
Int. J. Anal. Appl. (2024), 22:78

Some Results of n-EP Operators on Hilbert Spaces

Safa Menkad∗, Anissa Elgues

LTM, Departement of mathematics, Faculty of Mathematics and Informatics, University of Batna 2,
05078, Batna, Algeria

∗Corresponding author: s.menkad@univ-batna2.dz

Abstract. Let B(H) be the algebra of all bounded linear operators on a complex Hilbert space H and n ∈N. An operator

T ∈ B(H) with closed range, is called n-EP operator if Tn commutes with T+. In this paper, we present some new

characterizations of n-EP operators, using Moore-penrose and Drazin inverse. Also, the problem of determining when

the product of two operators is n-EP will be considered. As a consequence, we generalize a famous result on products

of normal operators, due to I. Kaplansky to n-EP operators.

1. Introduction and preliminaries

Let B(H) be the Banach algebra of all bounded linear operators on a complex Hilbert space H.

For T ∈ B(H), we use symbols R(T), N(T) and T∗, the range, the null subspace and the adjoint

operator of T, respectively. It is known that every operator T ∈ B(H) can be decomposed as

T = U|T|, where |T| = (T∗T)
1
2 is the modulus of T and U is an appropriate partial isometry (i.e.

UU∗U = U), such that N(U) = N(T) = N(|T|). Now, we recall the definitions of some generalized

inverses. For T ∈ B(H), The Moore-Penrose inverse of T is the unique operator T+
∈ B(H), which

satisfies the four operator equations :

TT+T = T, T+TT+ = T+, (TT+)∗ = TT+, (T+T)∗ = T+T. (1.1)

As we know, T has a Moore-Penrose inverse if and only if R(T) is closed. From (1.1), it can be

proved that R (T+) = R (T∗) and that TT+ and T+T are orthogonal projections into R (T) and

R (T∗), respectively. Notice that if R(T) is closed, then T∗ and |T| and have closed ranges, in this

case (T∗)+ = (T+)∗ and T+ = |T|+U∗, where T = U|T| is the polar decomposition of T.

The Drazin inverse of T ∈ B(H), is the unique operator AD that satisfies :

TTD = TDT , TDTTD = TD , Tk+1TD = Tk, for some k ≥ 1.
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The smallest such k is called the Drazin index of T and denoted by ind(A). In particular, when

ind(A) = 1, the Drazin inverse TD is called the group inverse of T and it is denoted by T#. Recall

that T ∈ B(H) is Drazin invertible if and only if a(T) and d(T) are finite, where a(T), the ascent of

T is the the minimal integer n such that N(Tn) = N(Tn+1) and d(T), the descent of T the minimal

integer n such that R(Tn) = R(Tn+1). If a(T) and d(T) are finite, they are equal and their common

value is the index of T [9, Proposition 38.3].

An operator T ∈ B(H) is said to be normal if TT∗ = T∗T, n-normal if TnT∗ = T∗Tn, for some n ∈N

and EP operator if its range, R(T), is closed and R(T) = R(T∗). One of the interests of the EP

operator lies in the fact that it commutes with its Moore-Penrose inverse. Clearly, every normal

operator with closed range is EP but the converse is not true even in a finite dimensional space.

Various known characterizations of EP matrices and EP operators were collected in [2–5]. Recently,

Malik et al. [14] introduced the notion of n-EP matrices, generalizing the notion of EP matrices

and later it was extended to closed range operators on an arbitrary Hilbert space by Wang and

Deng [15]. An operators T ∈ B(H) with closed range, is called n-EP if it satisfies TnT+ = T+Tn, for

some n ∈ N. In [15], the authors obtained interesting characteristics of n-EP operators, also they

studied the properties of the particular case of n-EP operators that are Drazin invertible in terms

of the operator matrix decomposition. The goal of this paper is to explore futher characterizations

of n-EP operators using the Moore-Penrose inverse and Drazin inverse.

The paper is organized as follow: In section 2, at first we review certain known fundamental

properties of the class of n-EP operators and then establish new ones. Afterwards, we study

the relationship between this class and the class of n-normal operators. Finally, we provide new

characterizations of n-EP operators by certain conditions that relate to their powers and their

Moore-Penrose and Drazin inverse. In particular, we show that if ind(T) = n and TDT is self-

adjoint then T is n-EP. In section 3, it will be considered the problem of determining when the

product of two operators is n-EP. As a consequence, we generalize the famous result on products

of normal operators, due to I. Kaplansky [12] to n-EP operators. Also, some recent results obtained

for EP complex matrices by P. Sam Johnson et al. [11] are extended to n-EP operators on an arbitrary

Hilbert space.

