
Int. J. Anal. Appl. (2024), 22:90

Fekete-Szegö and Second Hankel Determinant for a Subclass of Holomorphic
p-Valent Functions Related to Modified Sigmoid

Musthafa Ibrahim1, Bilal Khan2,∗, Lakhdar Ragoub3, Ayman Alahmade4

1College of Engineering, University of Buraimi, Al Buraimi, Sultanate of Oman, Oman
2School of Mathematical Sciences, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China

3Department of Mathematics, College of Science and Art, AlUla Branch, Taibah University, Medina
42353, Saudi Arabia

4Mathematics Department, University of Prince Mugrin, P.O. Box 41040, Al Madinah 42241, Saudi
Arabia

∗Corresponding author: bilalmaths789@gmail.com

Abstract. This research paper’s primary focus is on applications of modified sigmoid functions to the class of holo-

morphic multivalent functions. Because of its multiple applications in computer sciences, engineering, and physics,

we investigate the initial coefficient bounds for a new generalized subclass of holomorphic functions related to Sig-

moid functions. Also, the relevant connections with the famous classical Fekete-Szegö inequality for these classes are

discussed. The second Hankel determinant for the newly defined function class is obtained.

1. Introduction andMotivation

LetAp denote the class of functions of the form

f (z) = zp +
∞∑

k=1

ak+p zk+p, (1.1)

which are p-valently analytic in the open unit disk:

U = {z ∈ C : 0 ≤ |z| < 1}.

The p-valently analytic functions have been investigated earlier from different aspects. p-valently

analytic functions still inspire studies with interesting properties.
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The theory of special functions has been developed by Gauss, Jacobi, Klein and many others

in 19th century. However, in the twentieth century, the theory of special functions has been over-

shadowed by other fields such as real and functional analysis, topology, algebra and differential

equations. Special functions play an important role in geometric function theory. An example

of special function is an activation function. An activation function acts as a squashing function

which is the output of a neuron in a neural network taking certain values (usually 0 and 1, -1

or 1). There are three types of activation functions, namely threshold function, piecewise-linear

function, and Sigmoid function.

The most popular activation function is the Sigmoid function. There are different methods to

evaluate this function, such as truncating series expansion, looking-up tables, or piecewise ap-

proximation.

The Sigmoid function of the form

g(z) =
1

1 + e−z (1.2)

is differentiable and has the following properties.

• It outputs real numbers between 0 and 1.

• It maps from a very large input domain to a small range of outputs.

• never loses information because it is a one-to-one function.

• increases monotonically.

These properties enable us to use Sigmoid function in univalent function theory.

We briefly recall the following definitions which we needed in our investigation.

Definition 1.1. ( [13]) Let f (z) = zp +
∑
∞

k=1 ak+p zk+p, and g (z) = zp +
∑
∞

k=1 bk+p zk+p. The modified
Hadamard product of two functions f and g which belong toAp is defined by

F(z) = ( f ∗ g)(z) = zp +
∞∑

k=1

ak+pbk+p zk+p (1.3)

Definition 1.2. ( [14]) Let f ∈ A. Then the qth Hankel determinant of f is defined for q ≥ 1 and n ≥ 1 by

Hq(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

...
...

...

an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.4)

Thus, the second Hankel determinant

H2(2) =

∣∣∣∣∣∣∣a2 a3

a3 a4

∣∣∣∣∣∣∣ = a2a4 − a2
3 (1.5)

For two analytic functions f and g, the function f is subordinate to g, written as follows:

f (z) ≺ g(z)
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if there exists an analytic function w, with w(0) = 0 and
∣∣∣w(z)

∣∣∣ < 1 such that f (z) = g(w(z)). In

particular, if the function g is univalent in U, then f (z) ≺ g(z) is equivalent to f (0) = g(0) and

f (U) ⊂ g(U).

Definition 1.3. ( [9]) Let η ∈ C/{0} and the class Mλ(η,ϕn,m) denote the subclass of Ap consisting of
functions f of the form (1.1), and satisfying the following subordination condition

1 +
1
η

[
z f
′

(z) + λz2 f
′′

(z)
(1− λ) f (z) + λz f ′(z)

− 1
]
≺ ϕn,m (1.6)

for 0 ≤ λ ≤ 1 and ϕn,m is a simple logistic Sigmoid activation function.

In this study, we solve the Fekete-Szegö problem for functions in the class Mλ(∗)(η,ϕn,m) and in

the special instances, as well as provide bound estimates for the coefficients and an upper bound

estimate for the second Hankel determinant.

