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Abstract. In this paper, we provide some sufficient conditions for the strong convergence of an improved form of

modified S-iteration for approximating common fixed points of two asymptotically nonexpansive mappings defined

on a closed convex subset of a uniformly convex hyperbolic spaces.

1. Introduction

Let X be a Banach space and K be a closed convex subset of X. A mapping T : K → K is

said to be an asymptotically nonexpansive mapping if there is a real sequence {kn} such that

lim
n→∞

kn = 1 and ||Tn x − Tn y|| ≤ kn||x − y|| ∀x, y ∈ X. Asymptotically nonexpansive mapping is a

natural generalization of non- expansive mapping (||T x− T y|| ≤ ||x− y||).
In 1972, Gobel and Kirk [1] proved that if T is a asymptotically non- expansive self mapping

on a closed bounded convex subset of a uniformly convex Banach space, then T has a fixed

point. This result paved a way for a new development in the field of metric fixed point theory. J.

Schu [2] initiated the study of convergence of iteration process to a fixed point of asymptotically

nonexpansive mapping by considering the following modified Mann iteration.

x1 ∈ K, xn+1 = (1− αn) xn + αn Tnxn, n ≥ 1
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Since then, many researchers have studied iteration process to approximate fixed point of asymp-

totically nonexpansive mappings (see [3–8]). K. K. Tan and Xu [9] considered the convergence of

modified Ishikwa iteration process

x1 ∈ K,

xn+1 = (1− αn)xn + αn Tnyn,

yn = (1− βn)xn + βn Tnxn,

where {αn} and {βn} are sequences in [0, 1] satisfying some suitable conditions such as being

bounded away from 0 and 1. Modified Ishikwa iteration process reduces to modified Mann

iteration process when βn = 0. Recently, Agarwal et.al. [1], in an attempt to obtain a faster rate of

convergence, introduced the following iteration called modified S-iteration process

x1 ∈ K

xn+1 = (1− αn)Tn xn + αn Tnyn

yn = (1− αn) xn + αn Tnxn. (1.1)

In the past decade or so, the study of iterative approximation in the setting of hyperbolic metric

spaces has gained considerable momentum. The reason being hyberbolic metric spaces allows us

to retain the essential aspects of metric spaces while endowed with a rich linear affine structure.

There are several variations of hyberbolic spaces defined in the literature. But the following version

defined by Kohlenbach appears to be the most standard definition.

Definition 1.1. [10] A hyberbolic space (X, d, W) is a triple where (X, d) is a metric space and the mapping
W is defined as, W : X ×X × [0, 1]→ X satisfying the following conditions:

(1) d(t, W(x, y,α)) ≤ (1− α)d(t, x) + αd(t, y);
(2) d(W(x, y,α), W(x, y, β)) = |α− β|d(x, y);
(3) W(x, y,α) = W(y, x, 1− α);

(4) d(W(x, z,α), W(y, s,α)) ≤ (1− α)d(x, y) + αd(z, s) for all x, y, z, s, t ∈W and α, β ∈ [0, 1].

The iteration process Equation (1.1) is adopted to Hyberbolic spaces setting by Sahin and

Basinir [11]

x1 ∈ K

xn+1 = W(Tn xn, Tnyn, αn)

yn = (xn, Tnxn, βn). (1.2)

G. S. Saluja [12] modified Equation (1.2) to approximate common fixed point of two mappings.

x1 ∈ K

xn+1 = W(Tn xn, Snyn, αn) (1.3)

yn = W(xn, Tnxn, βn),



Int. J. Anal. Appl. (2024), 22:28 3

where S, T : K→ K are asymptotically quasi nonexpansive mappings.

Motivated by the above results, we define the following iteration and discuss its convergence

properties:

x1 ∈ K

xn+1 = W(Sn xn, Tnyn, αn)

yn = W(Snxn, Tnxn, βn) (1.4)

2. Preliminaries

We recall some basic concepts related to our results.

Let T : K→ X where K is a nonempty subset of a metric space X. Then F(T) = {x ∈ K : T(x) = x}.
The map T is said to be demicompact if for every bounded sequence {xn} in K such that d(xn, Txn)

is convergent, there exist a subsequence {xni} of {xn} convergent in K.

A subset A of a hyperbolic space (X, d, W) is said to be convex if for any λ ∈ (0, 1)

W(x, y,λ) ∈ A, for all x, y ∈ A.

