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ABSTRACT. This paper investigates the impact of Soret and Dufour's MHD flow of an Oldroyd-B fluid over a stretching 

sheet in the presence of thermal radiation. By a similarity transformation, the controlling partial differential equations 

are transformed into a system of nonlinear ordinary differential equations. Using the successive linearization method 

(SLM), the linear system is solved. A determination and discussion of the impacts of specific fluid parameters on the 

temperature, concentration distribution, and velocity are presented. As the magnetic field increases, we observe that 

the temperature and concentration profiles rise, while the velocity profile falls. In addition, increases in the Dufour and 

Soret levels will also result in an improvement in the temperature and concentration distribution. The validity of the 

acquired results is tested by comparing them to previously published works, with particular attention paid to the 

accuracy and convergence of the solution. 

 

 

1. Introduction 

Non-Newtonian fluids have garnered a lot of attention over the past twenty years because 

of their numerous applications in the engineering and industrial sectors. Numerous fluid models 

have been proposed in the literature to explain the characteristics of non-Newtonian fluids. The 

three categories of differential type, rate type, and integral type are used to categorize non-

Newtonian materials in general. The Maxwell fluid model represents the most straightforward 

class of rate-type fluids. The Maxwell fluid is incapable of foretelling the properties of retardation 

time. Both the relaxation and retardation time characteristics were investigated using an Oldroyd-
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B fluid model [1]. Prasannakumara et al. [2] investigated the flow of MHD 3D Maxwell nanofluid 

mixed convection across a bidirectional stretched sheet with nonlinear thermal radiation. They 

solved coupled ODEs using the RKF45 approach, and the findings showed that nonlinear thermal 

radiation had a major impact on thermal radiation. Ghachem et al. [3] investigated the MHD free 

convection in a cubical hollow with a perforated wall. They concluded that more pores have a 

higher heat-transfer efficiency at higher Rayleigh number values. In their investigation of the 

chemically reacting fluid flow across a porous stretched surface, Bhuvaneswari et al. [4] 

considered MHD double-diffusive mixed convection with convective boundary conditions. They 

talked about flow, thermal, and solutal field analytical and numerical solutions. The significance 

of the heat source/sink, gravity modulation, and MHD on the micropolar fluid dynamics across 

an inclined zone was investigated by Ali et al. [5] using FEM. They concluded that higher 

amplitude modulation enhances the skin-friction fluctuations and heat gradient. Using the FDM 

approach, Raizah et al. [6] numerically studied the stable 2D laminar MHD mixed-convective 

flow in curvilinear enclosures fitted with micropolar nanofluids. According to their findings, the 

dimensionless viscosity, the Hartmann number, and the location of the heat source all have a 

major impact on the average Nusselt number. Oldroyd [7] first presented it in 1950. According to 

the Oldroyd-B model, the fluid's stress tensor can be divided into two components: one that is 

completely viscous and the other that results from the deformation of elastic molecules in the 

fluid. The impact of double stratification in the mixed convection flow of an Oldroyd-B fluid with 

heat radiation and chemical reactions was investigated by Hayat et al. [8]. They observed that for 

the solutal stratification parameter, the temperature and concentration fields exhibit opposing 

behavior. Shaqfeh [9] studied the flow instabilities that occur when inertial forces are absent. An 

analysis of the numerical simulation of viscoelastic liquids based on molecular models was 

performed by Laso and Ottinger [10]. Sajid et al. [11] studied the boundary layer stagnation point 

flow toward a moving sheet in an Oldroyd-B model. For the distribution of velocities at infinite 

velocity, they provided numerical solutions.  

In the presence of Soret, Dufour, and nanoparticles, an electrically conducting Maxwell 

fluid in two dimensions that is incompressible was studied by Venkatesh et al. [12] for its 

properties related to mass and heat transfer across a stretching sheet. The numerical simulation 

of a three-dimensional Oldroyd-B fluid with time dependency by Motsa et al. [13] was presented. 

Hayat et al. [14], in the context of the magnetohydrodynamic flow of an Oldroyd-B fluid, 

examined the Cattaneo–Christov heat flux in the presence of homogeneous and heterogeneous 

processes. The references [15–21] provide some current studies on Oldroyd-B fluids. 

Density differences brought about by concurrent gradients in temperature, concentration, 

and material composition in combined heat and mass transfer processes drive the flow. The mass 

flux that a temperature gradient produces is known as the thermal diffusion (Soret) effect. The 
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diffusion thermo effect (Dufour) is the term used to describe the energy flux resulting from 

concentration changes. For example, the separation of isotopes and mixtures of gases with very 

light and medium molecular weights has been applied to the Soret effect. Numerous real-world 

applications, including those in chemical engineering and geosciences, involve the Soret and 

Dufour effects. Venkateswarlu and Satya [22] investigated the effects of joule heating by Soret 

and Dufour on the MHD stream of a Maxwell fluid on a stretched surface. They observed that 

the velocity and concentration profiles enlarge with the Soret number. Based on their study of 

how Soret and Dufour affect the MHD stream of Casson fluid, Hayat et al. [23] found that velocity 

decreases as the Casson parameter increases. Khan et al. [24] studied the simultaneous properties 

of Soret and Dufour in an entropy-optimized Reiner–Rivlin fluid flow while taking thermal 

radiation into account. The Soret and Dufour effects on the free convective flow of Casson fluid 

over a nonlinearly elongating sheet embedded in a porous medium were studied by Biswal et al. 

