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ABSTRACT. The new proposed hybrid method between optimal homotopy asymptotic method and Laplace transform 

namely LT-OHAM is formulated for the first time in our paper. This hybrid method presents significant features of 

LT-OHAM and its capability of handling IDEs. This formulation is developed to find the solution of IDEs. By using 

the new presented hybrid method, some applications of IDEs are solved. This hybrid method seems very efficient 

and easy to solve these types of equations. 

 

 

 

1. INTRODUCTION 

IDEs model many situations from sciences such as mathematics, natural sciences, chemistry, 

biology, physics, mechanics, engineering etc. These equations have found applications in many 

branches include biomechanics, circuit analysis, aerodynamics, hydrology, epidemiology, 

population dynamics, mathematical modeling of epidemics, diffusion problems, fracture 

mechanics, control theory, queuing theory, theory, electrostatics, and many others. 

Factually, several various problems in different fields are modeled by IDEs. Therefore, the 

solutions of these equations play an important role in different sciences. In recent decades, 
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much work has been carried out by researchers in mathematics and other fields on studding 

novel methods for solutions of IDEs. Among these are Wavelet-Galerkin method [1], 

Differential transformation method [2], Homotopy analysis method [3], Variational iteration 

methods [4], Non-polynomial spline functions [5], Mahgoub transform [6], Laplace Adomian 

and Laplace modified Adomian decomposition methods [7]  and An efficient technique based 

on least-squares method  [8]. 

Most recently, OHAM was introduced by Marinca et al. [9] and it is used to solve the linear 

and nonlinear problems. This method is modified to improve the accuracy of the results. (See 

[10], [11], [12], [13], [14], [15]).   

Generally, the Integral transforms play a significant role in applied mathematics. There are 

several types of integral transforms but in fact the most frequently used is the Laplace 

transform. Thus, the present paper is dedicated to introduce a new method namely LT-OHAM 

to find the solution of IDEs. 

This paper presents five sections. Section 2 introduces some basic relevant concepts. In 

section 3, general idea of LT-OHAM is applied to solution of IDEs. In section 4, some 

applications of IDEs will be presented. Section 5 presents some conclusions. 

 

2. PRELIMINARIES  

To introduce our study we present some basic relevant concepts. 

Definition 2.1. [16] The general form of nth order IDEs of second kind can be expressed in the 

form of 

                              y(n)(x)  =  f(x) + ∫ k(x, t)y(t)dt,   0 ≤ x ≤ 1
x

0
                                                       (1) 

with IC: y(a) = α0, y(1)(a) = α1, … , y(n−1) = αn−1. 

Definition 2.2. [17] The LT of 𝑓(𝑡) is denoted ℒ{𝑓(𝑡)} = Ϝ(𝑠) and defined as 

                                   ℒ{f(t)}  =  ∫ e−stf(t)dt,
∞

0
                                                                                     (2) 

where f(t) be a continuous function. 

Property 2.1.  [17] Let 𝑓(𝑡) and 𝑔(𝑡) are two continuous functions then 

                             ℒ{af(t) + bg(t)} = a Ϝ(s) + b G(s)                                                                           (3) 

where a and  b are constants. 

Proof.  Suppose that  Ϝ(s) = ℒ{f(t)} and  G(s) = ℒ{g(t)}.  

ℒ{af(t) + bg(t)} = ∫ ae−st(f(t) + bg(t))dt =  a ∫ e−stf(t)dt + b ∫ e−stg(t)dt  
∞

0
 

∞

0
 

∞

0
  

⇒ a ℒ{f(t)} + b ℒ{g(t)}  = a Ϝ(s) + b G(s)∎  

Property 2.2.  [17] Let f(t), f ′(t), … , f (n−1)(t), f (n)(t) are continuous functions then 

       ℒ{f (n)(t)} = sn ℒ{f(t)} − sn−1f(0) − sn−2f (1)(0) − ⋯ − sf (n−2)(0) − f (n−1)(0)                     (4) 

Proof.  We can proof this property by definition of LT as  
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         ℒ{f (n)(t)} = ∫ e−stf (n)(t)dt = 
∞

0
lim

n→∞
∫ e−stf (n)(t)dt   ∎ 

n

0
  

Property 2.3.  [17] Let Ϝ(s) and G(s) are two LTs then 

                             ℒ−1{aϜ(s) + bG(s)} = aℒ−1 {Ϝ(s)} + b ℒ−1{G(s)}                                                   (5) 

where a and  b are constants. 

