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Abstract. We have shown a spectral inclusion between a different spectrum of a C0-quasi-semigroups in [9]. Precisely

for Saphar, essentially Saphar, quasi-Fredholm, Kato and essentially Kato spectra. In this paper, we extend these results

for a C-quasi-semigroups (regularized quasi-semigroups) where C is a bounded injective operator.

1. Introduction

We consider a time-dependent abstract Cauchy problem described as follows:

x′(s) = A(s + t)x(s), t, s ≥ 0, x(0) = Cx0 (1.1)

In this equation, the function x(s) is an unknown function defined on the real interval [0, T]
into a Banach space denoted as X. The operator C is a bounded linear operator that is injective,

acting on the Banach space X, and A(s) represents a closed linear operator in X with the domain

D(A(t)) = D. The solution to equation (1) can be formally expressed as x(t) = U(t, s)x0, where{
U(t, s)

}
t,s≥0 forms a two-parameter family of operators acting on X, known as a C-quasi-emigroup

or egularized quasi-semigroup of a bounded linear operators on a Banach spaces,. This notion

was introduced by M.Janfada in [2] as a generalization of C0-semigroups of operators . For more

information about this last notion, see [4].

The main objective is to establish the existence of a solution to Cauchy problem without any

qualitative information about it. To gain insight into the solution x(t), a conventional approach

involves examining the spectrum of the quasi-semigroup U(t, s) directly. However, in many

practical applications, we only have explicit access to the generator A(t), and thus, there arises

a need to establish a relationship between the spectrum of the quasi-semigroup U(t, s) and the

spectrum of its generator A(t).

Received: Dec. 1, 2023.

2020 Mathematics Subject Classification. 47A10, 47D06, 47D60.

Key words and phrases. C-quasi-semigroup; Saphar; essentially Saphar; Kato; essentially Kato; quasi-Fredholm.

https://doi.org/10.28924/2291-8639-22-2024-21
ISSN: 2291-8639

© 2024 the author(s).

https://doi.org/10.28924/2291-8639-22-2024-21


2 Int. J. Anal. Appl. (2024), 22:21

The works done on C0-semigroups [7], on C-semigroups [10], [11], on C0-quasi-semigroups [8],

and recently on regularized quasi-semigroups [9], has led us to seek other results concerning the

latter concept.

We begin with the definition of regularized quasi-semigroups of bounded operators introduced

by Janfada in [2].

Definition 1.1. Suppose that C is an injective bounded linear operator on a Banach space X. A commutative
two parameter family

{
U(t, s)

}
t,s≥0 ⊆ B(X) is called a regularized quasi-semigroups (or C-quasi-semigroups)

if for every t, s1, s2 ≥ 0 and x ∈ X, we have

(1) U(t, 0) = C;
(2) CU(t, s1 + s2) = U(t + s1, s2)U(t, s1);
(3)

{
U(t, s)

}
t,s≥0 is strongly continuous, that is,

lim
(t,s)−→(t0,s0)

∣∣∣∣∣∣U(t, s)x−U(t0, s0)x
∣∣∣∣∣∣ = 0, x ∈ X;

(4) there exists a continuous and increasing mapping M : [0,+∞[−→ [0,+∞[ such that, for any
t, s > 0,

∣∣∣∣∣∣U(t, s)
∣∣∣∣∣∣ ≤M(t + s).

For a C-quasi-semigroup
{
U(t, s)

}
t,s≥0 on a Banach space X, letD be the set of all x ∈ X for which

the following limits exist in the range of C:

lim
s→0+

U(0, s)x−Cx
s

and lim
s→0+

U(t, s)x−Cx
s

= lim
s→0+

U(t− s, s)x−Cx
s

, t > 0.

In this case, for t ≥ 0, we define an operator A(t) onD as

A(t)x = C−1 lim
s→0+

U(t, s)x−Cx
s

.

The family
{
A(t)

}
t≥0 is called the infinitesimal generator of the regularized quasi-semigroup{

U(t, s)
}
t,s≥0.

Remark 1.1.

(1) If C = I (the identity operator), then
{
U(t, s)

}
t,s≥0 is a C0-quasi-semigroup [4].