[25]. They observed that the Soret and Dufour effects maintain a surface free of solutal deposits 

and act as a surface coolant. Recent studies in this field have included the numerous effects listed 

in references [26–31]. 

Nonlinear equations may be used to model most cosmic phenomena that we encounter in 

science, physics, and geometry on a daily basis. Approximate mathematical analytical techniques, 

including the homotopy analysis method (HAM) created by Liao [32] and the Adomain 

decomposition method (ADM) developed by Makinde [33], can be used to solve some of these 

nonlinear equations. Several of these equations can be resolved with the use of standard 

numerical methods such as the Runge–Kutta, Keller box, and finite difference approaches. Recent 

research has demonstrated the benefits of the successive linearization method (SLM). Numerous 

science and engineering nonlinear problems have been solved with this technique. A set of linear 

differential equations has been derived from the governing nonlinear equations using this 

method. We used the Chebyshev pseudo-spectral approach to solve linear differential equations 

with higher-order deformation. The SLM methodology can be applied to highly nonlinear system 

boundary value problems as an alternative to more traditional numerical methods (see references 

[34–41]). 

The purpose of this work is to obtain numerical solutions for the impact of thermal 

radiation on the MHD flow of an Oldroyd-B fluid over a stretching sheet with Soret and Dufour 

effects. The successive linearization method (SLM) yields convergent solutions. A graphic 

analysis was performed to determine how various parameters behave on the relevant physical 

quantities. 

As far as we are aware, no research has been conducted on the impacts of Soret and 

Dufour on the MHD flow of an Oldroyd-B fluid flow across a stretching surface. As a result, the 

mathematical formulation for such flows is included in this article. The successive linearization 
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method (SLM) is used to compute the nonlinear analysis. The results are also contrasted with the 

limited solutions found in the current literature. The impact of the relevant parameters is 

thoroughly examined. 

2. Mathematical Formulation 

2.1. Governing equations and boundary conditions 

Consider a steady incompressible two-dimensional fluid that is flowing through a 

stretched sheet. The MHD effects are saturated as the sheet expands, with the plane 𝑦 =  0. It is 

assumed that the flow is constrained to 𝑦 >  0. We should posit the possibility that the sheet is 

stretched continuously with 𝑢(𝑥) =  𝑎𝑥, where 𝑎 >  0 is constant, and the 𝑥 −axis is 

approximated along the stretching surface. The stretched surface is given a magnetic field that is 

consistently consistent and uniform in a normal direction. Under the constant and boundary layer 

assumptions, the continuous constitutive equation of the Oldroyd-B fluid and energy equation is 

presented below [42-44]: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                                                                                                                                (1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝛽 (𝑢2

𝜕2𝑢

𝜕𝑥2
+ 𝑣2

𝜕2𝑢

𝜕𝑦2
+ 2𝑢𝑣

𝜕2𝑢

𝜕𝑥𝜕𝑦
)

= 𝜐 [
𝜕2𝑢

𝜕𝑦2
+ 𝛾 (

𝜕

𝜕𝑥
(𝑢

𝜕2𝑢

𝜕𝑦2) +
𝜕𝑢

𝜕𝑦

𝜕2𝑣

𝜕𝑦2
+ 𝑣

𝜕3𝑢

𝜕𝑦3)] −
𝜎𝐵0

2

𝜌
𝑢 + 

   𝑔𝛽𝑇(𝑇 − 𝑇∞) + 𝑔𝛽𝑐(𝐶 − 𝐶∞),                                                                                                                               (2) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

1

𝑐𝑝
(𝛼 +

16𝜎∗𝑇∞
3

3𝑘∗ )
𝜕2𝑇

𝜕𝑦2 +
𝐷𝑚𝐾𝑇

𝑐𝑠𝑐𝑃

𝜕2𝐶

𝜕𝑦2,                                                                                         (3) 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝑚

𝜕2𝐶

𝜕𝑦2 +
𝐷𝑚𝐾𝑇

𝑇𝑚

𝜕2𝑇

𝜕𝑦2.                                                                                                             (4) 

The corresponding boundary conditions are 

𝑢 = 𝐵𝑥,    𝑣 = 𝑉,   𝑇 = 𝑇𝑤 = 𝑇∞ + 𝑎𝑥, 𝐶 = 𝐶𝑤 = 𝐶∞ + 𝑏𝑥,   at 𝑦 = 0,
𝑢 → 0,   𝑇 → 𝑇∞,   ,   𝐶 → 𝐶∞,  as 𝑦 → ∞,

