$, respectively. Notice that if $R(T)$ is closed, then T^{*} and $|T|$ and have closed ranges, in this case $\left(T^{*}\right)^{+}=\left(T^{+}\right)^{*}$ and $T^{+}=|T|^{+} U^{*}$, where $T=U|T|$ is the polar decomposition of T.
The Drazin inverse of $T \in B(H)$, is the unique operator A^{D} that satisfies :

$$
T T^{D}=T^{D} T, T^{D} T T^{D}=T^{D}, T^{k+1} T^{D}=T^{k}, \quad \text { for some } k \geq 1 .
$$

Received: Nov. 20, 2023.
2020 Mathematics Subject Classification. Primary 47A05, Secondary 47B15.
Key words and phrases. n-EP operator; Moore-Penrose inverse; Drazin inverse.

The smallest such k is called the Drazin index of T and denoted by $\operatorname{ind}(A)$. In particular, when $\operatorname{ind}(A)=1$, the Drazin inverse T^{D} is called the group inverse of T and it is denoted by $T^{\#}$. Recall that $T \in B(H)$ is Drazin invertible if and only if $a(T)$ and $d(T)$ are finite, where $a(T)$, the ascent of T is the the minimal integer n such that $N\left(T^{n}\right)=N\left(T^{n+1}\right)$ and $d(T)$, the descent of T the minimal integer n such that $R\left(T^{n}\right)=R\left(T^{n+1}\right)$. If $a(T)$ and $d(T)$ are finite, they are equal and their common value is the index of T [9, Proposition 38.3].
An operator $T \in B(H)$ is said to be normal if $T T^{*}=T^{*} T$, n-normal if $T^{n} T^{*}=T^{*} T^{n}$, for some $n \in \mathbb{N}$ and EP operator if its range, $R(T)$, is closed and $R(T)=R\left(T^{*}\right)$. One of the interests of the EP operator lies in the fact that it commutes with its Moore-Penrose inverse. Clearly, every normal operator with closed range is EP but the converse is not true even in a finite dimensional space. Various known characterizations of EP matrices and EP operators were collected in [2-5]. Recently, Malik et al. [14] introduced the notion of n-EP matrices, generalizing the notion of EP matrices and later it was extended to closed range operators on an arbitrary Hilbert space by Wang and Deng [15]. An operators $T \in B(H)$ with closed range, is called n-EP if it satisfies $T^{n} T^{+}=T^{+} T^{n}$, for some $n \in \mathbb{N}$. In [15], the authors obtained interesting characteristics of n-EP operators, also they studied the properties of the particular case of n-EP operators that are Drazin invertible in terms of the operator matrix decomposition. The goal of this paper is to explore futher characterizations of n-EP operators using the Moore-Penrose inverse and Drazin inverse.
The paper is organized as follow: In section 2, at first we review certain known fundamental properties of the class of n-EP operators and then establish new ones. Afterwards, we study the relationship between this class and the class of n-normal operators. Finally, we provide new characterizations of n-EP operators by certain conditions that relate to their powers and their Moore-Penrose and Drazin inverse. In particular, we show that if $\operatorname{ind}(T)=n$ and $T^{D} T$ is selfadjoint then T is n-EP. In section 3 , it will be considered the problem of determining when the product of two operators is n-EP. As a consequence, we generalize the famous result on products of normal operators, due to I. Kaplansky [12] to n-EP operators. Also, some recent results obtained for EP complex matrices by P. Sam Johnson et al. [11] are extended to n-EP operators on an arbitrary Hilbert space.
To prove the main results, we shall begin with some lemmas.
Lemma 1.1. [8] Let $T \in B(H)$ with closed range. If $S \in B(H)$ such that $S T=T S$ and $S T^{*}=T^{*} S$, then $S T^{+}=T^{+} S$.

Lemma 1.2. [3] Let $T \in B(H)$ be an EP operator and $S \in B(H)$ such that $S T=T S$, then $S T^{+}=T^{+} S$.
Lemma 1.3. [10] Let $T, S \in B(H)$ have closed ranges. Then TS has a closed range if and only if $R\left(T^{+} T S S^{+}\right)$ is closed.

Lemma 1.4. [6] Let $T, S \in \mathcal{B}(\mathcal{H})$ such that T, S and $T S$ have closed ranges. Then the following statements are equivalent:
(i) $(T S)^{+}=S^{+} T^{+}$.
(ii) $\mathcal{R}\left(T^{*} T S\right) \subset \mathcal{R}(S)$ and $\mathcal{R}\left(S S^{*} T^{*}\right) \subset \mathcal{R}\left(T^{*}\right)$.
2. On the class of n-EP operators

In this section, first we give some fundamental properties of n-EP operators.
Proposition 2.1. let $T \in B(H)$ be an n-EP operator. Then the following statements hold
(1) λT is n-EP operator, for all scalar λ.
(2) T^{*} is n-EP operator.
(3) If $S \in B(H)$ is unitary equivalente to T, then S is n - $E P$ operator.