Proof.  From property 2.1, we have ℒ{af(t) + bg(t)} = a Ϝ(s) + b G(s)  

Take ℒ−1{. } to both sides, then   af(t) + bg(t) = ℒ−1{aϜ(s) + bG(s)}  = aℒ−1 {Ϝ(s)} +

b ℒ−1{G(s)}  ∎ 

Property 2.4.  [17] Let f(t) = ∫ f(u)du
t

0
 then 

                            ℒ{f(t)} =
1

S
Ϝ(s)                                                                                                             (6) 

Proof.  Suppose that  g(t) = ∫ f(u)du
t

0
.  Then   g′(t) = f(t) and g(0) = 0. 

By using property 2.2, we have  ℒ{g′(t)} = sℒ{g(t)} − g(0) = sℒ{g(t)}. 

Since  g′(t) = f(t) and ℒ{f(t)} = Ϝ(s)  then ℒ{g′(t)} = ℒ{f(t)} = Ϝ(s) = sℒ{g(t)} 

i.e., 
Ϝ(s)

s
= ℒ{g(t)} = ℒ {∫ f(u)du

t

0
}  ∎ 

Definition 2.3. [9] Let the differential equation  L(u(t)) + N(u(t)) + g(t) = 0,   B (u,
du

dt
) = 0, 

where L is a linear operator, N is a nonlinear operator and B is a boundary operator. OHAM in a 

general form  

                 (1 − p)[L(u(t, p)) + g(t)] =  H(p)[L(u(t, p)) + g(t) + N(u(t, p))],                                 (7) 

where the parameter p ∈ [0,1], H(p) denotes a non-zero auxiliary function for p ≠ 0 and H(0) =

0. 

3. GENERAL IDEA of LT-OHAM  

Here, we have applied the LT-OHAM for the solution of IDEs. Rewrite Eq. (1) as. 

                                y(n)(x) −  f(x) − ∫ k(x, t)y(t)dt = 0,   0 ≤ x ≤ 1
x

0
                                               (8) 

with IC: y(a) = α0, y′(a) = α1, … , y(n−1) = αn−1. 

By performing the LT on both sides of Eq. (8), yields 

                                  ℒ{y(n)(x)} − ℒ{ f(x)} − ℒ{∫ k(x, t)y(t)dt
x

0
} = 0,      0 ≤ x ≤ 1                          (9) 

Using properties of LT, we get 

                                     ∑ s(i−1) y(i−1)(0)n
i=1 − ℒ{f(x)} − ℒ{ y(x)}ℒ{k(x)} = 0                                  (10) 

By simplifying, we get 

                                      ∑ s(i−1) y(i−1)(0)n
i=1 − F(s) − Y(s)K(s) = 0                                                  (11) 

Applying OHAM to Eq. (11) 

L(y(x, p)) = ℒ{y(n)(x)} = ∑ s(i−1) y(i−1)(0)n
i=1  ,           N(y(x, p)) = −ℒ{ y(x)}ℒ{k(x)} = Y(s)K(s),    

g(x) = −F(s) 

which satisfies 

(1 − p)[∑ s(i−1) y(i−1)(0)n
i=1 − F(s)] =  H(p)[∑ s(i−1) y(i−1)(0)n

i=1 − F(s) − Y(s)K(s)]               (12) 



4 Int. J. Anal. Appl. (2024), 22:17 

 

If  p = 0 and  p = 1, then 

ℒ{y(x, 0)} = ℒ{y0(x)} = Y0(s),           ℒ{ y(x, 1)} = ℒ{y(x)} = Y(s) 

respectively. Define H(p) as 

                                                                H(p) = ∑ cj p
jm

j=1 ,                                                                    (13) 

where cj, i = 1,2, … are  constants.   