To prove the main results, we shall begin with some lemmas.

Lemma 1.1. [8] Let T ∈ B(H) with closed range. If S ∈ B(H) such that ST = TS and ST∗ = T∗S, then
ST+ = T+S.

Lemma 1.2. [3] Let T ∈ B(H) be an EP operator and S ∈ B(H) such that ST = TS, then ST+ = T+S.

Lemma 1.3. [10] Let T, S ∈ B(H) have closed ranges. Then TS has a closed range if and only if R(T+TSS+)

is closed.

Lemma 1.4. [6] Let T, S ∈ B(H) such that T, S and TS have closed ranges. Then the following statements
are equivalent:

(i) (TS)+ = S+T+.
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(ii) R(T∗TS) ⊂ R(S) and R(SS∗T∗) ⊂ R(T∗).

2. On the class of n-EP operators

In this section, first we give some fundamental properties of n-EP operators.

Proposition 2.1. let T ∈ B(H) be an n-EP operator. Then the following statements hold

(1) λT is n-EP operator, for all scalar λ.
(2) T∗ is n-EP operator.
(3) If S ∈ B(H) is unitary equivalente to T, then S is n-EP operator.

Proof. (1) It is trivial in case λ = 0.

Now we suppose λ , 0. Then

(λT)n(λT)+ = (λ)n 1
λ

TnT+ = λn 1
λ

T+Tn = (λT)+(λT)n

Hence, λT is n-EP operator.

(2) Since T is n-EP, then TnT+ = T+Tn. By taking the adjoint, we find (T∗)n(T∗)+ = (T∗)+(T∗)n.So

T∗ is n-EP operator.

(3) Since S is unitary equivalente to T , then there exists an unitary operator U ∈ B(H) such that

S = UTU∗. So R(UTU∗) is closed and S+ = UT+U∗. It follows that

SnS+ = UTnT+U∗ = UT+TnU∗ = S+Sn .

Thus, S is is n-EP operator. �

Proposition 2.2. If T is k-EP operator for a positive integer k, then T is k + 1-EP. Hence T is n-EP for all
n ≥ k .

Proof. Since TT+T = T, then TkT+T = Tk and TT+Tk = Tk. According to T is k-EP, we find

Tk+1T+ = Tk and T+Tk+1 = Tk. Thus, Tk+1T+ = T+Tk+1. Therefore, T is k + 1-EP. �

Remark 2.1. Following [1], an operator T ∈ B(H) is said to be n-normal operator if TnT∗ = T∗Tn. By
lemma 1.1 every n-normal operator with closed range is n-EP, but the converse is not true even in a finite

dimensional space. Indeed, consider T =

1 1

0 1

 ∈ C2. Then T+ =

1 −1

0 1

. By a direct calculation, we

have

T2T+ =

1 1

0 1

 = 1 1

0 1

 = T2T+.

Hence, T is 2-Ep , while T is not 2-normal because

T2T∗ =

3 2

1 1

 , 1 2

1 3

 = T∗T2

Next, we provide a necessary and sufficient condition under which an n-EP operator becomes

n-normal. In the case n = 1, we obtain one well-known characterization of normal operators [3,

Theorem 3.5].
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Theorem 2.1. Let T ∈ B(H) with closed range. Then T is n-normal if and only if T is n-Ep and
(Tn)∗T+ = T+(Tn)∗.

Proof. If T is n-normal with closed range, then it’s n-Ep. Applying involution to TnT∗ = T∗Tn, we

have (Tn)∗T = T(Tn)∗ and since (Tn)∗T∗ = T∗(Tn)∗, by Lemma 1.1, we get (Tn)∗T+ = T+(Tn)+.

Conversely, we Assume That T is n Ep operator. Then TnT+ = T+Tn. From the the hypothesis

(Tn)∗T+ = T+(Tn)∗, by taking the adjoint we get (T∗)+Tn = Tn(T∗)+. By using again Lemma 1.1,

we obtain TnT∗ = T∗Tn and so T is n-normal operator. �

Proposition 2.3. Let T be a partial isometry. Then T is n-normal if and only if T is n-EP.