                                               (5) 

where 𝐵 is a constant; (𝑢, 𝑣) are the fluid velocity components in the x and y directions, 

respectively; (𝑎, 𝑏) are the gradients of the ambient temperature and concentration profiles 

stratification rate, respectively; 𝛽 is the relaxation time; 𝑉 is the plate surface; and 𝛾 is the 

retardation time. The variables 𝑇 , 𝛽𝑇, 𝛼, and 𝑔 represent the temperature, volumetric coefficient 

of thermal expansion, thermal diffusivity, and gravitational acceleration, respectively. The 

parameters are as follows: 𝑇𝑚 is the mean fluid temperature, 𝑘∗ is the mean absorption coefficient, 

𝜎∗ is the Stefan–Boltzmann constant, 𝐶 is the species concentration, 𝜎 is the electrical conductivity, 

𝑘𝑇 is the thermal diffusion ratio, 𝑐𝑠 is the concentration susceptibility, 𝑐𝑝 is the specific heat at 

constant pressure, and 𝜐 is the kinematic viscosity. 𝐵0 is a symbol for the externally applied 

magnetic field in the y direction. 
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2.2. Similarity transformation 

The governing equations (2)–(4) can be converted into a set of nonlinear ordinary 

differential equations by utilizing the following nondimensional variables ([42-44]): 

𝑢 =
𝜕𝜓

𝜕𝑦
= 𝐵𝑥𝑓′(𝜂), 𝑣 =

𝜕𝜓

𝜕𝑥
= −√𝐵𝜐𝑓(𝜂), 𝜂 = √

𝐵

𝜐
 𝑦, 𝜃(𝜂) =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
 , 𝜙(𝜂) =

𝐶−𝐶∞

𝐶𝑤−𝐶∞
.                 (6) 

𝑓′′′ + 𝑓𝑓′′ − 𝑓′2 − 𝑀𝑓′ + 𝛽1(2𝑓𝑓′𝑓′′ − 𝑓2𝑓′′′) + 𝛽2(2𝑓′𝑓′′′ − 𝑓′′2−𝑓𝑓𝑖𝑣) + 𝐺𝑟 𝜃 + 𝐺𝑐 𝜙  = 0,      (7)                                                                                  

(
1

𝑃𝑟
) (1 +

4

3
 𝑅𝑑) 𝜃′′ +  𝑓𝜃′ − 𝑓′𝜃 +  𝐷𝑢 𝜙′′ = 0,                                                                                   (8) 

𝜙′′ + Sc 𝑓𝜙′ − 𝑆𝑐 𝑓′𝜙 + 𝑆𝑐 𝑆𝑟 𝜃′′ = 0.                                                                                                   (9) 

Additionally, the boundary conditions are modified to the form 

𝑓(0) = −𝑓𝑤,      𝑓′(0) = 1,     𝑓′(∞) = 0,                                                                                                 (10) 

𝜃(0) = 1,   𝜃(∞) = 0,                                                                                                                                (11) 

𝜙(0) = 1,   𝜙(∞) = 0,                                                                                                                              (12) 

where 𝛽1(= 𝛽𝐵) and 𝛽2(= 𝛾𝐵) are the Deborah numbers in terms of the relaxation time and 

retardation time, respectively; 𝑀 (=
𝜎𝐵0

2

𝜌𝐵
) is the magnetic parameter (Hartman number); 𝑃𝑟 = 𝜐 𝛼⁄  

is the Prandtl number; 𝑆𝑐 = (= 𝜐 𝐷𝑚⁄ ) is the Schmidt number; 𝐺𝑟 = (
𝑔𝛽𝑇(𝑇𝑤−𝑇∞)

𝑥𝐵2 ) is the local 

temperature Grashof number; 𝐺𝑐 = (
𝑔𝛽𝑐(𝐶𝑤−𝐶∞)

𝑥𝐵2 ) is the local concentration Grashof number; 𝐷𝑢 =

𝐷𝑚𝐾𝑇(𝐶𝑤−𝐶∞)

𝐶𝑠𝐶𝑝(𝑇𝑤−𝑇∞)
 is the Dufour number; 𝑆𝑟 =

𝐷𝑚𝐾𝑇(𝑇𝑤−𝑇∞)

𝑇𝑚(𝐶𝑤−𝐶∞)𝜐
 is the Soret number; 𝑓𝑤 =

𝑣

√𝐵𝜐
 is the 

dimensionless suction velocity; and 𝑅𝑑 =
4𝜎∗𝑇∞

3

𝑘∗𝑘
 is the radiation number. 

3. Numerical Methods 

We solve the present problem numerically by using the successive linearization method. 

The governing nonlinear equations (7)-(9) are turned into a set of linear differential equations by 

the SLM. These equations can then be solved numerically or analytically.  