Now, we can use Taylor’s series   

                         ℒ (y(x, p, cj)) = ℒ(y0(x, t)) + ∑ ℒ{yk(x, cj)} pk∞
k=1                                                    (14) 

When  p = 1 , yields  

                         ℒ (y(x, 1, cj)) = ℒ(y0(x, t)) + ℒ(∑ yk(x, cj) ∞
k=1 )                                                       (15) 

Substituting Eq.(14) into Eq.(10), it holds that 

P0 ∶ ℒ(y0(x)) = ℒ{f(x)} = F(s) ⟹  y0(x) = ℒ−1{F(s)} 

P1 ∶ ℒ(y1(x)) = −c1ℒ{ y0(x)}ℒ{k(x)} ⟹  y1(x) = −c1ℒ−1{ℒ{ y0(x)}ℒ{k(x)}} 

P2 ∶ ℒ(y2(x)) = (1 + c1)ℒ{ y1(x)} − c1ℒ{ y1(x)}ℒ{k(x)} − c2ℒ{ y0(x)}ℒ{k(x)} 

⟹  y2(x) = ℒ−1{(1 + c1)ℒ{ y1(x)} − c1ℒ{ y1(x)}ℒ{k(x)} − c2ℒ{ y0(x)}ℒ{k(x)}} 

Pk ∶ ℒ(yk(x)) = (1 + c1)ℒ{ yk−1(x)} − ∑ cj
k−1
j=2 ℒ{ yk−j(x)} − ∑ ciℒ{ yk−i(x)}ℒ{k(x)}k

i=1   

⟹  yk(x) = ℒ−1{(1 + c1)ℒ{ yk−1(x)} − ∑ cj
k−1
j=2 ℒ{ yk−j(x)} − ∑ ciℒ{ yk−i(x)}ℒ{k(x)}k

i=1 }              (16) 

To find  c1, c2, c3 … , we used 

                                      yn(x, 1, cj) = y0(x, t) + ∑ yk(x, cj) n
k=1 ,   j = 1,2, … , n                                  (17) 

Using Eqs. (17) and (10), we have  

                        R(x, cj) = ℒ−1 {ℒ{y(n)(x)}
n

− ℒ{f(x)} − ℒ{ y(x)}nℒ{k(x)}}                                      (18) 

Finally, we can use least square method. 

 

4. APPLICATIONS 

 Three applications of IDEs will be presented to show the efficiency of the new proposed 

method. 

Application 4.1. Apply LT-OHAM to the second order IDE  

                                     y′′(x) =  ex − x + ∫ xty(t)dt,   
1

0
                                                                      (19) 

with IC: y(0) = 1, y′(0) = 1 and exact solution  y(x) = ex. 

By performing the LT on both sides, yields 

                        ℒ{y′′(x)} = ℒ{ ex − x} − ℒ {∫ xty(t)dt   
1

0
}                                                                   (20) 

Thus, we get 

                        s2ℒ{y} − sy(0) − y′(0) = −
1

s2 +
1

s−1
+

1

s2 ℒ {∫ ty(t)dt   
1

0
}                                          (21) 

Substituting IC into Eq. (21), it holds that 
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                         s2ℒ{y} − s − 1 = −
1

s2 +
1

s−1
+

1

s2 ℒ {∫ ty(t)dt   
1

0
}                                                       (22) 

i.e.,  

                     ℒ{y} − (
1

s
+

1

s2 −
1

s4 +
1

(s−1)s2) −
1

s4 ℒ {∫ ty(t)dt   
1

0
} = 0                                                  (23) 