Proof. (1) It is trivial in case $\lambda=0$.
Now we suppose $\lambda \neq 0$. Then

$$
(\lambda T)^{n}(\lambda T)^{+}=(\lambda)^{n} \frac{1}{\lambda} T^{n} T^{+}=\lambda^{n} \frac{1}{\lambda} T^{+} T^{n}=(\lambda T)^{+}(\lambda T)^{n}
$$

Hence, λT is n-EP operator.
(2) Since T is n-EP, then $T^{n} T^{+}=T^{+} T^{n}$. By taking the adjoint, we find $\left(T^{*}\right)^{n}\left(T^{*}\right)^{+}=\left(T^{*}\right)^{+}\left(T^{*}\right)^{n}$.So T^{*} is n-EP operator.
(3) Since S is unitary equivalente to T, then there exists an unitary operator $U \in B(H)$ such that $S=U T U^{*}$. So $R\left(U T U^{*}\right)$ is closed and $S^{+}=U T^{+} U^{*}$. It follows that

$$
S^{n} S^{+}=U T^{n} T^{+} U^{*}=U T^{+} T^{n} U^{*}=S^{+} S^{n}
$$

Thus, S is is n-EP operator.
Proposition 2.2. If T is k-EP operator for a positive integer k, then T is $k+1-E P$. Hence T is n-EP for all $n \geq k$.

Proof. Since $T T^{+} T=T$, then $T^{k} T^{+} T=T^{k}$ and $T T^{+} T^{k}=T^{k}$. According to T is k-EP, we find $T^{k+1} T^{+}=T^{k}$ and $T^{+} T^{k+1}=T^{k}$. Thus, $T^{k+1} T^{+}=T^{+} T^{k+1}$. Therefore, T is $k+1-E P$.

Remark 2.1. Following [1], an operator $T \in B(H)$ is said to be n-normal operator if $T^{n} T^{*}=T^{*} T^{n}$. By lemma 1.1 every n-normal operator with closed range is $n-E P$, but the converse is not true even in a finite dimensional space. Indeed, consider $T=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \in \mathbb{C}^{2}$. Then $T^{+}=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$. By a direct calculation, we have

$$
T^{2} T^{+}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=T^{2} T^{+}
$$

Hence, T is 2-Ep, while T is not 2-normal because

$$
T^{2} T^{*}=\left[\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right] \neq\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]=T^{*} T^{2}
$$

Next, we provide a necessary and sufficient condition under which an n-EP operator becomes n-normal. In the case $n=1$, we obtain one well-known characterization of normal operators [3, Theorem 3.5].

Theorem 2.1. Let $T \in B(H)$ with closed range. Then T is n-normal if and only if T is n - $E p$ and $\left(T^{n}\right)^{*} T^{+}=T^{+}\left(T^{n}\right)^{*}$.

Proof. If T is n-normal with closed range, then it's n-Ep. Applying involution to $T^{n} T^{*}=T^{*} T^{n}$, we have $\left(T^{n}\right)^{*} T=T\left(T^{n}\right)^{*}$ and since $\left(T^{n}\right)^{*} T^{*}=T^{*}\left(T^{n}\right)^{*}$, by Lemma 1.1, we get $\left(T^{n}\right)^{*} T^{+}=T^{+}\left(T^{n}\right)^{+}$.
Conversely, we Assume That T is n Ep operator. Then $T^{n} T^{+}=T^{+} T^{n}$. From the the hypothesis $\left(T^{n}\right)^{*} T^{+}=T^{+}\left(T^{n}\right)^{*}$, by taking the adjoint we get $\left(T^{*}\right)^{+} T^{n}=T^{n}\left(T^{*}\right)^{+}$. By using again Lemma 1.1, we obtain $T^{n} T^{*}=T^{*} T^{n}$ and so T is n-normal operator.

Proposition 2.3. Let T be a partial isometry. Then T is n-normal if and only if T is $n-E P$.
Proof. Since T partial isometry, $T^{+}=T^{*}$. Then the equivalence clearly holds.
The following proposition generalizes Lemma 2.28 obtained for n-normal operators in [1] to n EP operators.

Proposition 2.4. let $T \in B(H)$ be an n-EP operator. If either T or T^{*} is injectif, then T is $E P$.
Proof. Since T is n-EP, Then $T^{n} T T^{+}=T^{n} T^{+} T$. That is $T^{n}\left(T T^{+}-T^{+} T\right)=0$. Since T is injective, $T T^{+}-T^{+} T=0$. Thus, T is EP. In case T^{*} is injective, since T^{*} is n-EP, then T^{*} is EP. Hence T is EP.