(2) Let
{
U(t, s)

}
t,s≥0 be a C-quasi-semigroup. Letting r 7→ 0 in (2) of definition , we obtain:

(a) ∀t ≥ 0 : U(t, s)C = CU(t, s);
(b) ∀t ≥ 0,∀x ∈ R(C) : U(t, s)x ∈ R(C);
(c) ∀x ∈ R(C), t ≥ 0 : C−1U(t, s)x = U(t, s)C−1x

For more information, examples and properties on the regularized quasi-semigroups, see [2].

Throughout this paper, X a complex Banach space and B(X) the algebra of all bounded linear

operators on X. Let T be a closed linear operator on X with domain D(T). We denote by R(T),
R∞(T) := ∩n≥1R(Tn), Ker(T) and ρ(T) respectively the the range, the hyper range, the kernel, the

resolvent and the spectrum of T.
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2. Main Results

2.1. Preliminaries and first result.

we start with the following results shown in the recent paper [9].

Lemma 2.1. Let A(t) be a closed and densely defined generator of a C−quasi-semigroup (U(t, s))t,s≥0 on a
Banach space X, and let C ∈ B(X) be injective. Then for all t ≥ s ≥ 0 and all λ ∈ C, we have

(1) For all x ∈ D,
Dλ(t, s)(λI −A(t))x = [eλsC−U(t− s, s)]x.

(2) For all x ∈ X, we have Dλ(t, s)x ∈ D and

(λI −A(t))Dλ(t, s)x = [eλsC−U(t− s, s)]x.

where Dλ(t, s)x =

∫ s

0
eλ(s−h)U(t− h, h)xdh is a bounded and linear operator.

For t ≥ 0, we fixD0 = D(A(t)0) = X, A(t)0 = I, and for n ∈N we define by recurrence:

D
n = D(A(t)n) := {x ∈ D(A(t)n−1) : A(t)n−1x ∈ D(A(t))},

A(t)nx = A(t)A(t)n−1x pour x ∈ D(A(t)n),

We obtain :

X = D(A(t)0) ⊇ D(A(t)) ⊇ D(A(t)2) ⊇ ... ⊇ D(A(t)n).

Corollary 2.1. Let A(t) be a closed and densely defined generator of a C−quasi-semigroup (U(t, s))t,s≥0 on
a Banach space X, and let C ∈ B(X) be injective. Then for all t ≥ s ≥ 0, λ ∈ C and n ∈N\ {0}, we obtain

(1) For all x ∈ X,

(λI −A(t))n[Dλ(t, s)]nx = [eλsC−U(t− s, s)]nx.

(2) For all x ∈ Dn,

[Dλ(t, s)]n(λI − [A(t)]n)x = [eλsC−U(t− s, s)]nx.

(3) Ker[λI −A(t)] ⊆ Ker[eλsC−U(t− s, s)].
(4) R[eλsC−U(t− s, s)] ⊆ R[λI −A(t)].
(5) Ker[λI −A(t)]n ⊆ Ker[eλsC−U(t− s, s)]n.

(6) R[eλsC−U(t− s, s)]n ⊆ R[λI −A(t)]n.

(7) R∞[eλsC−U(t− s, s)] ⊆ R∞[λI −A(t)].

Lemma 2.2. Let A(t) be a closed and densely defined generator of a C−quasi-semigroup (U(t, s))t,s≥0 on a
Banach space X, and let C ∈ B(X) be injective. Then for all t ≥ s > 0 and all λ ∈ C, we have

(λI −A(t))Lλ(t, s) +
1
s

e−λsDλ(t, s) = C.

With Lλ(t, s) =
1
s

∫ s

0
e−λhDλ(t, h)dh.

Furthermore, the operators Lλ(t, s), Dλ(t, s) and (λI − A(t)) are mutually commuting. Also, C is
commute with each one Dλ(t, s) and Lλ(t, s).
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From de last theorem, we have the following corollary.