The system (7)–(9) can be solved according to the SLM approach as [45–48] by assuming 

the following: 

𝑓(𝜂) = 𝑓𝑖(𝜂) + ∑ 𝑓𝑛(𝜂)𝑖−1
𝑛=0 ,    𝜃(𝜂) = 𝜃𝑖(𝜂) + ∑ 𝜃𝑛(𝜂)𝑖−1

𝑛=0 ,   𝜙(𝜂) = 𝜙𝑖(𝜂) + ∑ 𝜙𝑛(𝜂)𝑖−1
𝑛=0 .      (13) 

Starting from an initial guess that is appropriate for 𝑓0(𝜂),  𝜃0(𝜂), and 𝜙0(𝜂) and that 

satisfies the boundary conditions (10), (11), and (12), the suitable functions are as follows: 

𝑓0(𝜂) = 1 − 𝑒−𝜂 ,  𝜃0(𝜂) = 𝑒−𝜂 ,  𝜙0(𝜂) = 𝑒−𝜂 .                                                                                        (14) 

Substituting equation (13) into the controlling equations (7)-(9), while neglecting the 

nonlinear terms in 𝑓𝑖(𝜂),  𝜃𝑖(𝜂), 𝜙𝑖(𝜂), and their derivatives, yields 
 

𝑎1𝑓𝑖
𝑖𝑣 + 𝑎2𝑓𝑖

′′′ + 𝑎3𝑓𝑖
′′ + 𝑎4𝑓𝑖

′ + 𝑎5𝑓𝑖 + 𝑏1𝜃𝑖 + 𝑐1𝜙𝑖 = 𝑟1,                                                                     (15)                                                                                                                                      

𝑏2𝜃𝑖
′′ + 𝑏3𝜃𝑖

′ + 𝑏4𝜃𝑖 + 𝑐2𝜙𝑖
′′ = 𝑟2,                                                                                                            (16)                                                                                                                                                

𝜙𝑖
′′ + 𝑐3𝜙𝑖

′ + 𝑐4𝑓𝑖 + 𝑏5𝜃𝑖
′′ = 𝑟3,                                                                                                                  (17) 

depending on the conditions at the boundary, 
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𝑓𝑖(0) = 𝑓𝑖
′(0) = 𝑓𝑖

′(∞) =  𝜃𝑖(0) = 𝜃𝑖(∞) = 𝜙𝑖(0) = 𝜙𝑖(∞) = 0, 

where 

𝑎1 = −𝛽2 ∑ 𝑓𝑗
𝑖−1
𝑗=0  , 𝑎2 = 1 − 𝛽1(∑ 𝑓𝑗

𝑖−1
𝑗=0 )

2
+ 2𝛽2 ∑ 𝑓𝑗

′𝑖−1
𝑗=0  ,  

𝑎3 = ∑ 𝑓𝑗

𝑖−1

𝑗=0

+ 2𝛽1 ∑ 𝑓𝑗

𝑖−1

𝑗=0

∑ 𝑓𝑗
′ − 2𝛽2 ∑ 𝑓𝑗

′′,

𝑖−1

𝑗=0

𝑖−1

𝑗=0

 

𝑎4 = −2 ∑ 𝑓𝑗
′𝑖−1

𝑗=0 + 2𝛽1 ∑ 𝑓𝑗
𝑖−1
𝑗=0 ∑ 𝑓𝑗

′′ + 2𝛽2
𝑖−1
𝑗=0 ∑ 𝑓𝑗

′′′𝑖−1
𝑗=0 − 𝑀,  

𝑎5 = ∑ 𝑓𝑗
′′𝑖−1

𝑗=0 + 2𝛽1 ∑ 𝑓𝑗
′𝑖−1

𝑗=0 ∑ 𝑓𝑗
′′𝑖−1

𝑗=0 − 2𝛽1 ∑ 𝑓𝑗
𝑖−1
𝑗=0 ∑ 𝑓𝑗

′′′ − 𝛽2 ∑ 𝑓𝑗
𝑖𝑣𝑖−1

𝑗=0
𝑖−1
𝑗=0 ,  

𝑎6 = − ∑ 𝜃𝑗,
𝑖−1
𝑗=0  𝑎7 = ∑ 𝜃𝑗

′,𝑖−1
𝑗=0  𝑎8 = −𝑆𝑐 ∑ 𝜙𝑗

𝑖−1
𝑗=0 , 𝑎9 = −𝑆𝑐 ∑ 𝜙𝑗

′ ,𝑖−1
𝑗=0  

𝑏1 = 𝐺𝑟,  𝑏2 = (
1

𝑃𝑟
) (1 +

4

3
𝑅𝑑), 𝑏3 = ∑ 𝑓𝑗

𝑖−1
𝑗=0 ,  𝑏4 = − ∑ 𝑓𝑗

′,𝑖−1
𝑗=0  𝑏5 = (𝑆𝑟)(Sc), 

𝑐1 = 𝐺𝑐, 𝑐2 = 𝐷𝑢, 𝑐3 = 𝑆𝑐 ∑ 𝑓𝑗
𝑖−1
𝑗=0 , 𝑐4 = −𝑆𝑐 ∑ 𝑓𝑗

′,𝑖−1
𝑗=0  

 𝑟1 = 𝛽2 ∑ 𝑓𝑗
𝑖−1
𝑗=0 ∑ 𝑓𝑗

𝑖𝑣𝑖−1
𝑗=0 − ∑ 𝑓𝑗

′′′ − ∑ 𝑓𝑗
𝑖−1
𝑗=0 ∑ 𝑓𝑗

′′ + 𝛽1
𝑖−1
𝑗=0 ∑ 𝑓𝑗

′′′𝑖−1
𝑗=0

𝑖−1
𝑗=0 (∑ 𝑓𝑗

𝑖−1
𝑗=0 )