Definition 2.1. [13] Let (X, d, W) be a hyperpolic space, if for any r > 0 and ε ∈ (0, 2], there exists a
δ ∈ (0, 1] such that for all u, x, y ∈ X,

d(W(x, y,
1
2
), u) ≤ (1− δ)r,

whenever d(x, u) ≤ r, d(y, u) ≤ r and d(x, y) ≥ εr, then the given hyperbolic space is said to be an
uniformly convex hyperbolic space.

The following lemma is often used in our results.

Lemma 2.1. [14] Let (X, d, W) be an uniformly convex hyperbolic space. Let a ∈ X and tn be a sequence
in [ε, 1− ε] for some ε ∈ (0, 1

2 ]. Suppose {xn} and {yn} are sequences in (X, d, W) such that

lim sup
n→∞

d(xn, a) ≤ r , lim sup
n→∞

d(yn, a) ≤ r and lim
n→∞

d(W(xn, yn, tn), a) = r,

for some r > 0, then lim
n→∞

d(xn, yn) = 0.

Lemma 2.2. [15] Let {tn}, {sn} and {rn} be any three non-negative real sequences such that the condition

tn+1 ≤ (1 + sn)tn + rn

is satisfied with
∞∑

n=1
sn < ∞ and

∞∑
n=1

rn < ∞. Then lim
n→∞

tn exists.



4 Int. J. Anal. Appl. (2024), 22:28

3. Main Results

Lemma 3.1. Let K be a non-empty closed convex subset of a uniformly convex hyperbolic space (X, d, W) and

let S, T : K → K be asymptotically nonexpansive mappings with a sequence {kn} satisfying
∞∑

n=1
(kn − 1) <

∞, and assume that F = F(S) ∩ F(T) , φ. Suppose {xn} is defined by (1.4), then lim
n→∞

d(xn, p) and

lim
n→∞

d(yn, p) exist for each p ∈ F.

Proof. By definition of xn and yn, we have

d(yn, p) = d(W(Sn xn, Tn xn, βn), p)

≤ (1− βn) d(Snxn, p) + βn d(Tn xn, p)

≤ (1− βn) kn d(xn, p) + βn kn d(xn, p)

= kn d(xn, p)

and

d(xn+1, p) = d(W(Sn xn, Tn yn, αn), p)

≤ (1− αn) d(Snxn, p) + αn d(Tn yn, p)

≤ (1− αn) kn d(xn, p) + αn kn d(yn, p)

≤ (1− αn) kn d(xn, p) + αn k2
n d(xn, p)

= (kn − αn kn + αn k2
n) d(xn, p)

= (1 + (kn − 1) + αnkn (kn − 1)) d(xn, p).

Therefore

d(xn+1, p) ≤ (1 + sn)d(xn, p)

where sn = (kn − 1) + αn kn(kn − 1). Using the fact that
∞∑

n=1
(kn − 1) < ∞, we conclude from Lemma

(2.1) that lim
n→∞

d(xn, p) exists. Let lim
n→∞

d(xn, p) = c, where c ≥ 0. Also from the inequality,

d(xn+1, p) ≤ (1− αn)kn d(xn, p) + αn kn d(yn, p)

= d(xn, p) + αnkn(d(yn, p) − d(xn, p))

and taking lim sup on both sides, we have

c = c + lim supαn (d(yn, p) − c)

≤ c,

since lim sup d(yn, p) ≤ c. Therefore,

lim supαn(d(yn, p) − c) = 0.

Since αn ∈ [ε, 1− ε], we conclude that lim
n→∞

d(yn, p) = c. �

Remark 3.1. Without loss of generality we have considered the same sequence {kn} for both S and T.



Int. J. Anal. Appl. (2024), 22:28 5

Theorem 3.1. Let K be a non-empty closed convex subset of a uniformly convex hyperbolic space (X, d, W)

and let S, T : K→ K be asymptotically nonexpansive mappings with a sequence {kn} satisfying
∞∑

n=1
(kn−1) <

∞, and assume that F = F(S) ∩ F(T) , φ. Let {xn} be defined as in (1.4). Then {xn} converges strongly to
an element of F iff lim

n→∞
inf d(xn, F) = 0.

Proof. Suppose {xn} converges to a common fixed point of S and T. then d(xn, F) → 0. Assume

lim
n→∞

inf d(xn, F) = 0. From the proof of Lemma (3.1)

d(xn+1, p) ≤ (1 + sn) d(xn, p)

where sn = (kn − 1) + αn kn(kn − 1). Taking infimum over p ∈ F

d(xn+1, F) ≤ (1 + sn) d(xn, F). (3.1)

Hence lim
n→∞

d(xn, F) converges by Lemma (3.1). So lim
n→∞

d(xn, F) = 0 and there exists a positive

integer N such that

d(xn, F) <
ε
4

, ∀ n ≥ N.