Proposition 2.5. Let $T \in B(H)$ with closed range. Then T is $2-E P$ if and only if T^{+}is 2-EP.
Proof. Suppose that T is 2-EP. It follows from [15, Theorem 3.5] that T^{2} is EP and $\left(T^{2}\right)^{+}=\left(T^{+}\right)^{2}$. Since $T^{2} T=T T^{2}$, by Lemma 1.2, $\left(T^{2}\right)^{+} T=T\left(T^{2}\right)^{+}$and so $\left(T^{+}\right)^{2} T=T\left(T^{+}\right)^{2}$. Hence, T^{+}is 2-EP. Conversely, If T^{+}is 2-EP, then $\left(T^{+}\right)^{+}=T$ is also 2-EP.

Next, we show that Proposition 2.5 is not valid when the power 2 is replaced by 3 .
Example 2.1. Consider $T=\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0\end{array}\right] \in \mathbb{C}^{3}$. Then $T^{3}=0$. which implies that T is $3-E P$. It is easy to see that

$$
T^{+}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right] \text { and }\left(T^{+}\right)^{3}=\left[\begin{array}{ccc}
0 & 1 & -1 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Hence

$$
\left(T^{+}\right)^{3} T=\left[\begin{array}{ccc}
0 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \neq\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]=T\left(T^{+}\right)^{3} .
$$

Thus, T^{+}is not 3-EP.
Now, we prove a version of [1, Proposition 2.33] for n - EP operators.

Proposition 2.6. Let $T \in B\left(H\right.$ with closed range, $F=T^{n}+T^{+}$and $G=T^{n}-T^{+}$. Then T is n-EP operator if and only if G commute with F.

Proof. We have

$$
\begin{aligned}
F G=G F & \Leftrightarrow\left(T^{n}+T^{+}\right)\left(T^{n}-T^{+}\right)=\left(T^{n}-T^{+}\right)\left(T^{n}+T^{+}\right) \\
& \Leftrightarrow T^{2 n}-T^{n} T^{+}+T^{+} T^{n}-\left(T^{+}\right)^{2}=T^{2 n}+T^{n} T^{+}-T^{+} T^{n}-\left(T^{+}\right)^{2} \\
& \Leftrightarrow T^{n} T^{+}=T^{+} T^{n} .
\end{aligned}
$$

Hence, T is n - EP operator if and only $F G=G F$.
In [15], Wang and Deng showed that if T is an n-EP operator, then T is Drazin invertible with $\operatorname{Ind}(T) \leq n$ and $T^{D}=T^{n}\left(T^{+}\right)^{n+1}$. In what follows, the ascent and the descent of a Hilbert space operators will be used to characterize n-EP operators.

Theorem 2.2. Let $T \in B(H)$ with closed range, $B=T^{n} T^{+}, C=T^{+} T^{n}, F=T^{n}+T^{+}$, and $G=T^{n}-T^{+}$. Then the following statements are equivalent.
(1) T is n-Ep operator.
(2) $a(T) \leq n$ and B commute with F and G.
(3) $d(T) \leq n$ and C commute with F and G.

Proof. (1) \Rightarrow (2). Suppose that T is n-EP operator. Then $T^{+} T^{n+1}=T^{n} T^{+} T=T^{n}$. which means that $N\left(T^{n+1}\right) \subset N\left(T^{n}\right)$. As the converse inclusion is obvious it follows that $N\left(T^{n+1}\right)=N\left(T^{n}\right)$. Hence, $a(T) \leq n$. Again, since T is n-EP, we have

$$
\begin{aligned}
B F & =T^{n} T^{+}\left(T^{n}+T^{+}\right) \\
& =T^{n} T^{+} T^{n}+T^{n} T^{+} T^{+} \\
& =T^{n} T^{n} T^{+}+T^{+} T^{n} T^{+} \\
& =\left(T^{n}+T^{+}\right) T^{n} T^{+}=F B
\end{aligned}
$$

By similar way we can prove that $B G=G B$.
$(2) \Rightarrow(1)$. If $B F=F B$ and $B G=G B$, then we get

$$
T^{n} T^{+} T^{n}+T^{n} T^{+} T^{+}=T^{n} T^{n} T^{+}+T^{+} T^{n} T^{+}
$$

and

$$
T^{n} T^{+} T^{n}-T^{n} T^{+} T^{+}=T^{n} T^{n} T^{+}-T^{+} T^{n} T^{+}
$$

It follows that

$$
T^{n} T^{+} T^{+}=T^{+} T^{n} T^{+} \text {and } T^{n} T^{+} T^{n}=T^{n} T^{n} T^{+}
$$