2
−

2𝛽1 ∑ 𝑓𝑗 ∑ 𝑓𝑗
′𝑖−1

𝑗=0 ∑ 𝑓𝑗
′′ − 2𝛽2

𝑖−1
𝑗=0

𝑖−1
𝑗=0 ∑ 𝑓𝑗

′𝑖−1
𝑗=0 ∑ 𝑓𝑗

′′′ + 𝛽2
𝑖−1
𝑗=0 (∑ 𝑓𝑗

′′𝑖−1
𝑗=0 )

2
+ (∑ 𝑓𝑗

′𝑖−1
𝑗=0 )

2
+ 𝑀 ∑ 𝑓𝑗

′𝑖−1
𝑗=0 −

𝐺𝑟 ∑ 𝜃𝑗
𝑖−1
𝑗=0 − 𝐺𝑐 ∑ 𝜙𝑗

𝑖−1
𝑗=0 , 

 𝑟2 = −𝑏1 ∑ 𝜃𝑗
′′ −𝑖−1

𝑗=0 ∑ 𝑓𝑗 ∑ 𝜃𝑗
′𝑖−1

𝑗=0
𝑖−1
𝑗=0 + ∑ 𝑓𝑗

′ ∑ 𝜃𝑗
𝑖−1
𝑗=0

𝑖−1
𝑗=0 − 𝐷𝑢 ∑ 𝜃𝑗

′′𝑖−1
𝑗=0 , 

 𝑟3 = − ∑ 𝜙𝑗
′′ − 𝑆𝑐𝑖−1

𝑗=0 ∑ 𝑓𝑗 ∑ 𝜙𝑗
′𝑖−1

𝑗=0
𝑖−1
𝑗=0 + 𝑆𝑐 ∑ 𝑓𝑗

′𝑖−1
𝑗=0 ∑ 𝜙𝑗

𝑖−1
𝑗=0 − 𝑆𝑐 𝑆𝑟 ∑ 𝜃𝑗

′′𝑖−1
𝑗=0 . 

Using the Chebyshev collocation spectral method [49], the linearized system is solved, 

producing the following system of equations: 

𝐴11 𝑓𝑖 + 𝐴12 𝜃𝑖 + 𝐴13 𝜙𝑖 = 𝑟1

𝐴21 𝑓𝑖 + 𝐴22 𝜃𝑖 + 𝐴23 𝜙𝑖 = 𝑟2

𝐴31 𝑓𝑖 + 𝐴32 𝜃𝑖 + 𝐴33 𝜙𝑖 = 𝑟3

.                                                                                                                   (18) 

We can write system (18) as a matrix equation: 

𝐴𝑖−1𝑋𝑖 = 𝑅𝑖−1,                                                                                                                                              (19) 

where   

𝑨𝑖−1 = [

𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

] ,  𝑿𝑖 = [

𝑓𝑖

𝜃𝑖

𝜙𝑖

] ,  𝑅𝑖−1 = [

𝑟1

𝑟2

𝑟3

]  , 

and  

 𝐴11 = 𝑎1𝐷4 + 𝑎2𝐷3 + 𝑎3𝐷2 + 𝑎4𝐷 + [𝑎5], 𝐴12 = [𝑏1], 𝐴13 = [𝑐1], 

𝐴21 = 𝑎6𝐷 + [𝑎7],  𝐴22 = 𝑏2𝐷2 + 𝑏3𝐷 + [𝑏4],  𝐴23 = 𝑐2𝐷2, 

𝐴31 = 𝑎8𝐷 + [𝑎9], 𝐴32 = 𝑏5𝐷2, 𝐴33 = 𝐷2 + 𝑐3𝐷 + [𝑐4].  

The resultant system (19) is readily solved as 

𝑿𝑖 = 𝑨𝑖−1
−1 𝑹𝑖−1  .                                                                             (20) 
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4. Convergence Analysis 

The convergence of series solutions to the velocity, temperature, and concentration 

equations are shown in Table 1. It should be observed that the convergence of −𝑓′′(0), −𝜃′(0), 

and −𝜙′(0)  requires a third-order approximation. 

 

Table 1. Convergence of SLM solutions with respect to several orders of approximations when 

 𝑃𝑟 = 0.72, 𝑅𝑑 = 0.1,  𝛽2 = 0.01, 𝑆𝑐 = 0.62, 𝐷𝑢 = 0.03, and 𝑀 = 𝛽1 = 𝑆𝑟 = 𝐺𝑐 = 𝐺𝑟 = 𝑓𝑤 = 0.1. 