Proof. Since T partial isometry, T+ = T∗. Then the equivalence clearly holds. �

The following proposition generalizes Lemma 2.28 obtained for n-normal operators in [1] to n-

EP operators.

Proposition 2.4. let T ∈ B(H) be an n-EP operator. If either T or T∗ is injectif, then T is EP.

Proof. Since T is n-EP, Then TnTT+ = TnT+T. That is Tn(TT+
− T+T) = 0. Since T is injective,

TT+
− T+T = 0. Thus, T is EP. In case T∗ is injective, since T∗ is n-EP, then T∗ is EP. Hence T is

EP. �

Proposition 2.5. Let T ∈ B(H) with closed range. Then T is 2-EP if and only if T+ is 2-EP.

Proof. Suppose that T is 2-EP. It follows from [15, Theorem 3.5] that T2 is EP and (T2)+ = (T+)2.

Since T2T = TT2, by Lemma 1.2, (T2)+T = T(T2)+ and so (T+)2T = T(T+)2. Hence, T+ is 2-EP.

Conversely, If T+ is 2-EP, then (T+)+ = T is also 2-EP. �

Next, we show that Proposition 2.5 is not valid when the power 2 is replaced by 3.

Example 2.1. Consider T =


0 0 0

1 0 0

1 1 0

 ∈ C3. Then T3 = 0. which implies that T is 3-EP. It is easy to see

that

T+ =


0 1 0

0 −1 1

0 0 0

 and (T+)3 =


0 1 −1

0 −1 1

0 0 0


Hence

(T+)3T =


0 −1 0

0 1 0

0 0 0

 ,

0 0 0

0 1 −1

0 0 0

 = T(T+)3.

Thus, T+ is not 3-EP.

Now, we prove a version of [1, Proposition 2.33 ] for n- EP operators.



Int. J. Anal. Appl. (2024), 22:78 5

Proposition 2.6. Let T ∈ B(H with closed range, F = Tn + T+ and G = Tn
− T+ . Then T is n- EP

operator if and only if G commute with F.

Proof. We have

FG = GF⇔ (Tn + T+)(Tn
− T+) = (Tn

− T+)(Tn + T+)

⇔ T2n
− TnT+ + T+Tn

− (T+)2 = T2n + TnT+
− T+Tn

− (T+)2

⇔ TnT+ = T+Tn.

Hence, T is n- EP operator if and only FG = GF. �

In [15], Wang and Deng showed that if T is an n-EP operator, then T is Drazin invertible with

Ind(T) ≤ n and TD = Tn(T+)n+1. In what follows, the ascent and the descent of a Hilbert space

operators will be used to characterize n-EP operators.

Theorem 2.2. Let T ∈ B(H) with closed range, B = TnT+ , C = T+Tn, F = Tn + T+, and G = Tn
−T+.

Then the following statements are equivalent.

(1) T is n-Ep operator.
(2) a(T) ≤ n and B commute with F and G.
(3) d(T) ≤ n and C commute with F and G.

Proof. (1) ⇒ (2). Suppose that T is n-EP operator. Then T+Tn+1 = TnT+T = Tn . which means

that N(Tn+1) ⊂ N(Tn). As the converse inclusion is obvious it follows that N(Tn+1) = N(Tn).

Hence, a(T) ≤ n. Again, since T is n-EP, we have

BF = TnT+(Tn + T+)

= TnT+Tn + TnT+T+

= TnTnT+ + T+TnT+

= (Tn + T+)TnT+ = FB.

By similar way we can prove that BG = GB.

(2)⇒ (1). If BF = FB and BG = GB, then we get

TnT+Tn + TnT+T+ = TnTnT+ + T+TnT+

and

TnT+Tn
− TnT+T+ = TnTnT+

− T+TnT+

It follows that

TnT+T+ = T+TnT+ and TnT+Tn = TnTnT+.

Hence, from the first equality we get TnT+ = T+Tn on R(T+) = R(T∗) and from the second we

deduce that T2nT+(x) = 0, for all x ∈ N(T). In addition, since a(T) ≤ n, then N(Tn) = N(T2n).

Which implies
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T2nT+(x) = TnT+(x) = 0, for all x ∈ N(T).

So, TnT+ = T+Tn = 0, on N(T). Consequently,

TnT+ = T+Tn on H = R(T∗) ⊕N(T).

Therefore, T is n-EP.

(1)⇒ (3). The hypothesis T is n-EP implies

Tn+1 = TTnT+ = TT+Tn = Tn.