Definition 1.4. Let η ∈ C/{0} and the class Mλ(∗)(η,ϕn,m) denote the subclass ofAp consisting of functions
f of the form (1.1), and satisfying the following subordination condition

1 +
1
η

[
z( f ∗ g)

′

(z) + λz2( f ∗ g)
′′

(z)
(1− λ) ( f ∗ g)(z) + λz( f ∗ g)′(z)

− 1
]
≺ ϕn,m = 1 +

∞∑
m=1

(−1)m

2m

 ∞∑
n=1

(−1)m

n!
zn


m

(1.7)

for 0 ≤ λ ≤ 1 and ϕn,m is a simple logistic Sigmoid activation function.

2. A Set of Lemmas

The following preliminary results needed for our investigation

Let P be the family of all functions p analytic inU for which<{α(z)} > 0 and

p(z) = 1 + P1z + P2z2 + · · · , ( f orz ∈ U)

Lemma 2.1. ( [8]) If p ∈ P, then |Pk| ≤ 2 (2, 3, 4, · · · )

Lemma 2.2. ( [6]) Let g be a Sigmoid function defined in (1.2) and

ϕ(z) = 2g(z) = 1 +
∞∑

m=1

(−1)m

2m

 ∞∑
n=1

(−1)m

n!
zn


m

(2.1)

then ϕ(z) ∈ P, |z| < 1 where ϕ(z) is a modified Sigmoid function.

Lemma 2.3. ( [6]) Let g be a Sigmoid function defined in (1.1) and

ϕn,m(z) = 1 +
∞∑

m=1

(−1)m

2m

 ∞∑
n=1

(−1)m

n!
zn


m

(2.2)

then |ϕn,m(z)| < 2 .
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Lemma 2.4. ( [6]) Let ϕ(z) ∈ P and be starlike, then f is a normalized univalent function of the form (1.1).
Setting m = 1, Fadipe et al. [6] remarked that

ϕ(z) = 1 +
∞∑

n=1

cnzn (2.3)

where cn =
(−1)n+1

2n! , then |cn| ≤ 2 for n = 2, 3, 4, · · · and the result is sharp for each n.

3. Some coefficient estimates for the class ofMλ,(∗) (η,ϕn,m)

In this section, we will find the estimates on the coefficients ap+1bp+1, ap+2bp+2 and ap+3bp+3 for

functions in the class Mλ,(∗) (η,ϕn,m).

Theorem 3.1. Let

ϕn,m(z) = 1 +
∞∑

m=1

(−1)m

2m

 ∞∑
n=1

(−1)m

n!
zn


m

where ϕn,m(z) ∈ A is a modified logistic Sigmoid activation function and ϕ
′

n,m(0) > 0. If F(z) =

( f ∗ g)(z) given by (1.1) belongs to the class Mλ,(∗) (η,ϕn,m) then,

ap+1bp+1 =
(1− λ+ λp)η

2p(1 + λp)
(3.1)

ap+2bp+2 =
(1− λ+ λp)η2

4p(p + 1)(1 + λ(p + 1))
(3.2)

ap+3bp+3 =
η(1− λ+ λp)(3η2

− p(p + 1))
24p(p + 1)(p + 2)(1 + λ(p + 2))

(3.3)

Proof. Let f (z) = zp +
∑
∞

k=1 ak+p zk+p, and g (z) = zp +
∑
∞

k=1 bk+p zk+p. Then we can write the

following qualities:

F(z) = ( f ∗ g)(z) = zp +
∞∑

k=1

ak+pbk+p zk+p
⇒ ( f ∗ g)

′

(z) = pzp−1 +
∞∑

k=1

(k + p)ak+pbk+p zk+p−1

⇒ ( f ∗ g)
′′

(z) = p(p− 1)zp−2 +
∞∑

k=1

(k + p)(k + p− 1)ak+pbk+p zk+p−2

Thus, we obtain

z( f ∗ g)
′

(z) + λz2( f ∗ g)
′′

(z) = p(1− λ+ λp)zp +
∞∑

k=1

(k + p)(1 + (k + p− 1)λ)ak+pbk+p zk+p

and

(1− λ)( f ∗ g)(z) + λz( f ∗ g)
′

(z) = (1− λ+ λp)zp +
∞∑

k=1

(1 + (k + p− 1)λ)ak+pbk+p zk+p

If F ∈Mλ(∗)(η,ϕn,m), then we have

1
η

[
z( f ∗ g)

′

(z) + λz2( f ∗ g)
′′

(z)
(1− λ) ( f ∗ g)(z) + λz( f ∗ g)′(z)

− 1
]
= ϕn,m − 1 (3.4)
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where ϕn,m is a modified Sigmoid function given by

ϕn,m = 1 +
1
2

z−
1

24
z3 +

1
240

z5
−

17
40320

z7 + · · · (3.5)