Order of Approximation −𝑓′′(0) −𝜃′(0) −𝜙′(0) 

1 0.896078971           0.725335707           0.693762086 

2 0.896207663           0.725392652           0.693853301 

3 0.896207932           0.725392608           0.693853344 

4 0.896207932           0.725392608           0.693853344 

5 0.896207932           0.725392608           0.693853344 

6 0.896207932           0.725392608           0.693853344 

10 0.896207932           0.725392608           0.693853344 

20 0.896207932           0.725392608           0.693853344 

30 0.896207932           0.725392608           0.693853344 

40 0.896207932           0.725392608           0.693853344 

50 0.896207932           0.725392608           0.693853344 

 

5. Numerical scheme testing 

Here, as limiting instances, we verify the accuracy of our numerical results and compare 

them with the published articles. Thus, we compare the study's results with those reported in 

references [42],[44], and [50-54]. As Table 2, Table 3, and Table 4 demonstrate, our results are 

found to be in strong agreement. 

 

Table 2. Comparison of the SLM finding of −𝑓′′(0), −𝜃′(0), and −𝜙′(0) with those found in 

Khidir and Alsharari [42] for various values of 𝑅𝑑 when 𝑃𝑟 = 0.72, 𝛽1 = 𝛽2 = 0, 𝑆𝑐 = 0.62, 𝐷𝑢 =

0.03, 𝑓𝑤 = 1, 𝑎𝑛𝑑 𝑀 = 𝑆𝑟 = 𝐺𝑐 = 𝐺𝑟 = 0.1. 

 

𝑅𝑑 
Ref [42]  Present study 

−𝑓′′(0) −𝜃′(0) −𝜙′(0)  −𝑓′′(0) −𝜃′(0) −𝜙′(0) 

0.1 0.569474 0.529749 0.514829  0.56936581 0.52969515 0.51467710 

0.2 0.568810 0.506361 0.516211  0.56868663 0.50619095 0.51611701 

0.5 0.567176 0.450199 0.519572  0.56698916 0.44952390 0.51968217 

1.0 0.565239 0.385964 0.523472  0.56491580 0.38411058 0.52393479 
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Table 3. Comparison of the SLM finding of −𝑓′′(0) with those found in [50-53] for various values 

of 𝛽1 when  𝛽2 = 𝑓𝑤 =  𝑀 = 𝐺𝑐 = 𝐺𝑟 = 0. 

 

𝛽1 Ref [50] Ref [51] Ref [52] Ref [53] Present study 

0.0 1.0000 0.99996 0.99996 1.00000 1.000000000 

0.2 1.0549  1.05195 1.05195 1.05188 1.051889883 

0.4 1.1008  1.10185 1.10185 1.10190 1.101903276    

0.6 1.0015  1.15016 1.15016 1.15013 1.150137351 

0.8 1.1987  1.19669 1.19669 1.19671 1.196711273 

 

Table 4.  Comparison of the SLM finding of 𝑓(𝜂) with those found in Ghadikolaei et al. [54] and 

Salah [44] for various values of 𝜂 when 𝑀 = 𝛽1 =  𝑓𝑤 =  𝑀 = 𝐺𝑐 = 𝐺𝑟 = 0.  
 

𝛽2 𝜂 [54] [44] Present 

0.01 

0 0 0 0 

0.1 0.095199 0.095194 0.095186 

0.2 0.181400 0.181338 0.181357 

0.5 0.394050 0.393892 0.393919 

1 0.633463 0.633460 0.633440 

2 0.866679 0.867642 0.867634 

3 0.952228 0.954211 0.954216 

4 0.983566 0.986229 0.986225 

5 - 0.998059 0.998057 

 

 

6. Results and Discussion 
 

In this section, we discuss the effect of several relevant parameters on the velocity, 

temperature, and concentration profiles, which are studied by the plotting of Figs. 1–12. The 

boundary value problems represented by the nonlinear system of ordinary differential equations 

(7) – (9) subject to the boundary conditions (10) – (12) were numerically solved using the 

successive linearization approach. Based on the numerical calculations, Table 5 displays a range 

of physical parameter values that are significant in this investigation, together with the 

corresponding local Sherwood number, local Nusselt number, and local skin friction coefficient. 

Figure 1 illustrates how the velocity profile is affected by the magnetic field (Hartmann's 

number, 𝑀). Increasing the magnetic field parameter 𝑀 causes a drop in the velocity profile. We 

can see that the flow on the profile 𝑓′(𝜂) diminishes with increasing velocity from a physical 
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standpoint. This is due to the electrically conductive fluid's reaction to the transverse magnetic 

field, which produces a Lorentz-type resistance force that tends to restrict the fluid's velocity and 

motion. According to Figure 2, a strong magnetic force applied results in a high temperature. This 

is because the Lorenz's force becomes dominant in the strong magnetic field, raising the liquid's 

temperature as a result. Figure 3 shows how the magnetic parameter M affected the concentration 

profile as a function of the similarity variable η. The figure shows that the concentration profile 

𝜙(𝜂) increases with an increase in the magnetic parameter 𝑀. 