OHAM of Eq. (23) is 

L(y(x, p)) = ℒ{y} ,           N(y(x, p)) = −
1

s4 ℒ {∫ ty(t)dt   
1

0
},               g(x) =

1

s
+

1

s2 −
1

s4 +
1

(s−1)s2 , 

which satisfies 

(1 − p) [ℒ{y} − (
1

s
+

1

s2 −
1

s4 +
1

(s−1)s2)] =  H(p) [ℒ{y} − (
1

s
+

1

s2 −
1

s4 +
1

(s−1)s2) −
1

s4 ℒ {∫ ty(t)dt   
1

0
}]             (24) 

Next, one can use Eqs. (14) and (16), yields 

P0 ∶ ℒ(y0(x)) = ℒ {
1

s
+

1

s2 −
1

s4 +
1

(s−1)s2} ⟹  y0(x) = ℒ−1 {
1

s
+

1

s2 −
1

s4 +
1

(s−1)s2} = 1 + x −
1

6
x3 − 1 −

x + ex = ex −
1

6
x3  

P1 ∶ ℒ(y1(x)) = −c1 { 
1

s4 ℒ {∫ ty0(t)dt   
1

0
}} ⟹  y1(x) = −c1ℒ−1 {{ 

1

s4 ℒ {∫ ty0(t)dt   
1

0
}}} = −𝑐1

29

180
𝑥3  

P2 ∶ ℒ(y2(x)) = (1 + c1)ℒ { −c1
29

180
x3} − c1ℒ {  

1

s4 {∫ t (−c1
29

180
t3) dt   

1

0
}} − c2ℒ {

1

s4 {∫ t (et −
1

0

1

6
t3) dt   }}  

⟹  y2(x) = ℒ−1 {(1 + c1)ℒ { −c1
29

180
x3} − c1ℒ {  

1

s4 {∫ t (−c1
29

180
t3) dt   

1

0
}} − c2ℒ {

1

s4 {∫ t (et −
1

0

1

6
t3) dt   }}} =

−29

5400
(30c1 + 29c1

2 + 30c2)                                                                                             (25) 

Second order LT-OHAM solution given by 

y2(x) = y0(x) + y1(x) + y2(x) = ex −
1

6
x3 − c1

29

180
x3 −

29

5400
(30c1 + 29c1

2 + 30c2)                       (26) 

Using Eqs. (26) and (23), one has  

R(x, c1, c2) = ℒ−1 {ℒ {ex −
1

6
x3 − c1

29

180
x3 −

29

5400
(30c1 + 29c1

2 + 30c2)} − (
1

s
+

1

s2 −
1

s4 +
1

(s−1)s2) −

1

s4 ℒ {∫ t (et −
1

6
t3 − c1

29

180
t3 −

29

5400
(30c1 + 29c1

2 + 30c2)) dt   
1

0
}}                                                  (27) 

c1 =
−30

29
 and c2 = 0 are calculated by the following Eqs. (28) - (29) 

                                                       J(c1, c2) = ∫ R2(x, c1, c2)
1

0
dx                                                           (28) 

and  

                                                       
∂J

c1
(c1, c2) =

∂J

c2
(c1, c2) = 0                                                                (29) 

Therefore the solution becomes  

                                                         y2(x) = ex                                                                                       (30) 
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Application 4.2. Apply LT-OHAM to the first order IDE  

                                                     y′(x) =  1 −
1

3
x + ∫ xty(t)dt,   

1

0
                                                       (31) 

with IC: y(0) = 0 and exact solution  y(x) = x. 

Taking the LT on both sides, we get 

                                        ℒ{y′(x)} = ℒ { 1 −
1

3
x} + ℒ {∫ xty(t)dt   

1

0
}                                                  (32) 

One has 

                                        sℒ{y} − y(0) =
1

s
−

1

3s2 +
1

s2 ℒ {∫ ty(t)dt   
1

0
}                                                 (33) 

Substituting IC into Eq. (33), it holds that 

                                         ℒ{y} − (
1

s2 −
1

3s3) −
1

s3 ℒ {∫ ty(t)dt   
1

0
} = 0                                                    (34) 

Using OHAM of Eq. (34)  