Corollary 2.2. Let A(t) be the generator of the C-quasi-semigroup
{
U(t, s)

}
t,s≥0 such that A(t) is closed

and densely defined. Then for all t ≥ s > 0, x ∈ R∞(C) and λ ∈ C, we have

(1) For all n ∈N∗, there exists an operator αλ,n(t, s) such that,

(λI −A(t))n[C−1Lλ(t, s)]nx + Dλ(t, s)αλ,n(t, s)x = x.

Moreover, the operator αλ,n(t, s) is commute with each one of Dλ(t, s) and Lλ(t, s).
(2) For all n ∈N∗, there exists an operator βλ,n(t, s) such that,

(λI −A(t))nβλ,n(t, s)x + [αλ,n(t, s)]n[Dλ(t, s)]nx = x.

Furthermore, , the operator βλ,n(t, s) is commute with each one of Dλ(t, s) and αλ,n(t, s).

Proof. (1) Let n ∈N∗, Then, from lemma 2.2, for all λ ∈ C?, x ∈ R∞(C) and t, s > 0, we have

(λI −A(t))C−1Lλ(t, s)x +
1
s

e−λsC−1Dλ(t, s)x = x

and

[(λI −A(t))C−1Lλ(t, s)]nx = [I −
1
s

e−λsC−1Dλ(t, s)]nx

=
n∑

i=0

(
n
i

)
[−

1
s

e−λsC−1Dλ(t, s)]ix

= x +
n∑

i=1

(
n
i

)
[−

1
s

e−λsC−1Dλ(t, s)]ix

= x−Dλ(t, s)C−1
n∑

i=1

(
n
i

)
[
1
s

e−λs]i[−C−1Dλ(t, s)]i−1x

= x−Dλ(t, s)αλ,n(t, s)x

Finally, we have

(λI −A(t))n[C−1Lλ(t, s)]nx + Dλ(t, s)αλ,n(t, s)x = x,

With

αλ,n(t, s) = C−1
n∑

i=1

(
n
i

)
[
1
s

e−λs]i[−C−1Dλ(t, s)]i−1.

On the other hand , for commutativity, it’s clear from lemma 2.2.

(2) According to (1), we have for all n ∈N∗ and x ∈ R∞(C),
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Dλ(t, s)αλ,n(t, s)x = x− (λI −A(t))n[C−1Lλ(t, s)]nx, then

[Dλ(t, s)αλ,n(t, s)]nx =
[
x− (λI −A(t))n[C−1Lλ(t, s)]n

]n
x

= x−
n∑

i=1

(
n
i

)[
(λI −A(t))n[C−1Lλ(t, s)]n

]i
x

= x− (λI −A(t))n
n∑

i=1

(
n
i

)[
(λI −A(t))n(i−1)[C−1Lλ(t, s)]nix

= x− (λI −A(t))nβλ,n(t, s)x,

Therefore, we obtain

[Dλ(t, s)]n[αλ,n(t, s)]nx + (λI −A(t))nβλ,n(t, s)x = x,

where βλ,n(t, s) =
n∑

i=1

(
n
i

)
(λI −A(t))n(i−1)[C−1Lλ(t, s)]ni.

�

2.2. Spectral Inclusion For Saphar Spectrum.

Let X, Y be Banach spaces, let T : X→ Y be an operator. T has a generalized inverse [10] if and

only if there exists an operator S : Y→ X such that TST = T. A closed operator T is called Saphar,

in symbol T ∈ S(X), if T has a generalized inverse and Ker(T) ⊆ R∞(T).
For the subspaces E and F of X, we say that E is essentially contained in F and we write E ⊆e F,

if there exists a finite-dimensional subspace G ⊆ X such that E ⊆ F + G.

A closed operator T is called essentially Saphar, in symbol T ∈ eS(X), if T has a generalized

inverse and Ker(T) ⊆e R∞(T).
The Saphar and essentially Saphar spectra are defined by

σS(T) = {λ ∈ C : λI − T < S(X)}, σeS(T) = {λ ∈ C : λI − T < eS(X)}.

During this article we define the spectra σ?(C, T) by replacing the identity I by an injective

bounded operator C ∈ B(X).