Then R(Tn) = R(Tn+1T+) ⊂ R(Tn+1). Sine the inclusion R(Tn+1) ⊂ R(Tn) is obvious, R(Tn+1) =

R(Tn). Thus d(T) ≤ n. It is easy to check that the second part of (3)

(3) ⇒ (1). First, since d(T) ≤ n, then R(Tn) = R(Tn+1). This implies that N((T∗)n+1) = N((T∗)n)

and so a(T∗) ≤ n. Next, by Applying adjoints of operators to CF = FC and CG = GC and using the

relation (T∗)+ = (T+)∗, we obtain

(T∗)n(T∗)+((T∗)n + (T∗)+) = ((T∗)n + (T∗)+)(T∗)n(T∗)+

and

(T∗)n(T∗)+((T∗)n
− (T∗)+) = ((T∗)n

− (T∗)+)(T∗)n(T∗)+.

Therefore, by the implication (2)⇒ (1) and Proposition 2.1 (2), we deduce that T is n-EP. �

Remark 2.2. Notice that the conditions a(T) ≤ n and d(T) ≤ n in Theorem 2.2 are indispensable, even if
n = 1. This can be seen from the next example.

Example 2.2. Consider the left shift operator S, defined on the Hilbert space `2(N) by

S(x1, x2, ...) = (x2, x3, ...).

Then

S∗(x1, x2, ...) = (0, x1, x2, ...).

For en+1 = (0, ..., 0, 1, 0, ...), where 1 is the n+1-th term, en+1 ∈ N(Sn+1) while en+1 < N(Sn). So
a(S) = ∞. On the other hand, since SS∗ = I, then S is a partial isometry. This means that S+ = S∗ and
SS+ commute with S + S+ and S− S+, but S is not EP because S+S , SS+. With similar arguments, we
have d(S∗) = ∞ and S∗ satisfies the second part of (3), while S∗ is not EP.

In [13, Theorem 7.3] it was proved that if a is an element of a ring R with involution, then a is

EP if and only if a is group invertible and a#a is symmetric. The following proposition generalizes

one implication of this result to n-EP Hilbert space operators.

Theorem 2.3. Let T ∈ B(H) with closed range such that ind(T) = n. If TDT is self-adjoint then T is n-EP.

Proof. If ind(T) = n then T is Drazin invertible and TDTT = TTDT. Since TDT is self-adjoint, it

follows that TDTT∗ = T∗TDT. According to lemma 1.1, we deduce that TDTT+ = T+TDT, which

implies the following two equations:
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TnT+ = Tn+1TDT+ = TnTDTT+ = TnT+TTD = TnTD

and

T+Tn = T+Tn+1TD = T+TDTTn = TDTT+Tn = TDTn.

Therefore, TnT+ = T+Tn, because TnTD = TDTn. Hence T is n-EP.

�

In Theorem 2.3, the reverse implication does not hold as it is shown by the following example

Example 2.3. Consider the matrix

T =



−1 1 0 0 1 0

1 −1 0 0 −1 0

0 0 0 1 −1 1

−1 −1 0 0 1 −1

1 −1 0 0 1 −1

1 −1 0 0 0 0


This matrix wa studied in [14], where it was shown, that

T+ =



0 0 0 −1
2

1
2 0

0 0 0 −1
2

1
2 −1

0 0 0 0 0 0

0 0 1 0 1 −1
1
2

−1
2 0 0 0 1

1
2

−1
2 0 0 −1 2


and T is 3-EP. On the other hand, since TD = T3(T+)4, By a direct calculation, we get

TD =



0 0 0 0 0 1
2

0 0 0 0 0 −1
2

0 0 0 0 0 0

0 0 0 0 1 −1
1
2

−1
2 0 0 0 1

1
2

−1
2 0 0 −1 2


It follows that

TDT =



1
2

−1
2 0 0 0 0

−1
2

1
2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 −1

0 0 0 0 1 0

0 0 0 0 0 1


,



1
2

−1
2 0 0 0 0

−1
2

1
2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 1 0

0 0 0 −1 0 1


= (TDT)∗.

Hence, T is not self-adjoint.
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Now, we provide a condition under which the reciprocal implication of Theorem 2.3 holds.

Proposition 2.7. Let T ∈ B(H) with closed range. If T is n-EP such that (Tn+1)+ = (T+)n+1, then TDT
is self-adjoint.