 
Figure 1. Effect of the magnetic parameter 𝑀 on the velocity profile. 
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Table 5. Variations in the local Sherwood number, skin friction coefficient, and Nusselt number 

for various parameters using SLM when 𝑃𝑟 = 0.72, 𝑀 = 0.1, 𝛽2 = 0.01, 𝑆𝑐 = 0.62, 𝐷𝑢 =

0.03, 𝑎𝑛𝑑 𝑅𝑑 = 𝛽1 = 𝑆𝑟 = 𝑓𝑤 = 𝐺𝑟 = 𝐺𝑐 = 0.1. 

𝑀 𝑃𝑟 𝑅𝑑 𝛽1 𝛽2 𝑆𝑐 𝑆𝑟 𝐷𝑢 𝑓𝑤 𝐺𝑟 𝐺𝑐 −𝑓′′(0) −𝜃′(0) −𝜙′(0) 

0.0 0.72 0.1 0.1 0.01 0.62 0.1 0.03 0.1 0.1 0.1 0.847757178           0.736421796           0.704778361 

0.5           1.073231860           0.685188071           0.654110346 

1.0           1.265967555           0.642408855           0.611996545 

0.1 0.5 0.1 0.1 0.01 0.62 0.1 0.03 0.1 0.1 0.1 0.889019131           0.578156881           0.706113848 

 0.7          0.895668481           0.712946605           0.694827023 

 1.0          0.902224993           0.884662431           0.682181805 

0.1 0.72 0.0 0.1 0.01 0.62 0.1 0.03 0.1 0.1 0.1 0.898562672           0.782961485           0.689477053 

  0.5         0.888594742           0.570553664           0.706795394 

  1.0         0.881774463           0.460930692           0.717220792 

0.1 0.72 0.1 0.00 0.01 0.62 0.1 0.03 0.1 0.1 0.1 0.881153547           0.731790809           0.700229976 

   0.25        0.918095111           0.716258659           0.684772732 

   0.50        0.952818124           0.702220948           0.670870011 

0.1 0.72 0.1 0.1 0.00 0.62 0.1 0.03 0.1 0.1 0.1 0.899918108           0.724555237                     0.693027357           

    0.01       0.896207932           0.725392608           0.693853344 

    0.02       0.892530082           0.726225967           0.694675505 

0.1 0.72 0.1 0.1 0.01 0.5 0.1 0.03 0.1 0.1 0.1 0.891982343           0.729708390           0.607717578 

     1.0      0.904862151           0.716433950           0.923268203 

     1.5      0.911227332           0.709441823           1.163461832 

0.1 0.72 0.1 0.1 0.01 0.62 0.3 0.03 0.1 0.1 0.1 0.893786721           0.727845332           0.638316548 

      0.5     0.891402528           0.730227790           0.582655259 

      0.7     0.889051446           0.732548813           0.526861351 

0.1 0.72 0.1 0.1 0.01 0.62 0.1 0.01 0.1 0.1 0.1 0.896445369           0.730750213           0.693427812 

       0.10    0.895379897           0.706604158           0.695337404 

       0.30    0.893037964           0.652600769           0.699536846 

0.1 0.72 0.1 0.1 0.01 0.62 0.1 0.2 0.0 0.1 0.1 0.950932226           0.751633284           0.717714689 

        0.3   0.798392158           0.675889036           0.648782292 

        0.5   0.714154777           0.630182126           0.607062204 

0.1 0.72 0.1 0.1 0.01 0.62 0.1 0.03 0.1 0.1 0.1 0.896207932           0.725392608           0.693853344 

         0.5  0.696899432           0.769118383           0.737166372 

         1.0  0.470833902           0.806980260           0.774455176 

0.1 0.72 0.1 0.1 0.01 0.62 0.1 0.03 0.1 0.1 0.1 0.896207932           0.725392608           0.693853344 

          0.5 0.692792273           0.771096778           0.739171366 

          1.0 0.462993477           0.809993478           0.777496971 
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Figure 2. Effect of the magnetic parameter 𝑀 on the temperature profile. 

 
Figure 3. Effect of the magnetic parameter 𝑀 on the concentration profile. 

 

Figure 4 shows the behavior of the relaxation time constant 𝛽1 on the velocity profile 𝑓′(𝜂). 

As the relaxation time constant 𝛽1 increases, a stronger viscous force is created, which restricts 

the fluid motion and causes the velocity to decrease. Figure 5 shows that the retardation time 
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constant 𝛽2 has the opposite effect on the velocity field 𝑓′(𝜂) to the relaxation time constant 𝛽1. In 

fact, as the 𝛽2 increases, the viscous forces decrease, and the velocity profile increases. 

The effects of the Deborah number 𝛽1 on the temperature profile 𝜃(𝜂) is plotted in Figure 

6. Figure 6 shows that using higher Deborah number 𝛽1 values improve the temperature profile 

𝜃(𝜂). The Deborah number 𝛽1 is dependent on the amount of time spent relaxing. Higher 

relaxation times are implied by larger Deborah number 𝛽1 values. It is common knowledge that 

fluids with longer relaxation times have higher temperatures, whereas those with shorter 

relaxation times have lower temperatures. Considering this rationale, a larger Deborah number 

𝛽1 enhances the temperature profile 𝜃(𝜂). 