Theorem 2.1. Let A(t) be the generator of a C−quasi-semigroup (U(t, s))t,s≥0 on a Banach space X such
that A(t) is closed and densely defined. For all t, s > 0, we have

esσS(A(t))
⊆ σS(C, U(t− s, s)).

Proof. Letλ ∈ C such that eλsC−U(t− s, s) is a Saphar operator, so eλsC−U(t− s, s)has a generalized

inverse and Ker(eλsC−U(t− s, s)) ⊆ R∞[eλsC−U(t− s, s)].
We show that λI −A(t) is a Saphar operator.

Since eλsC −U(t − s, s) has a generalized inverse, then there exists an operator S : X → X such

that,

(eλsC−U(t− s, s))S(eλsC−U(t− s, s)) = eλsC−U(t− s, s).
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Then, from lemma 2.1 and corollary 2.2, for all λ ∈ C, x ∈ R(C) and for all t, s > 0, we have

(λI −A(t))C−1Lλ(t, s)x +
1
s

e−λsC−1Dλ(t, s)x = x

and

(λI −A(t))

= (λI −A(t))C−1Lλ(t, s)(λI −A(t)) +
1
s

e−λsC−1Dλ(t, s)(λI −A(t))

= (λI −A(t))C−1Lλ(t, s)(λI −A(t)) +
1
s

e−λsC−1(eλsC−U(t− s, s))

= (λI −A(t))C−1Lλ(t, s)(λI −A(t)) +
1
s

e−λsC−1(eλsC−U(t− s, s))S(eλsC−U(t− s, s))

= (λI −A(t))C−1Lλ(t, s)(λI −A(t)) +
1
s

e−λsC−1(λI −A(t))Dλ(t, s)S(λI −A(t))Dλ(t, s)

= (λI −A(t))[C−1Lλ(t, s) +
1
s

e−λsC−1Dλ(t, s)SDλ(t, s)](λI −A(t))

So, λI −A(t) has a generalized inverse.

On the other hand, from corollary 2.1, we have

Ker(λI −A(t)) ⊆ Ker(eλsC−U(t− s, s)) ⊆ R∞[eλsC−U(t− s, s)] ⊆ R∞(λI −A(t))

Consequently, λI −A(t) essentially Saphar.

�

Corollary 2.3. For all t, s > 0, we have

esσeS(A(t))
⊆ σeS(C, U(t− s, s)).

Proof. Let λ ∈ C such that eλsC−U(t− s, s) is a essentially Saphar operator, so eλsC−U(t− s, s) has

a generalized inverse and Ker(eλsC−U(t− s, s)) ⊆e R∞[eλsC−U(t− s, s)].
According to the theorem 2.1, λI −A(t) has a generalized inverse.

In addition, let G a finite dimensional subspace of X. We have,

Ker(λI −A(t)) ⊆ Ker(eλsC−U(t− s, s)) ⊆ R∞[eλsC−U(t− s, s)] + G ⊆ R∞(λI −A(t)) + G.

Hence λI −A(t) essentially Saphar.

�

2.3. Spectral Inclusion For Kato Spectrum.

A closed operator T is called Kato, in symbol T ∈ D(X), if R(T) is closed and Ker(T) ⊆ R∞(T).
A closed operator T is called essentially Kato, in symbol T ∈ eD(X), if R(T) is closed and

Ker(T) ⊆e R∞(T).
The Kato and essentially Kato spectra are defined by

σK(T) = {λ ∈ C : λI − T < D(X)}, σeK(T) = {λ ∈ C : λI − T < eD(X)}.
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To obtain results concerning the Kato spectrum and essentially Kato spectrum , we start with

the following proposition.

Proposition 2.1. Let A(t) be the generator of a C−quasi-semigroup (U(t, s))t,s≥0 on a Banach space X such
that A(t) is closed and densely defined. For all p ∈N∗, if R[eλsC−U(t− s, s)]p is closed, then R[λI−A(t)]p

is also closed.

Proof. Let (yn)n∈N ⊆ X such that yn → y ∈ X and there exists (xn)n∈N ⊆ D satisfying

(λI −A(t))pxn = yn.