Proof. If T is n-EP, then TD exists and TD = (T+)n+1Tn. Since (Tn+1)+ = (T+)n+1, we get that

TDT = (T+)n+1Tn+1 = (Tn+1)+Tn+1 is self-adjoint. �

As a consequence of Theorem 2.3, we obtain the following corollary.

Corollary 2.1. Let T ∈ B(H) with closed range. If Tn is EP, then T is n-EP.

Proof. If Tn is EP, then ind(Tn) ≤ 1 which implies ind(T) ≤ n. So TD exists and (Tn)+ = (Tn)D.

Hence, we have

TDT = (TDT)n = (TD)nTn = (Tn)DTn = (Tn)+Tn.

Since (Tn)+Tn is self-adjoint, by Theorem 2.3 we conclude that T is n-EP. �

3. Conditions that the product of operators is an n-EP operator

In [12], Kaplansky showed that if S, T ∈ B(H) such that S and ST are normal, then TS is normal

if and only if T commutes with |S|. Inspired by his work, we generalize this famous result to n-EP

operators.

Theorem 3.1. Let T, S ∈ B(H) such that R(T), R(S) and R(ST) are closed. If S is normal and ST is n-EP,
then

S∗ST = TS∗S =⇒ TS is n-EP.

Proof. Since S is normal, then by [7, Theorem 3] there exists a unitary operator U such that

S = U|S| = |S|U.

From the assumption S∗ST = TS∗S, we get |S|T = T|S|. Consequently, we have

TS = TU|S| = |S|TU = U∗U|S|TU = U∗STU.

Therefore, TS is unitary equivalent to ST. Since ST is n-EP, according to Proposition 2.1, we

conclude that TS is also n-EP. �

Remark 3.1. In Theorem 3.1, the reverse implication is false. Indeed, Consider the two matrices

S =

0 0

0 1

 and T =

0 1

1 0


Then S is normal and by a simple computation, we have (ST)2 = (TS)2 = 0. Hence ST and TS are 2-EP,
but

S∗ST =

0 0

1 0

 , 0 1

0 0

 = TS∗S.
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We now prove the following Lemma which is needed in the proof of Theorem 3.2.

Lemma 3.1. Let S ∈ B(H) with closed ranges and T ∈ B(H). If (ST)n is EP operator, then (ST)nS has
closed range.

Proof. By lemma 1.3, it is enough to prove that R[((ST)n)+(ST)nSS+] is closed . Since (ST)n is EP,

then we have

R[((ST)n)+(ST)nSS+] = R[(SS+((ST)n)+(ST)n)∗]

= R[(SS+(ST)n((ST)n)+)∗]

= R[(ST)n((ST)n)+)∗]

= R[(ST)n((ST)n)+]

Hence, R[((ST)n)+(ST)nSS+] is closed . �

The next result reformulates and extends Theorem 4.6 of [11] to n-EP operators.

Theorem 3.2. Let T, S ∈ B(H) and n ∈ N such that T, S, ST and TS have closed ranges. Then the
following statements hold

(i) If (ST)n and (TS)n are EP operators, then we have S+(ST)n = (TS)nS+ and (ST)nT+ = T+(TS)n.
(ii) If (ST)+ = T+S+, S+(ST)n = (TS)nS+ and (ST)nT+ = T+(TS)n, then ST is n-EP.

(iii) If (TS)+ = S+T+, S+(ST)n = (TS)nS+ and (ST)nT+ = T+(TS)n, then TS is n-EP.

Proof. (i) By Lemma 3.1, R((ST)nS) and R((TS)nT) are closed. Now, we poof that the reverse order

law S+[(ST)n]+ = [(ST)nS]+ holds. According to Lemma 1.4, this equality is equivalent to

R([(ST)n]∗(ST)nS) ⊂ R(S) and R(SS∗[(ST)n]∗) ⊂ R([(ST)n]∗).

Since (ST)n and (TS)n are EP, the first inclusion follows as

R([(ST)n]∗(ST)nS) ⊂ R([(ST)n]∗)

= R((ST)n)

⊂ R(ST)
⊂ R(S),

and the second inclusion follows as

R(SS∗[(ST)n]∗) = SR(S∗[(ST)n]∗)

= SR([(ST)nS]∗)
= SR([S(TS)n]∗)

= SR([(TS)n]∗S∗)
⊂ SR([(TS)n]∗)

= SR((TS)n)

= R(S(TS)n)

= R((ST)nS)
⊂ R((ST)n)

= R([(ST)n]∗).
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Thus, S+[(ST)n]+ = [(ST)nS]+. In a similar way we have

[(TS)n]+S+ = [S(TS)n]+ , [(ST)n]+T+ = [T(ST)n]+ and [(TS)nT]+ = T+[(TS)n]+,

and consequently, we get that

S+[(ST)n]+ = [(TS)n]+S+ and [(ST)n]+T+ = T+[(TS)n]+.