Hence, from the first equality we get $T^{n} T^{+}=T^{+} T^{n}$ on $R\left(T^{+}\right)=R\left(T^{*}\right)$ and from the second we deduce that $T^{2 n} T^{+}(x)=0$, for all $x \in N(T)$. In addition, since $a(T) \leq n$, then $N\left(T^{n}\right)=N\left(T^{2 n}\right)$. Which implies

$$
T^{2 n} T^{+}(x)=T^{n} T^{+}(x)=0, \text { for all } x \in N(T)
$$

So, $T^{n} T^{+}=T^{+} T^{n}=0$, on $N(T)$. Consequently,

$$
T^{n} T^{+}=T^{+} T^{n} \text { on } H=R\left(T^{*}\right) \oplus N(T)
$$

Therefore, T is n-EP.
$(1) \Rightarrow(3)$. The hypothesis T is n-EP implies

$$
T^{n+1}=T T^{n} T^{+}=T T^{+} T^{n}=T^{n}
$$

Then $R\left(T^{n}\right)=R\left(T^{n+1} T^{+}\right) \subset R\left(T^{n+1}\right)$. Sine the inclusion $R\left(T^{n+1}\right) \subset R\left(T^{n}\right)$ is obvious, $R\left(T^{n+1}\right)=$ $R\left(T^{n}\right)$. Thus $d(T) \leq n$. It is easy to check that the second part of (3) $(3) \Rightarrow(1)$. First, since $d(T) \leq n$, then $R\left(T^{n}\right)=R\left(T^{n+1}\right)$. This implies that $N\left(\left(T^{*}\right)^{n+1}\right)=N\left(\left(T^{*}\right)^{n}\right)$ and so $a\left(T^{*}\right) \leq n$. Next, by Applying adjoints of operators to $C F=F C$ and $C G=G C$ and using the relation $\left(T^{*}\right)^{+}=\left(T^{+}\right)^{*}$, we obtain

$$
\left(T^{*}\right)^{n}\left(T^{*}\right)^{+}\left(\left(T^{*}\right)^{n}+\left(T^{*}\right)^{+}\right)=\left(\left(T^{*}\right)^{n}+\left(T^{*}\right)^{+}\right)\left(T^{*}\right)^{n}\left(T^{*}\right)^{+}
$$

and

$$
\left(T^{*}\right)^{n}\left(T^{*}\right)^{+}\left(\left(T^{*}\right)^{n}-\left(T^{*}\right)^{+}\right)=\left(\left(T^{*}\right)^{n}-\left(T^{*}\right)^{+}\right)\left(T^{*}\right)^{n}\left(T^{*}\right)^{+}
$$

Therefore, by the implication $(2) \Rightarrow(1)$ and Proposition 2.1 (2), we deduce that T is n-EP.
Remark 2.2. Notice that the conditions $a(T) \leq n$ and $d(T) \leq n$ in Theorem 2.2 are indispensable, even if $n=1$. This can be seen from the next example.

Example 2.2. Consider the left shift operator S, defined on the Hilbert space $\ell^{2}(\mathbb{N})$ by

$$
S\left(x_{1}, x_{2}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right)
$$

Then

$$
S^{*}\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right)
$$

For $e_{n+1}=(0, \ldots, 0,1,0, \ldots)$, where 1 is the $n+1$-th term, $e_{n+1} \in N\left(S^{n+1}\right)$ while $e_{n+1} \notin N\left(S^{n}\right)$. So $a(S)=\infty$. On the other hand, since $S S^{*}=I$, then S is a partial isometry. This means that $S^{+}=S^{*}$ and $S S^{+}$commute with $S+S^{+}$and $S-S^{+}$, but S is not EP because $S^{+} S \neq S S^{+}$. With similar arguments, we have $d\left(S^{*}\right)=\infty$ and S^{*} satisfies the second part of (3), while S^{*} is not $E P$.

In [13, Theorem 7.3] it was proved that if a is an element of a ring \mathcal{R} with involution, then a is EP if and only if a is group invertible and $a^{\#} a$ is symmetric. The following proposition generalizes one implication of this result to n-EP Hilbert space operators.

Theorem 2.3. Let $T \in B(H)$ with closed range such that ind $(T)=n$. If $T^{D} T$ is self-adjoint then T is n-EP.
Proof. If $\operatorname{ind}(T)=n$ then T is Drazin invertible and $T^{D} T T=T T^{D} T$. Since $T^{D} T$ is self-adjoint, it follows that $T^{D} T T^{*}=T^{*} T^{D} T$. According to lemma 1.1, we deduce that $T^{D} T T^{+}=T^{+} T^{D} T$, which implies the following two equations:

$$
T^{n} T^{+}=T^{n+1} T^{D} T^{+}=T^{n} T^{D} T T^{+}=T^{n} T^{+} T T^{D}=T^{n} T^{D}
$$

and

$$
T^{+} T^{n}=T^{+} T^{n+1} T^{D}=T^{+} T^{D} T T^{n}=T^{D} T T^{+} T^{n}=T^{D} T^{n}
$$

Therefore, $T^{n} T^{+}=T^{+} T^{n}$, because $T^{n} T^{D}=T^{D} T^{n}$. Hence T is n-EP.