By corollary 2.2, for all p ∈N∗, there exists αλ,p(t, s) and βλ,p(t, s) such that

(λI −A(t))pβλ,p(t, s) + [αλ,p(t, s)]p[Dλ(t, s)]p = I.

Hence, we conclude that

yn = (λI −A(t))pβλ,p(t, s)yn + [αλ,p(t, s)]p[Dλ(t, s)]pyn

= (λI −A(t))pβλ,p(t, s)yn + [αλ,p(t, s)]p[Dλ(t, s)]p(λI −A(t))pxn

= (λI −A(t))pβλ,p(t, s)yn + [αλ,p(t, s)]p[eλsC−U(t− s, s)]pxn

So,

[eλsC−U(t− s, s)]p[αλ,p(t, s)]pxn = yn − (λI −A(t))pβλ,p(t, s)yn

Thus,

yn − (λI −A(t))pαλ,p(t, s)yn ∈ R[eλsC−U(t− s, s)].

Moreover, since R[eλsC−U(t− s, s)]p is closed, and

yn − (λI −A(t))pαλ,p(t, s)yn → y− (λI −A(t))pαλ,p(t, s)y,

we conclude that

y− (λI −A(t))pαλ,p(t, s)y ∈ R[eλsC−U(t− s, s)]p.

Then there exists z ∈ R(C) such that

[eλsC−U(t− s, s)]pz = y− (λI −A(t))pαλ,p(t, s)y.

Hence, we have

y = [eλsC−U(t− s, s)]pz + (λI −A(t))pαλ,p(t, s)y;

= (λI −A(t))pDλ(t, s)pz + (λI −A(t))pαλ,p(t, s)y;

= (λI −A(t))p[Dλ(t, s)pz + αλ,p(t, s)y.

Finally, we obtain

y ∈ R(λI −A(t))p.

�
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Corollary 2.4. For all t, s > 0, we have

esσK(A(t))
⊆ σK(C, U(t− s, s)) , esσeK(A(t))

⊆ σeK(C, U(t− s, s)).

Proof. It is automatic due to the theorem 2.1 and proposition 2.1. �

2.4. Spectral Inclusion For Quasi-Fredholm Spectrum.

The degree of stable iteration dis(T) of an operator T is defined by

dis(T) = in f {n ∈N : ∀m ≥ n, R(Tn)∩Ker(T) = R(Tm)∩Ker(T)},

with in f (∅) = ∞.

A closed operator T is called quasi-Fredholm [3], in symbol T ∈ qΦ(X), if there is d ∈ N such

that for all n ≥ d, R(Tn) and R(T) + Ker(Tn) are closed and dis(T) = d.

The quasi-Fredholm spectrum is defined by

σqe(T) = {λ ∈ C : λI − T < qΦ(X)}.

We start by the following proposition.

Proposition 2.2. Let A(t) be a closed and densely defined generator of a C−quasi-semigroup (U(t, s))t,s≥0

on a Banach space X. Then dis(λI −A(t)) ≤ dis(eλsC−U(t− s, s)).

Proof.

• If dis(eλsC−U(t− s, s)) = +∞. So, the result is evident.

• If d = 0, for all n ≥ d, we have

R(eλsC−U(t− s, s))n
∩Ker(eλsC−U(t− s, s)) = Ker(eλsC−U(t− s, s)).

Consequently,

Ker(eλsC−U(t− s, s)) ⊆ R(eλsC−U(t− s, s))n.

According to corollary 2.1, we obtain

Ker(λI −A(t)) ⊆ Ker(eλsC−U(t− s, s)) ⊆ R(eλsC−U(t− s, s))n
⊆ R(λI −A(t))n.

Therefore, Ker(λI −A(t))∩R(λI −A(t))n = Ker(λI −A(t))∩R(λI −A(t))0

Consequently, dis(λ−A(t)) = 0.

• If dis(eλsC−U(t− s, s)) = d ∈N?. Then for all n ≥ d,

R
(
eλsC−U(t− s, s)

)n
∩Ker

(
eλsC−U(t− s, s)

)
= R

(
eλsC−U(t− s, s)

)d
∩Ker

(
eλsC−U(t− s, s)

)
.