L(y(x, p)) = ℒ{y} ,                   N(y(x, p)) = −
1

s3 ℒ {∫ ty(t)dt   
1

0
},                        g(x) =

1

s2 −
1

3s3 , 

which satisfies 

(1 − p) [ℒ{y} − (
1

s2 −
1

3s3)] =  H(p) [ℒ{y} − (
1

s2 −
1

3s3) −
1

s3 ℒ {∫ ty(t)dt   
1

0
}]                                    (35) 

Using Eqs. (14) and (16), yields 

P0 ∶ ℒ(y0(x)) = ℒ {
1

s2 −
1

3s3} ⟹  y0(x) = ℒ−1 {
1

s2 −
1

3s3} = x −
1

6
x2  

P1 ∶ ℒ(y1(x)) = −c1 { 
1

s3 ℒ {∫ ty0(t)dt   
1

0
}} ⟹  y1(x) = −c1ℒ−1 {{ 

1

s3 ℒ {∫ t (t −
1

6
t2) dt   

1

0
}}} =

−c1
7

48
x2    

P2 ∶ ℒ(y2(x)) = (1 + c1)ℒ { −c1
7

48
x2} − c1ℒ {  

1

s3 {∫ t (−c1
7

48
t2) dt   

1

0
}} − c2ℒ {

1

s3 {∫ t (t −
1

0

1

6
t2) dt   }}  

⟹  y2(x) = ℒ−1 {(1 + c1)ℒ { −c1
7

48
x2} − c1ℒ {  

1

s3 {∫ t (−c1
7

48
t2) dt   

1

0
}} − c2ℒ {

1

s3 {∫ t (t −
1

0

1

6
t2) dt   }}} =

−7

384
(8c1 + 7c1

2 + 8c2)x2                                                                                                 (36) 

Therefore LT-OHAM solution is 

y2(x) = y0(x) + y1(x) + y2(x) = x −
1

6
x2 − c1

7

48
x2 −

7

384
(8c1 + 7c1

2 + 8c2)x2                                (37) 

Using Eqs. (37) and (34), we have  

   R(x, c1, c2) = ℒ−1 {ℒ {x −
1

6
x2 − c1

7

48
x2 −

7

384
(8c1 + 7c1

2 + 8c2)x2} − (
1

s2 −
1

3s3) −
1

s3 ℒ {∫ t (t −
1

0

1

6
t2 − c1

7

48
t2 −

7

384
(8c1 + 7c1

2 + 8c2)t2) dt   }}                                                                                     (38) 

To find values of c1 and c2 , we consider  

J(c1, c2) = ∫ R2(x, c1, c2)
1

0
dx  
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and  

∂J

c1
(c1, c2) =

∂J

c2
(c1, c2) = 0  

Hence c1 =
−8

7
 and c2 = 0 and the solution is  

                                                             y2(x) = x                                                                                     (39) 

 

Application 4.3. Apply LT-OHAM to the third order IDE  

                                                       y′′′(x) = sin x − x − ∫ xty′(t)dt,   
π

2
0

                                               (40) 

with IC: y(0) = 1, y′(0) = 0, y′′(x) = −1 and exact solution  y(x) = cos x. 

Taking the LT on both sides, we get 

                                        ℒ{y′′′(x)} = ℒ{ sin x − x} − ℒ {∫ xty′(t)dt  
π

2
0

}                                              (41) 

We have 

                             s3ℒ{y} − s2y(0) − sy′(0) − y′′(0) =
1

s2+1
−

1

s2 −
1

s2 ℒ {∫ ty′(t)dt   
π

2
0

}                     (42) 

i.e.,  

                                   ℒ{y} − (
1

s
−

1

s3 +
1

s3(s2+1)
−

1

s5) +
1

s5 ℒ {∫ ty′(t)dt   
π

2
0

} = 0                                 (43) 