In view of (3.4) and (3.5), expanding in series forms we have

1
η

(p− 1)(1− λ+ λp)zp +
∞∑

k=1

(k + p− 1)(1 + (k + p− 1)λ)ak+pbk+p zk+p

 =(1− λ+ λp)zp +
∞∑

k=1

(1 + (k + p− 1)λ)ak+pbk+p zk+p

 [1
2

z−
1
24

z3 +
1

240
z5
−

17
40320

z7 + · · ·
] (3.6)

Comparing the coefficients of zp+1, zp+2 and zp+3 in(3.6), we obtain

ap+1bp+1 =
(1− λ+ λp)η

2p(1 + λp)
(3.7)

ap+2bp+2 =
(1− λ+ λp)η2

4p(p + 1)(1 + λ(p + 1))
(3.8)

ap+3bp+3 =
η(1− λ+ λp)(3η2

− p(p + 1))
24p(p + 1)(p + 2)(1 + λ(p + 2))

(3.9)

�

Corollary 3.1. For coefficient ap+1bp+1,

∣∣∣ap+1bp+1

∣∣∣ = (1− λ+ λp)|η|
2p(1 + λp)

is written and since ϕ(λ) = (1−λ+λp)
(1+λp) , ϕ

′

(λ) < 0 in the interval 0 ≤ λ ≤ 1 and ϕ(λ) is decreasing, it will
be

|η|

2(p + 1)
≤ |ap+1bp+1| ≤

|η|

2p
(3.10)

for 1
2 ≤

(1−λ+λp)
(1+λp) ≤ 1.

Similarly, since the coefficients ap+1bp+1, ap+2bp+2 and ap+3bp+3 depend on λ and are decreasing

with respect to λ, the following inequalities can be written easily:

|η2
|

4(p + 1)(p + 2)
≤ |ap+2bp+2| ≤

|η|2

4p(p + 1)
(3.11)

|(η3
− p(p + 1)η)|

24(p + 1)(p + 2)(p + 3)
≤ |ap+3bp+3| ≤

|(η3
− p(p + 1)η)|

24p(p + 1)(p + 2)
(3.12)
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4. Some Results Connected with the Fekete-Szegö Inequality andHankel Coefficient for the

Class ofMλ,(∗) (η,ϕn,m)

The Fekete-Szegö problem may be considered one of the most important results about univalent

functions, which is related to coefficients an of a function’s Taylor series and was introduced by

Fekete-Szegö [1]. The problem of maximizing the absolute value of functional a3 − µa2
2 is called

the Fekete-Szegö problem. This result is sharp and is studied thoroughly by many researchers.

The equality holds true for the Koebe function. In 1969, Keogh and Merkes [2] obtained the sharp

upper bound of the Fekete-Szegö functional |a3 − µa2
2| for some subclasses of univalent function.

Recently, Murugusundarmoorthy and Janani [3], Olantunji et al. [5], Olantunji [4] and Orhan at
al. [7] have studied Sigmoid function for various classes of analytic and univalent functions.

In this section, we first prove the following Fekete-Szegö result for the function in the classes

Mλ,(∗) (η,ϕn,m) with the values of ap+1bp+1 and ap+2bp+2.

Theorem 4.1. If F(z) ∈ AP given by (1.1) belongs to the class Mλ,(∗) (η,ϕn,m) then,

|ap+2bp+2 − µ
(
ap+1bp+1

)2
| =

|η|2

4p(p + 1)

(
1 + |µ|

(p + 1)
p

)
(4.1)

Proof. If the values of ap+1bp+1 and ap+2bp+2 determined by (3.7) and (3.8) are written instead of

ap+2bp+2 − µ
(
ap+1bp+1

)2
, we get

ap+2bp+2 − µ
(
ap+1bp+1

)2
=

(1− λ+ λp)η2

4p(p + 1)(1 + λ(p + 1))
− µ

(
(1− λ+ λp)η

2p(1 + λp)

)2

=
(1− λ+ λp)η2

4p(p + 1)(1 + λ(p + 1))
− µ

(1− λ+ λp)2η2

4p2(1 + λp)2 .

Taking absolute value on both sides of the above equation and applying triangle inequality, we get

|ap+2bp+2 − µ
(
ap+1bp+1

)2
| ≤

(1− λ+ λp)|η|2

4p(p + 1)(1 + λ(p + 1))
+ |µ|

(1− λ+ λp)2
|η|2

4p2(1 + λp)2 .