In Theorem 2.3, the reverse implication does not hold as it is shown by the following example
Example 2.3. Consider the matrix

$$
T=\left(\begin{array}{cccccc}
-1 & 1 & 0 & 0 & 1 & 0 \\
1 & -1 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & -1 & 1 \\
-1 & -1 & 0 & 0 & 1 & -1 \\
1 & -1 & 0 & 0 & 1 & -1 \\
1 & -1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

This matrix wa studied in [14], where it was shown, that

$$
T^{+}=\left(\begin{array}{cccccc}
0 & 0 & 0 & \frac{-1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & \frac{-1}{2} & \frac{1}{2} & -1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & -1 \\
\frac{1}{2} & \frac{-1}{2} & 0 & 0 & 0 & 1 \\
\frac{1}{2} & \frac{-1}{2} & 0 & 0 & -1 & 2
\end{array}\right)
$$

and T is 3-EP. On the other hand, since $T^{D}=T^{3}\left(T^{+}\right)^{4}$, By a direct calculation, we get

$$
T^{D}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & \frac{-1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 \\
\frac{1}{2} & \frac{-1}{2} & 0 & 0 & 0 & 1 \\
\frac{1}{2} & \frac{-1}{2} & 0 & 0 & -1 & 2
\end{array}\right)
$$

It follows that

$$
T^{D} T=\left(\begin{array}{cccccc}
\frac{1}{2} & \frac{-1}{2} & 0 & 0 & 0 & 0 \\
\frac{-1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \neq\left(\begin{array}{cccccc}
\frac{1}{2} & \frac{-1}{2} & 0 & 0 & 0 & 0 \\
\frac{-1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & -1 & 0 & 1
\end{array}\right)=\left(T^{D} T\right)^{*}
$$

Hence, T is not self-adjoint.

Now, we provide a condition under which the reciprocal implication of Theorem 2.3 holds.
Proposition 2.7. Let $T \in B(H)$ with closed range. If T is $n-E P$ such that $\left(T^{n+1}\right)^{+}=\left(T^{+}\right)^{n+1}$, then $T^{D} T$ is self-adjoint.

Proof. If T is n-EP, then T^{D} exists and $T^{D}=\left(T^{+}\right)^{n+1} T^{n}$. Since $\left(T^{n+1}\right)^{+}=\left(T^{+}\right)^{n+1}$, we get that $T^{D} T=\left(T^{+}\right)^{n+1} T^{n+1}=\left(T^{n+1}\right)^{+} T^{n+1}$ is self-adjoint.

As a consequence of Theorem 2.3, we obtain the following corollary.
Corollary 2.1. Let $T \in B(H)$ with closed range. If T^{n} is $E P$, then T is $n-E P$.
Proof. If T^{n} is EP, then $\operatorname{ind}\left(T^{n}\right) \leq 1$ which implies $\operatorname{ind}(T) \leq n$. So T^{D} exists and $\left(T^{n}\right)^{+}=\left(T^{n}\right)^{D}$. Hence, we have

$$
T^{D} T=\left(T^{D} T\right)^{n}=\left(T^{D}\right)^{n} T^{n}=\left(T^{n}\right)^{D} T^{n}=\left(T^{n}\right)^{+} T^{n} .
$$

Since $\left(T^{n}\right)^{+} T^{n}$ is self-adjoint, by Theorem 2.3 we conclude that T is n-EP.

3. Conditions that the product of operators is an n-EP operator

In [12], Kaplansky showed that if $S, T \in B(H)$ such that S and $S T$ are normal, then $T S$ is normal if and only if T commutes with $|S|$. Inspired by his work, we generalize this famous result to n-EP operators.

Theorem 3.1. Let $T, S \in B(H)$ such that $R(T), R(S)$ and $R(S T)$ are closed. If S is normal and $S T$ is n - $E P$, then

$$
S^{*} S T=T S^{*} S \Longrightarrow T S \text { is } n-E P
$$

Proof. Since S is normal, then by [7, Theorem 3] there exists a unitary operator U such that

$$
S=U|S|=|S| U .
$$

From the assumption $S^{*} S T=T S^{*} S$, we get $|S| T=T|S|$. Consequently, we have

$$
T S=T U|S|=|S| T U=U^{*} U|S| T U=U^{*} S T U
$$

Therefore, $T S$ is unitary equivalent to $S T$. Since $S T$ is n-EP, according to Proposition 2.1, we conclude that $T S$ is also n-EP.