Therefore, it’s enough to show that for all n ≥ d,

R(λI −A(t))n
∩Ker(λI −A(t)) = R(λI −A(t))d

∩Ker(λI −A(t)).

Let y ∈ R(λI −A(t))d
∩Ker(λI −A(t)), then there exists x ∈ Dd such that

y = (λI −A(t))dx and (λI −A(t))y = 0.
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Hence, from corollary 2.2, we have

(λI −A(t))dβλ,d(t, s) + [αλ,d(t, s)]d[Dλ(t, s)]d = I.

Therefore,

y = (λI −A(t))dβλ,d(t, s)y + [αλ,d(t, s)]d[Dλ(t, s)]dy

= (λI −A)d−1βλ,d(t, s)(λI −A(t))y + (eλsC−U(t− s, s))d[αλ,d(t, s)]dx

=
(
eλsC−U(t− s, s)

)d
[αλ,d(t, s)]dx.

Then, according to (3) of corollary 2.1 we have

y ∈ R
(
eλsC−U(t− s, s)

)d
∩Ker

(
eλsC−U(t− s, s)

)
⊆ R

(
eλsC−U(t− s, s)

)n
⊆ R(λI −A(t))n.

So, y ∈ R(λI −A(t))n
∩Ker(λI −A(t)).

Therefore, R(λI −A(t))n
∩Ker(λI −A(t)) = R(λI −A(t))d

∩Ker(λI −A(t)).
Consequently, dis(λI −A(t)) ≤ d

�

The following theorem provides the spectral inclusion between the quasi-Fredholm spectrum

of C-quasi-semigroup and the quasi-Fredholm spectrum of its generator.

Theorem 2.2. Let A(t) be a closed and densely defined generator of a C−quasi-semigroup (U(t, s))t,s≥0 on
a Banach space X such thatD ⊂ R∞(C). For all t, s ≥ 0, we have

esσqF(A(t))
⊆ σqF(C, U(t− s, s)).

Proof. according to the previous proposition, it remains to show that

if R(eλsC−U(t− s, s)) +Ker(eλsC−U(t− s, s))n is closed in X then R(λI−A(t)) +Ker(λI−A(t))n

is closed .

Suppose that R(eλsC−U(t− s, s)) + Ker(eλsC−U(t− s, s))n is closed in X.

Let yn = (λI −A(t))xn + zn be a sequence which converges to y, with xn ∈ D and zn ∈ Ker(λI −
A(t))n.

So,

Dn
λ(t, s)yn = Dn

λ(t, s)(λI −A(t))xn + Dn
λ(t, s)zn ∈ R(eλsC−U(t− s, s)) + Ker(eλsC−U(t− s, s))n

Since ,R(eλsC−U(t− s, s)) + Ker(eλsC−U(t− s, s))n is closed, then

Dn
λ(t, s)y ∈ R(eλsC−U(t− s, s)) + Ker(eλsC−U(t− s, s))n

There exist x ∈ X and z ∈ Ker(eλsC−U(t− s, s))n such that Dn
λ(t, s)y = (eλsC−U(t− s, s))x + z.

So, D2n
λ (t, s)y = Dn

λ(t, s)(eλsC−U(t− s, s))x + Dn
λ(t, s)z.
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According to 2.2, for all n ∈N∗ we have

y = (λI −A(t))2nβλ,n(t, s)y + [αλ,n(t, s)]2n[Dλ(t, s)]2ny

= (λI −A(t))2nβλ,n(t, s)y + [αλ,n(t, s)]nDn
λ(t, s)

(
eλsC−U(t− s, s)

)
x + [αλ,n(t, s)]nDn

λ(t, s)z

= (λI −A(t))
[
(λI −A(t))2n−1βλ,n(t, s)y + [αλ,n(t, s)]nDn+1

λ
(t, s)x

]
+ [αλ,n(t, s)]nDn

λ(t, s)z.

Hence, y ∈ R(λI −A(t)) + Ker(λI −A(t))n.

Finally, R(λI −A(t)) + Ker(λI −A(t))n is closed �
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