Figure 7 examines Deborah number 𝛽2's impact on the dimensionless temperature field. 

Figure 7 shows that the temperature is a decreasing function of the Deborah number 𝛽2. In this 

case, the retardation time affects the Deborah number 𝛽2. The retardation time increases as we 

raise the value of the Deborah number 𝛽2. It is the increase in retardation time that causes the 

temperature to decrease θ(𝜂). Interestingly, 𝛽1 = 0 = 𝛽2 corresponds to the viscous fluid case in 

this instance, while 𝛽2 = 0 illustrates the Maxwell fluid flow scenario.  

 
Figure 4. Effect of the Deborah number in terms of the relaxation time 𝛽1 on the velocity profile. 

 

The temperature profile's relationship with the Prandtl number 𝑃𝑟 is depicted in Figure 

8. Raising the Prandtl numbers results in a decrease in both the temperature and thickness of the 

thermal layer. There is a physical difference in the thermal diffusivity between larger and smaller 

Prandtl fluids. A reduced temperature and thermal boundary layer thickness are the results of 

this shift in thermal diffusivity. The momentum diffusivity divided by the thermal diffusivity is 
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essentially the Prandtl number. The thermal boundary layer and momentum thicknesses are 

regulated in heat transmission by the Prandtl number. 

 
Figure 5. Effect of the Deborah number in terms of the retardation time 𝛽2 on the velocity profile. 

 
Figure 6. Effect of the Deborah number in terms of the relaxation time 𝛽1 on the temperature profile. 
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Figure 7. Effect of the Deborah number in terms of the retardation time 𝛽2 on the temperature profile. 

 

Figure 9 illustrates how the thermal radiation parameter 𝑅𝑑 affects the temperature 

profile. As the thermal radiation parameter increases, the temperature and thickness of the 

thermal boundary layer both rises. Higher thermal radiation parameter values provide the 

working fluid with more heat, which raises the temperature and thickens the thermal boundary 

layer. 

Figure 10 illustrates the relationship between the temperature and the Dufour number 𝐷𝑢. 

A concentration gradient causes a type of heat flow known as the Dufour effect. When the Dufour 

effect occurs, the temperature profiles are wider than when it does not. As the thermal boundary 

layer grows, the boundary layer flow becomes electrified, and the Dufour number increases.  
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Figure 8. Effect of the Prandtl number 𝑃𝑟 on the temperature profile. 

 
Figure 9. Effect of the thermal radiation parameter 𝑅𝑑 on the temperature profile. 
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Figure 10. Effect of the Dufour number 𝐷𝑢 on the temperature profile. 

 

Figure 11 illustrates how the Schmidt number 𝑆𝑐 affects the concentration field. It is 

obvious that the concentration decreases as the Schmidt number increases, as does the thickness 

of the boundary layer with which it is associated. The Schmidt number and the diffusion 

coefficient have an inverse relationship. Therefore, a reduced diffusion coefficient is associated 

with an increase in the Schmidt number. The concentration field is reduced as a result of this 

decreased diffusion coefficient. 

Finally, Figure 12 depicts the increasing nature of the concentration for various 

estimations of the Soret number 𝑆𝑟. The thermal diffusion (Soret) effect is the term used to 

describe the mass flux caused by a temperature gradient. It is plausible to infer that as the Soret 

effect has grown, so has the molar mass's diffusivity, raising the concentration. The Soret effect 

has enabled isotope separation and gas mixes with low molecular weights. 
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Figure 11. Effect of the Schmidt number 𝑆𝑐 on the concentration profile. 

 

 
Figure12. Effect of the Soret number 𝑆𝑟 on the concentration profile. 

 

 

 

 

 

 



18 Int. J. Anal. Appl. (2024), 22:19 

 

Conclusion 

The impact of the thermal radiation on the MHD of an Oldroyd-B fluid over a stretching 

sheet with Soret and Dufour effects was examined. This analysis reduces to the Maxwell fluid, 

second grad fluid, and viscus fluid flow cases when 𝛽2  =  0, 𝛽1 = 0, and 𝛽1 = 𝛽2 = 0 respectively. 

The main findings of this research are as follows: 

• The temperature and concentration components increase, and the velocity profile decreases as 

the magnetic field increases. 

• The concentration component decreases, and the velocity profile temperature distribution 

increases with increasing radiation parameters. 

• Raising the levels of 𝐷𝑢 and 𝑆𝑟 will enhance the temperature and distribution of the 

concentration. 

• Tables 3 and 4 demonstrate the strong consistency, in a limited sense, between our finding and 

the previously reported. 

• It only takes a few iterations to reach the accuracy of the numerical findings, making the SLM 

very precise, efficient, and fast to converge. 

Conflicts of Interest: The author declares that there are no conflicts of interest regarding the 

publication of this paper. 
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