Remark 3.1. In Theorem 3.1, the reverse implication is false. Indeed, Consider the two matrices

$$
S=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \text { and } T=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Then S is normal and by a simple computation, we have $(S T)^{2}=(T S)^{2}=0$. Hence ST and TS are 2-EP, but

$$
S^{*} S T=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \neq\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=T S^{*} S
$$

We now prove the following Lemma which is needed in the proof of Theorem 3.2.
Lemma 3.1. Let $S \in B(H)$ with closed ranges and $T \in B(H)$. If $(S T)^{n}$ is $E P$ operator, then $(S T)^{n} S$ has closed range.

Proof. By lemma 1.3, it is enough to prove that $R\left[\left((S T)^{n}\right)^{+}(S T)^{n} S S^{+}\right]$is closed. Since $(S T)^{n}$ is EP, then we have

$$
\begin{aligned}
R\left[\left((S T)^{n}\right)^{+}(S T)^{n} S S^{+}\right] & =R\left[\left(S S^{+}\left((S T)^{n}\right)^{+}(S T)^{n}\right)^{*}\right] \\
& =R\left[\left(S S^{+}(S T)^{n}\left((S T)^{n}\right)^{+}\right)^{*}\right] \\
& \left.=R\left[(S T)^{n}\left((S T)^{n}\right)^{+}\right)^{*}\right] \\
& =R\left[(S T)^{n}\left((S T)^{n}\right)^{+}\right]
\end{aligned}
$$

Hence, $R\left[\left((S T)^{n}\right)^{+}(S T)^{n} S S^{+}\right]$is closed .
The next result reformulates and extends Theorem 4.6 of [11] to n-EP operators.
Theorem 3.2. Let $T, S \in B(H)$ and $n \in \mathbb{N}$ such that $T, S, S T$ and $T S$ have closed ranges. Then the following statements hold
(i) If $(S T)^{n}$ and $(T S)^{n}$ are EP operators, then we have $S^{+}(S T)^{n}=(T S)^{n} S^{+}$and $(S T)^{n} T^{+}=T^{+}(T S)^{n}$.
(ii) If $(S T)^{+}=T^{+} S^{+}, S^{+}(S T)^{n}=(T S)^{n} S^{+}$and $(S T)^{n} T^{+}=T^{+}(T S)^{n}$, then $S T$ is n-EP.
(iii) If $(T S)^{+}=S^{+} T^{+}, S^{+}(S T)^{n}=(T S)^{n} S^{+}$and $(S T)^{n} T^{+}=T^{+}(T S)^{n}$, then $T S$ is $n-E P$.

Proof. (i) By Lemma 3.1, $R\left((S T)^{n} S\right)$ and $R\left((T S)^{n} T\right)$ are closed. Now, we poof that the reverse order law $S^{+}\left[(S T)^{n}\right]^{+}=\left[(S T)^{n} S\right]^{+}$holds. According to Lemma 1.4, this equality is equivalent to

$$
R\left(\left[(S T)^{n}\right]^{*}(S T)^{n} S\right) \subset R(S) \text { and } R\left(S S^{*}\left[(S T)^{n}\right]^{*}\right) \subset R\left(\left[(S T)^{n}\right]^{*}\right)
$$

Since $(S T)^{n}$ and $(T S)^{n}$ are EP, the first inclusion follows as

$$
\begin{aligned}
R\left(\left[(S T)^{n}\right]^{*}(S T)^{n} S\right) & \subset R\left(\left[(S T)^{n}\right]^{*}\right) \\
& =R\left((S T)^{n}\right) \\
& \subset \\
& \subset \\
& R(S T) \\
& R(S),
\end{aligned}
$$

and the second inclusion follows as

$$
\begin{aligned}
R\left(S S^{*}\left[(S T)^{n}\right]^{*}\right) & =S R\left(S^{*}\left[(S T)^{n}\right]^{*}\right) \\
& =S R\left(\left[(S T)^{n} S\right]^{*}\right) \\
& =S R\left(\left[S(T S)^{n}\right]^{*}\right) \\
& =S R\left(\left[(T S)^{n}\right]^{*} S^{*}\right) \\
& \subset S R\left(\left[(T S)^{n}\right]^{*}\right) \\
& =S R\left((T S)^{n}\right) \\
& =R\left(S(T S)^{n}\right) \\
& =R\left((S T)^{n} S\right) \\
& \subset \quad R\left((S T)^{n}\right) \\
& =R\left(\left[(S T)^{n}\right]^{*}\right) .
\end{aligned}
$$