Using OHAM of Eq. (43), yields 

L(y(x, p)) = ℒ{y} ,             N(y(x, p)) =
1

s5 ℒ {∫ ty′(t)dt   
π

2
0

},            g(x) =
1

s
−

1

s3 +
1

s3(s2+1)
−

1

s5, 

which satisfies 

(1 − p) [ℒ{y} − (
1

s
−

1

s3 +
1

s3(s2+1)
−

1

s5)] = H(p) [ℒ{y} − (
1

s
−

1

s3 +
1

s3(s2+1)
−

1

s5) +
1

s5 ℒ {∫ ty′(t)dt
π

2
0

}]           (44) 

Using Eqs. (14) and (16), yields 

P0 ∶ ℒ(y0(x)) = ℒ {
1

s
−

1

s3 +
1

s3(s2+1)
−

1

s5} ⟹  y0(x) = ℒ−1 {
1

s
−

1

s3 +
1

s3(s2+1)
−

1

s5} = cos x −
1

24
x4  

P1 ∶ ℒ(y1(x)) = c1 { 
1

s5 ℒ {∫ ty0
′ (t)dt   

π

2
0

}} ⟹  y1(x) = c1ℒ−1 {c1 { 
1

s5 ℒ {∫ ty0
′ (t)dt   

π

2
0

}}} =

−c1 (
1

24
−

π5

23040
) x4      

P2 ∶ ℒ(y2(x)) = (1 + c1)ℒ { −c1 (
1

24
−

π5

23040
) x4} + c1ℒ {  

1

s5 {∫ t (−c1 (
1

24
−

π5

23040
) t4)

′

dt   
π

2
0

}} +

c2ℒ {
1

s5 {∫ t (cos t −
1

24
t4)

′
dt   

π

2
0

}}    

⟹  y2(x) = ℒ−1 {(1 + c1)ℒ { −c1 (
1

24
−

π5

23040
) x4} + c1ℒ {  

1

s5 {∫ t (−c1 (
1

24
−

π5

23040
) t4)

′

dt   
π

2
0

}} +

c2ℒ {
1

s5 {∫ t (cos t −
1

24
t4)

′
dt   

π

2
0

}}} =
(960+π5)

22118400
(960c1 + (960 + π5)c1

2 + 960c2)x4                        (45) 
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The LT-OHAM solution is 

y2(x) = y0(x) + y1(x) + y2(x) = cos x −
1

24
x4 − 𝑐1 (

1

24
−

𝜋5

23040
) 𝑥4 +

(960+π5)

22118400
(960c1 + (960 +

π5)c1
2 + 960c2)x4                                                                                                                                    (46) 

Now, we have      

R(x, c1, c2) = ℒ−1 {ℒ {cos x −
1

24
x4  − c1 (

1

24
−

π5

23040
) x4  +   

(960+π5)

22118400
(960c1 + (960 + π5)c1

2 + 960c2)x4} −

(
1

s
−

1

s3 +
1

s3(s2+1)
−

1

s5) +
1

s5 ℒ {∫ t (cos t −
1

24
t4  − c1 (

1

24
−

π5

23040
) t4  +   

(960+π5)

22118400
(960c1 + (960 + π5)c1

2 +
π

2
0

960c2)t4)
′

dt   }}                                                                                                                                        (47) 

Using  𝐽(𝑐1, 𝑐2) = ∫ 𝑅2(𝑥, 𝑐1, 𝑐2)
𝜋

2
0

𝑑𝑥 and  
∂J

c1
(c1, c2) =

∂J

c2
(c1, c2) = 0 , yields 

c1 =
−960

960+π5 and c2 = 0 and the solution is  

                                                                      y2(x) = cos x                                                                     (48) 

 

5. CONCLUSION 

By combined optimal homotopy asymptotic method and Laplace transform, we introduced 

a new method namely LT-OHAM. They were applied to handle IDEs. To illustrate the 

efficiency of the method, some applications of IDEs were successfully tested by using our new 

hybrid method. Also, the results showed that the presented hybrid method is very powerful 

and effective. Cleary, this method no need of large computer memory and high computation 

time. 
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