That is, inf{d(xn, p) : p ∈ F} <
ε
4

and we can find a p ∈ F such that

d(xn, p) <
ε
2

for every n ≥ N.

Let n ≥ N and m > 0, from (3.1) we have

d(xn+m, xn) ≤ d(xn+m, p) + d(p, xn)

≤ (1 + sn+m−1) (1 + sn+m−2) · · · (1 + sN) d(xN, p)

+ (1 + sn−1) (1 + sn−2) · · · (1 + sN) d(xN, p).

Since
∞∑

n=1
sn < ∞, the infinite product

∞∏
n=1

(1 + sn) converges to a positive real number k. Hence

d(xn+m, xn) ≤ 2k d(xN, p) < kε.

This shows that {xn} is a Cauchy sequence and hence converges to x ∈ F. �

Theorem 3.2. Let K be a non-empty closed convex subset of a uniformly convex hyperbolic space. Let

S, T : K→ K be asymptotically non-expansive mappings with
∞∑

n=1
(kn− 1) < ∞, and F = F(S)∩F(T) , φ.

Let {αn}, {βn} ∈ [ε, 1 − ε] for some 0 < ε ≤
1
2

. Suppose {xn} is defined by (3) and lim
n→∞

d(xn, xn+1) = 0.

Then

lim
n→∞

d(xn, Txn) = lim
n→∞

d(xn, Sxn) = lim
n→∞

d(yn, Tyn) = lim
n→∞

d(yn, Syn) = 0.

Further, if one of the maps is demi compact, then {xn} and {yn} strongly converge to an element x∗ of
F(T)∩ F(S).

Proof. Let p ∈ F. It follows from Lemma (3.1) that

lim
n→∞

d(xn, q) = lim
n→∞

d(yn, q) = c.
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Since lim
n→∞

d(xn+1, p) = c, from the proof of Lemma (3.1) we have,

lim
n→∞

d (W(Snxn, Tnyn,αn), p) = c. (3.2)

Applying lim sup to the inequalities d(Snxn, p) ≤ kn d(xn, p) and d(Tnyn, p) ≤ knd(yn, p), we obtain,

lim sup
n→∞

d(Snxn, p) ≤ c and lim sup
n→∞

d(Tnyn, p) ≤ c.

From (3.2) and applying Lemma (2.1), we have, d(Snxn, Tnyn)→ 0. Also from

lim
n→∞

d(yn, p) = lim
n→∞

d (W(Snxn, Tnxn, βn), p) = c

and

lim
n→∞

sup d(Snxn, p) ≤ c, lim
n→∞

sup d(Tnxn, p) ≤ c

again using Lemma (2.1), we conclude that

lim
n→∞

d(Snxn, Tnxn) = 0 (3.3)

Now

d(xn+1, Snxn) = d (W(Snxn, Tnyn,αn), Snxn)

≤ (1− αn)d(Snxn, Snxn) + αnd(Tnyn, Snxn)

= αnd(Tnyn, Snxn).

Since d(Snxn, Tnyn)→ 0,

lim
n→∞

d(xn+1, Snxn) = 0, (3.4)

and from

d(xn+1, Tnyn) = d (W(Snxn, Tnyn,αn), Tnyn)

≤ (1− αn)d(Snxn, Tnyn)

we have

lim
n→∞

d(xn+1, Tnyn) = 0. (3.5)

Consider

d(yn, Snxn) = d (W(Snxn, Tnyn, βn), Snxn)

≤ αnd(Tnxn, Snxn)

Using (3.3), we have

lim
n→∞

d(yn, Snxn) = 0. (3.6)

Similarly we can show that

lim
n→∞

d(yn, Tnxn) = 0. (3.7)

Also

d(xn+1, Tnxn) ≤ d(xn+1, Snxn) + d(Snxn, Tnxn).
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From (3.3) and (3.4), we have d(xn+1, Tnxn)→ 0 and from (3.7),

d(xn+1, yn)→ 0. (3.8)

The following can be deduced from the above assertions

lim
n→∞

d(Tnxn, Tnyn) = lim
n→∞

d(xn+1, Tnyn) = 0. (3.9)

Since lim
n→∞

d(xn, xn+1) = 0 and

d(xn, Tnxn) ≤ d(xn, xn+1) + d(xn+1, Tnxn),

it follows that lim
n→∞

d(xn, Tnxn) = 0. Further,

d(xn, yn) ≤ d(xn, xn+1) + d(xn+1, yn)→ 0 (3.10)

d(xn, Snxn) ≤ d(xn, yn) + d(yn, Snxn)→ 0 (3.11)

and

d(yn, Tnyn) ≤ d(yn, Snxn) + d(Snxn, Tnyn).