Thus, $S^{+}\left[(S T)^{n}\right]^{+}=\left[(S T)^{n} S\right]^{+}$. In a similar way we have

$$
\left[(T S)^{n}\right]^{+} S^{+}=\left[S(T S)^{n}\right]^{+},\left[(S T)^{n}\right]^{+} T^{+}=\left[T(S T)^{n}\right]^{+} \text {and }\left[(T S)^{n} T\right]^{+}=T^{+}\left[(T S)^{n}\right]^{+},
$$

and consequently, we get that

$$
S^{+}\left[(S T)^{n}\right]^{+}=\left[(T S)^{n}\right]^{+} S^{+} \text {and }\left[(S T)^{n}\right]^{+} T^{+}=T^{+}\left[(T S)^{n}\right]^{+} .
$$

Since $(S T)^{n}$ and $(T S)^{n}$ are EP, By Lemma1.2, we obtain

$$
S^{+}(S T)^{n}=(T S)^{n} S^{+} \text {and }(S T)^{n} T^{+}=T^{+}(T S)^{n}
$$

(ii) if $S^{+}(S T)^{n}=(T S)^{n} S^{+}$and $(S T)^{n} T^{+}=T^{+}(T S)^{n}$, then multiplying the first equation from the left by T^{+}and the second one by S^{+}from the right, we get

$$
T^{+} S^{+}(S T)^{n}=T^{+}(T S)^{n} S^{+} \text {and }(S T)^{n} T^{+} S^{+}=T^{+}(T S)^{n} S^{+} .
$$

Using the fact $(S T)^{+}=T^{+} S^{+}$, we have $(S T)^{n}(S T)^{+}=(S T)^{+}(S T)^{n}$. Therefore $S T$ is n-EP.
(iii) It can be proved in a similar way to (ii).

Also, the last result generalizes [11, Corollary 4.6] for EP matrices to n-EP operators on arbitrary Hilbert spaces.

Proposition 3.1. Let $S \in B(H)$ wih closed range and $S=U|S|$ be its polar decomposition, where U is unitary and let $T \in B(H)$ such that $T, S T$, and $T S$ have closed ranges. If $(S T)^{+}=T^{+} S^{+}$and $(T S)^{+}=S^{+} T^{+}$, then the following statements hold
(i) Let $n \in \mathbb{N}$, if $T U$ is $E P$ and $(S T)^{n} U=U(T S)^{n}$, then ST and TS are n-EP.
(ii) Let $n \in \mathbb{N}$, if $(S T)^{n}$ and $(T S)^{n}$ are $E P$, then $(S T)^{n} U=U(T S)^{n}$.

Proof. (i) First, by the hypothesis $(S T)^{n} U=U(T S)^{n}$ and since U is unitary, we observe

$$
\begin{align*}
(S T)^{n} U=U(T S)^{n} & \Longleftrightarrow S T(S T)^{n-1} U=U T(S T)^{n-1} S \\
& \Longleftrightarrow U|S| T(S T)^{n-1} U=U T(S T)^{n-1} U|S| \\
& \Longleftrightarrow U^{*} U|S| T(S T)^{n-1} U=U^{*} U T(S T)^{n-1} U|S| \\
& \Longleftrightarrow|S| T(S T)^{n-1} U=T(S T)^{n-1} U|S| \tag{3.1}
\end{align*}
$$

Since $|S|$ is EP, by using (3.1) and Lemma 1.2, it follows

$$
\begin{equation*}
(S T)^{n} U=U(T S)^{n} \Longleftrightarrow|S|^{+} T(S T)^{n-1} U=T(S T)^{n-1} U|S|^{+} . \tag{3.2}
\end{equation*}
$$

Obviously, by (3.1) and (3.2), we obtain

$$
\begin{equation*}
(S T)^{n} U=U(T S)^{n} \Longleftrightarrow|S \| S|^{+} T(S T)^{n-1} U=T(S T)^{n-1} U|S||S|^{+} . \tag{3.3}
\end{equation*}
$$

Now, the equivalence (3.3) gives

$$
\begin{aligned}
(T S)^{n} S^{+} & =T(S T)^{n-1} S S^{+} \\
& =T(S T)^{n-1} U|S \| S|^{+} U^{*} \\
& =|S||S|^{+} T(S T)^{n-1} U U^{*} \\
& =|S \| S|^{+} T(S T)^{n-1} \\
& =|S|^{+}|S| T(S T)^{n-1} \\
& =|S|^{+} U^{*} U|S| T(S T)^{n-1} \\
& =S^{+}(S T)^{n} .
\end{aligned}
$$

On the other hand by (2.1), we have

$$
\begin{aligned}
|S|(T S)^{n-1} T U & =|S| T(S T)^{n-1} U \\
& =T(S T)^{n-1} U|S| \\
& =(T S)^{n} \\
& =T U|S|(T S)^{n-1}
\end{aligned}
$$