Here ζ1 =
1−λ+λp

1+λ(p+1) and ζ2 =
(1−λ+λp)2

(1+λp)2 are taken and these functions depending on λ are

considered to be decreasing in the interval 0 ≤ λ ≤ 1, since

max
0≤λ≤1

1− λ+ λp
1 + λ(p + 1)

= 1

and

max
0≤λ≤1

(1− λ+ λp)2

(1 + λp)2 = 1

we get

|ap+2bp+2 − µ
(
ap+1bp+1

)2
| ≤

|η|2

4p(p + 1)
+ |µ|

|η|2

4p2 .

thus we obtain

|ap+2bp+2 − µ
(
ap+1bp+1

)2
| ≤

|η|2

4p(p + 1)

(
1 + |µ|

(p + 1)
p

)
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Hence, we have reached the desired assertion of the Theorem(4.1),

∣∣∣∣ap+2bp+2 − µ
(
ap+1bp+1

)2∣∣∣∣ ≤


|η|2

4p(p+1)

(
1 + |µ| (p+1)

p

)
, µ ≥ 0

|η|2

4p(p+1)

(
1− |µ| (p+1)

p

)
, µ ≤ 0

This completes the proof of the Theorem. �

In the theory of singularities [10] and the investigation of power series with integral coefficients,

the Hankel determinant is very important. The reader is encouraged to read [14] for more infor-

mation. For several subfamilies of univalent functions, the growth of Hq(n) has been explored.

We know that the function H2(1) = a3 − a2
2 for q = 2 and n = 1 is a well recognized Fekete-Szegö

functional. For the bi-convex and bi-starlike classes, the second Hankel determinant H2(2) is given

by H2(2) = a2a4 − a2
3 [12]. For some more recent papers regarding Hankel determinant, we may

refer the readers to see [15–26].

The following theorem will give some results related to Hankel determinant for the functions

belonging to classes Mλ,(∗) (η,ϕn,m).

Theorem 4.2. If F(z) ∈ AP given by (1.1) belongs to the class Mλ,(∗) (η,ϕn,m) then,

|(ap+1bp+1)(ap+3bp+3) −
(
ap+2bp+2

)2
| ≤

|η|2

48p2(p + 1)2(p + 2)

(
(p + 1)|3η2

− p(p + 1)|+ 3(p + 2)|η|2
)

(4.2)

Proof. From (3.7), (3.8)and (3.9) , we get

H2(2) =

∣∣∣∣∣∣∣a2 a3

a3 a4

∣∣∣∣∣∣∣ = a2a4 − a2
3 (4.3)

(ap+1bp+1)(ap+3bp+3) −
(
ap+2bp+2

)2
=

(
(1− λ+ λp)η

2p(1 + λp)

) (
η(1− λ+ λp)(3η2

− p(p + 1))
24p(p + 1)(p + 2)(1 + λ(p + 2))

)
−

(
(1− λ+ λp)η2

4p(p + 1)(1 + λ(p + 1))

)2 (4.4)

=
(1− λ+ λp)2(3η4

− p(p + 1)η2)

48p2(p + 1)(p + 2)(1 + λp)(1 + λ(p + 2))
−

(1− λ+ λp)2η4

16p2(p + 1)2(1 + λ(p + 1))2
(4.5)

and thus∣∣∣∣(ap+1bp+1)(ap+3bp+3) −
(
ap+2bp+2

)2∣∣∣∣ ≤ (1− λ+ λp)2
∣∣∣(3η4

− p(p + 1)η2)
∣∣∣

48p2(p + 1)(p + 2)(1 + λp)(1 + λ(p + 2))

+
(1− λ+ λp)2

|η|4

16p2(p + 1)2(1 + λ(p + 1))2

(4.6)
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Here ζ3 =
(1−λ+λp)2

(1+λp)(1+λ(p+2)) and ζ4 =
(1−λ+λp)2

(1+λ(p+1))2 are taken and these functions depending on λ

are considered to be decreasing in the interval 0 ≤ λ ≤ 1, since

max
0≤λ≤1

(1− λ+ λp)2

(1 + λp)(1 + λ(p + 2))
= 1

and

max
0≤λ≤1

(1− λ+ λp)2

(1 + λ(p + 1))2 = 1

thus we obtain

|(ap+1bp+1)(ap+3bp+3) −
(
ap+2bp+2

)2
| ≤

|η|2

48p2(p + 1)2(p + 2)

(
(p + 1)|3η2

− p(p + 1)|+ 3(p + 2)|η|2
)

(4.7)

This completes the proof of the Theorem. �

5. Conclusion

In this paper, we have introduced and investigated the class Mλ,(∗) (η,ϕn,m) of p-valent function

related to the to modified Sigmoid functions. Thus, we obtained second, third and fourth Taylor

and Maclaurin coefficients of functions in this class. We also found the second Hankel Determent

for our defined function class. These results were an improvement on the estimates obtained in

the recent studies.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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