Since (ST)n and (TS)n are EP, By Lemma1.2, we obtain

S+(ST)n = (TS)nS+ and (ST)nT+ = T+(TS)n.

(ii) if S+(ST)n = (TS)nS+ and (ST)nT+ = T+(TS)n, then multiplying the first equation from the

left by T+ and the second one by S+ from the right, we get

T+S+(ST)n = T+(TS)nS+ and (ST)nT+S+ = T+(TS)nS+.

Using the fact (ST)+ = T+S+, we have (ST)n(ST)+ = (ST)+(ST)n. Therefore ST is n-EP.

(iii) It can be proved in a similar way to (ii). �

Also, the last result generalizes [11, Corollary 4.6] for EP matrices to n-EP operators on arbitrary

Hilbert spaces.

Proposition 3.1. Let S ∈ B(H) wih closed range and S = U|S| be its polar decomposition, where U
is unitary and let T ∈ B(H) such that T, ST, and TS have closed ranges. If (ST)+ = T+S+ and
(TS)+ = S+T+, then the following statements hold

(i) Let n ∈N, if TU is EP and (ST)nU = U(TS)n, then ST and TS are n-EP.
(ii) Let n ∈N, if (ST)n and (TS)n are EP, then (ST)nU = U(TS)n.

Proof. (i) First, by the hypothesis (ST)nU = U(TS)n and since U is unitary, we observe

(ST)nU = U(TS)n
⇐⇒ ST(ST)n−1U = UT(ST)n−1S

⇐⇒ U|S|T(ST)n−1U = UT(ST)n−1U|S|

⇐⇒ U∗U|S|T(ST)n−1U = U∗UT(ST)n−1U|S|

⇐⇒ |S|T(ST)n−1U = T(ST)n−1U|S| (3.1)

Since |S| is EP, by using (3.1) and Lemma 1.2, it follows

(ST)nU = U(TS)n
⇐⇒ |S|+T(ST)n−1U = T(ST)n−1U|S|+. (3.2)

Obviously, by (3.1) and (3.2), we obtain

(ST)nU = U(TS)n
⇐⇒ |S||S|+T(ST)n−1U = T(ST)n−1U|S||S|+. (3.3)
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Now, the equivalence (3.3) gives

(TS)nS+ = T(ST)n−1SS+

= T(ST)n−1U|S||S|+U∗

= |S||S|+T(ST)n−1UU∗

= |S||S|+T(ST)n−1

= |S|+|S|T(ST)n−1

= |S|+U∗U|S|T(ST)n−1

= S+(ST)n.

On the other hand by (2.1), we have

|S|(TS)n−1TU = |S|T(ST)n−1U

= T(ST)n−1U|S|

= (TS)n

= TU|S|(TS)n−1.

Applying Lemma 1.2, the fact that TU is EP, we obtain

(TU)+|S|(TS)n−1 = |S|(TS)n−1(TU)+.

Since (TU)+ = U∗T+, by using the previous equality, we get

(ST)nT+ = S(TS)n−1TT+

= U|S|(TS)n−1TUU∗T+

= U|S|(TS)n−1TU(TU)+

= U|S|(TS)n−1(TU)+TU (TU is EP)

= U(TU)+|S|(TS)n−1TU

= UU∗T+
|S|(TS)n−1TU

= T+TU|S|(TS)n−1

= T+(TS)n.

Finally, from the given facts (ST)+ = T+S+ and (TS)+ = S+T+, it follows by Theorem 3.2, ST and

TS are n-EP.

(ii) By (3.3) it is sufficient to prove that

|S||S|+T(ST)n−1U = T(ST)n−1U|S||S|+.
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Since (ST)n and (TS)n are EP, according to Theorem 3.2, we have

|S||S|+T(ST)n−1U = |S|+|S|T(ST)n−1U

= |S|+U∗U|S|T(ST)n−1U

= S+ST(ST)nU

= S+(ST)nU

= (TS)nS+U

= T(ST)n−1SS+U

= T(ST)n−1U|S||S|+.

�
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