Applying Lemma 1.2, the fact that $T U$ is EP, we obtain

$$
(T U)^{+}|S|(T S)^{n-1}=|S|(T S)^{n-1}(T U)^{+}
$$

Since $(T U)^{+}=U^{*} T^{+}$, by using the previous equality, we get

$$
\begin{aligned}
(S T)^{n} T^{+} & =S(T S)^{n-1} T T^{+} \\
& =U|S|(T S)^{n-1} T U U^{*} T^{+} \\
& =U|S|(T S)^{n-1} T U(T U)^{+} \\
& =U|S|(T S)^{n-1}(T U)^{+} T U \quad(T U \text { is } E P) \\
& =U(T U)^{+}|S|(T S)^{n-1} T U \\
& =U U^{*} T^{+}|S|(T S)^{n-1} T U \\
& =T^{+} T U|S|(T S)^{n-1} \\
& =T^{+}(T S)^{n} .
\end{aligned}
$$

Finally, from the given facts $(S T)^{+}=T^{+} S^{+}$and $(T S)^{+}=S^{+} T^{+}$, it follows by Theorem 3.2, $S T$ and TS are n-EP.
(ii) By (3.3) it is sufficient to prove that

$$
|S||S|^{+} T(S T)^{n-1} U=T(S T)^{n-1} U|S||S|^{+} .
$$

Since $(S T)^{n}$ and $(T S)^{n}$ are EP, according to Theorem 3.2, we have

$$
\begin{aligned}
|S \| S|^{+} T(S T)^{n-1} U & =|S|^{+}|S| T(S T)^{n-1} U \\
& =|S|^{+} U^{*} U|S| T(S T)^{n-1} U \\
& =S^{+} S T(S T)^{n} U \\
& =S^{+}(S T)^{n} U \\
& =(T S)^{n} S^{+} U \\
& =T(S T)^{n-1} S S^{+} U \\
& =T(S T)^{n-1} U|S \| S|^{+}
\end{aligned}
$$

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] S.A. Alzuraiqi, A.B. Patel, On n-Normal Operators, Gen. Math. Notes, 1 (2010), 61-73.
[2] O. Maria Baksalary, G. Trenkler, Characterizations of EP, Normal, and Hermitian Matrices, Linear Multilinear Algebra. 56 (2008), 299-304. https://doi.org/10.1080/03081080600872616.
[3] E. Boasso, V. Rakoc̀evic̀, Characterizations of EP and Normal Banach Algebra Elements and Banach Space Operators, Linear Algebra Appl. 435 (2011), 342-353. https://doi.org/10.1016/j.laa.2011.01.031.
[4] S.L. Campbell, C.D. Meyer, EP Operators and Generalized Inverses, Canad. Math. Bull. 18 (1975), 327-333. https: //doi.org/10.4153/cmb-1975-061-4.
[5] D.S. Djorrdjevič, Products of EP operators on Hilbert spaces, Proc. Amer. Math. Soc. 129 (2000), 1727-1731. https://doi.org/10.1090/s0002-9939-00-05701-4.
[6] D.S. Djordjevic, Further Results on the Reverse Order Law for Generalized Inverses, SIAM J. Matrix Anal. Appl. 29 (2008), 1242-1246. https://doi.org/10.1137/050638114.
[7] T. Furuta, On the Polar Decomposition of an Operator, Acta Sci. Math. 46 (1983), 261-268.
[8] R.E. Harte, M. Mbekhta, On Generalized Inverses in C*-Algebras, Stud. Math. 103 (1992) 71-77.
[9] H.G. Heuser, Functional Analysis, John Wiley \& Sons, 1982.
[10] S. Izumino, The Product of Operators With Closed Range and an Extension of the Reverse Order Law, Tohoku Math. J. (2) 34 (1982), 43-52. https://doi.org/10.2748/tmj/1178229307.
[11] P.S. Johnson, V. A., K. Kamaraj, Fuglede-Putnam type commutativity theorems for $E P$ operators, Malaya J. Mat. 9 (2021) 709-714. https://doi.org/10.26637/mjm0901/0124.
[12] I. Kaplansky, Products of Normal Operators, Duke Math. J. 20 (1953), 257-260. https://doi.org/10.1215/ s0012-7094-53-02025-0.
[13] J.J. Koliha, P. Patricio, Elements of Rings With Equal Spectral Idempotents, J. Aust. Math. Soc. 72 (2002), 137-152. https://doi.org/10.1017/s1446788700003657.
[14] S.B. Malik, L. Rueda, N. Thome, The Class of m-EP and m-Normal Matrices, Linear Multilinear Algebra. 64 (2016), 2119-2132. https://doi.org/10.1080/03081087.2016.1139037.
[15] X. Wang, C. Deng, Properties of m-EP Operators, Linear Multilinear Algebra. 65 (2016), 1349-1361. https://doi.org/ 10.1080/03081087.2016.1235131.