Using (7) and (8), we have d(yn, Tnyn)→ 0. Also,

d(yn, yn+1) ≤ d(yn, xn+1) + d(xn+1, yn+1).

From (3.8) and (3.10), lim
n→∞

d(yn, yn+1) = 0. Now

d(xn, Txn) ≤ d(xn, xn+1) + d(xn+1, Tn+1xn+1) + d(Tn+1xn+1, Tn+1xn) + d(Tn+1xn, Txn)

≤ d(xn, xn+1) + d(xn+1, Tn+1xn+1) + kn+1d(xn, xn+1) + k1d(Tnxn, xn).

As n→∞, each of the sequences in R.H.S tends to zero.

Therefore lim
n→∞

d(xn, Txn) = 0. In a similar fashion, we can show that lim
n→∞

d(yn, Tyn) = 0. Also,

using (3.11) and d(xn, xn+1) → 0, we see that d(xn, Sxn) → 0. Since d(Syn, Sxn) ≤ k1d(yn, xn) we

have d(Sxn, Syn)→ 0.

d(yn, Sxn) ≤ d(yn, xn+1) + d(xn+1, Sn+1xn+1) + d(Sn+1xn+1, Sn+1xn) + d(Sn+1xn, Sxn)

≤ d(yn, xn+1) + d(xn+1, Sn+1xn+1) + kn+1d(xn+1, xn) + k1d(Sxn, xn),

which implies d(yn, Sxn)→ 0. Combining with d(Sxn, Syn)→ 0, we have d(yn, Syn)→ 0.

Assume T is demi-compact. Since

d(xn, Txn)→ 0 there exists {xni} such that Txni → x∗

d(xni , x∗) ≤ d(xni , Txni) + d(Txni , x∗)→ 0 as i→∞,

since lim
n→∞

d(xn, Txn)→ 0, we have x∗ ∈ F(T). Also, lim
n→∞

d(xn, x∗) exists. Therefore

xn → x∗ and d(xn, yn)→ 0 implies that yn → x∗.

Further, d(xn, Sxn) → 0 implies that x∗ ∈ F(S). Hence xn and yn strongly converge to x∗ ∈ F(T) ∩
F(S). �
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The following example illustrates our results.

Example 3.1. Consider K = B(0 : 0.9), a subset of
(
R2, ‖‖2

)
, the ball with center 0 and radius 0.9. Define

T : K→ K and S : K→ K by

T(x, y) = (x2, 0) and S(x, y) = (0, y2).

Clearly both T and S are not nonexpansive. Let x = (x1, x2) and y = (y1, y2) ∈ K. Then

Tn(x1, x2) = (x2n

1 , 0) and Sn(x1, x2) = (0, x2n

2 ).

If y1 ≤ x1, then

||Tnx− Tny||2 = ||(x2n

1 , 0) − (y2n

1 , 0)||2

= |x2n

1 − y2n

1 |

= |x1 − y1| [x2n
−1

1 + y1x2n
−2

1 + · · ·+ y2n
−1

1 ]

≤ ||x− y||2 [2nx2n
−1

1 ].

Let kn = max{1, 2nx2n
−1

1 } ≤ max{1, 2n(0.9)2n
−1
}. So kn → 1 and hence T is a asymptotically nonex-

pansive mapping. Similarly, S is also asmptotically nonexpansive. Now, for any x1 ∈ K, define the

sequence {xn} by

xn+1 = W(Snxn, Tnyn,αn) and yn = W(Snxn, Tnxn, βn).

Let xn = (xn1 , xn2) , xn+1 = (x(n+1)1
, x(n+1)2

) and yn = (yn1 , yn2) and αn = βn = 1
2 for all n ∈ N.

Then

(x(n+1)1
, x(n+1)2

) =
1
2
(0, x2n

n2
) +

1
2
(y2n

n1
, 0) =

1
2
(y2n

n1
, x2n

n2
)

and (yn1 , yn2) =
1
2 (x

2n

n1
, x2n

n2
).

Thus yn1 = 1
2 x2n

n1
and (x(n+1)1

, x(n+1)2
) =

1
2

( 1
22n x22n

n1
, x2n

n2

)
. Clearly xn = (xn1 , xn2) converges to the

common fixed point (0, 0) of S and T.
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