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Abstract. Delay differential equations are fundamental tools to modeling various real-world problems. A particular

type of these models is considered in this paper in the form y′(t) = ay(t) + aeaty(at), where a is a proportional delay

parameter. Solving delay equations is usually a difficult task. This is because there are no standard/well-known methods

for solving such kind of equations. This paper proposes a simple procedure to solve the above delay equation. The

solution is obtained in closed form which is optimal. The suggested analysis can be invested to analyze more complex

models in physics and engineering sciences.

1. Introduction

The field of delay differential equations attracts the attention of many researchers in the past two

decades. One can find a number of numerical methods to solve delay equations such as the Taylor

method [1], the Chebyshev polynomial [2], the collocation method [3], the orthonormal Bernstein

polynomials [4], the spectral methods [5], and the transferred Legendre pseudospectral method

[6]. In addition, there are analytical methods such as the Adomian decomposition method (ADM)

[7], the Homotopy Perturbation Method (HPM) [8], the direct ansatz method [9], and the Laplace

Transform (LT) method [10]. Moreover, the authors [11,12] considered multi and generalized forms

of delay models.
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In this paper, a particular type of delay equations with a proportional delay parameter a is

considered in the form:

y′(t) = ay(t) + aeaty(at), y(0) = λ, a , 0, (1.1)

where a and λ are real constants. Although the just mentioned analytical methods, i.e., the ADM

the HPM, and the LT showed accurate results when solving the standard pantograph delay model

and other scientific models in physics/engineering/medical sciences [13-27], their applications to

the present model may face some difficulties due to the existence of the exponential term. The

use of the ADM encounters the difficulty of calculating the Adomian polynomials while the HPM

forces us to implement an auxiliary parameter. Beside, the ADM and the HPM are based on putting

the equation being solved in the canonical form which may not be effective to reach the desired

solution. For example, the authors [7,8,13,14] showed that the canonical form of an equation can

be expressed in many ways and usually lead to different approximate series solutions which may

diverge in some cases. Also, the LT may face a particular difficulty to evaluate the inverse LT of

complex expressions. Accordingly, searching for a simple but effective procedure is desirable for

solving the delay problems.

2. Ansatz method

Suppose that the solution of Eq. (1.1) is in the form:

y(t) = eµt
∞∑

n=0

dneωant, (2.1)

where µ and ω are auxiliary parameters and to be determined. From (2.1), we have

y′(t) = eµt
∞∑

n=0

ωandneωant + µeµt
∞∑

n=0

dneωant, (2.2)

and

y(at) = eµat
∞∑

n=0

dneωan+1t. (2.3)

Inserting Eqs. (2.1)-(2.3) into Eq. (1.1), then

∞∑
n=0

(ωan + µ)dneωant = a
∞∑

n=0

dneωant + ae(a+µa−µ)t
∞∑

n=0

dneωan+1t, (2.4)



Int. J. Anal. Appl. (2024), 22:44 3

or

(ω+ µ− a)d0 +
∞∑

n=0

(
ωan+1 + µ− a

)
dn+1eωan+1t = ae(a+µ(a−1))t

∞∑
n=0

dneωan+1t. (2.5)

Setting

ω+ µ− a = 0, a + µ(a− 1) = 0, (2.6)

we get

ω = a− µ, µ =
a

1− a
. (2.7)

Accordingly, Eq. (2.5) becomes
∞∑

n=0

[(
ωan+1 + µ− a

)
dn+1 − adn

]
eωan+1t = 0, (2.8)

which gives

dn+1 =
adn

ωan+1 + µ− a
, n ≥ 0. (2.9)

Substituting ω = a− µ into (2.9) yields

dn+1 =

(
a

a−µ

)
dn

an+1 − 1
, n ≥ 0. (2.10)

3. Analytic solution

The above analysis is to be invested in this section to establish the analytic solution of Eq. (1.1).

To do so, we have at first to find explicit form for the coefficients dn of the series in the ansatz (2.1).

From (2.10) one can easily find that

dn =

(
a

a−µ

)n
d0∏n

k=1 (ak − 1)
, n ≥ 1. (3.1)

Eq. (2.1) can be rewritten as

y(t) = eµt
∞∑

n=0

dne(a−µ)a
nt, (3.2)

or

y(t) = d0eat + eµt
∞∑

n=1

dne(a−µ)a
nt. (3.3)

Hence,

y(t) = d0

eat + eµt
∞∑

n=1

(
a

a−µ

)n∏n
k=1 (ak − 1)

e(a−µ)a
nt

 , (3.4)
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or equivalently

y(t) = d0eµt
∞∑

n=0

(
a

a−µ

)n∏n
k=1 (ak − 1)

e(a−µ)a
nt. (3.5)

Applying the given condition gives d0 as

d0 =
λ∑

∞

n=0

(
a

a−µ

)n∏n
k=1(a

k−1)

. (3.6)

Therefore,

y(t) = λeµt
∞∑

n=0

(
a

a−µ

)n∏n
k=1 (ak − 1)

e(a−µ)a
nt/

∞∑
n=0

(
a

a−µ

)n∏n
k=1 (ak − 1)

. (3.7)

4. Numerical validation

The objective of this section is to validate the obtained theoretical results in the previous sections.

The closed form solution (3.7) is to be compared with the available exact solution of a specific delay

model at a certain value of the parameter a. Before doing so, it may be useful to extract the m-term

approximate solution by replacing the infinity in (3.7) by a finite number of terms m. Accordingly,

the m-term approximate solution can be expressed as

Φm(t) = λeµt
m−1∑
n=0

(
a

a−µ

)n∏n
k=1 (ak − 1)

e(a−µ)a
nt/

m−1∑
n=0

(
a

a−µ

)n∏n
k=1 (ak − 1)

, m ≥ 1. (4.1)

In order to extract numerical results, the value of the initial condition is chosen as a fixed value

λ = 1 in all figures. At a = 1/2, the exact solution of the model y′(t) = 1/2y(t) + 1/2et/2y(t/2) is

available and given by y(t) = et.
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Figure 1. Comparison between the approximate solutions Φm(t), m = 10, 15, 20

and the exact solution at a = 1/2.
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Figure 2. Convergence of the approximate solutions Φm(t), m = 3, 5, 7, 9 at a = −1/2.
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Figure 3. Convergence of the approximate solutions Φm(t), m = 3, 5, 7, 9 at a = 3/4.
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Figure 4. Convergence of the approximate solutions Φm(t), m = 7, 9, 11, 13 at a = −3/4.
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Figure 5. Convergence of the approximate solutions Φm(t), m = 2, 3, 4, 5 at a = 1/4.

Figure 1 displays the comparison between the approximate solutions Φm(t), m = 10, 15, 20 and

the exact one at a = 1/2. This figure indicates that the curves of the approximations Φm become

closer to the exact curve as the number of terms m increases, hence, the present analysis can be

trusted.

When a , 1/2, the exact solution of the current model is not available in the literature. So, the

convergence of the approximations Φm(t) should be examined. For illustration, the convergence

of the approximate solutions Φm(t), m = 3, 5, 7, 9 at a = −1/2 is shown in Fig. 2. The results shows

that the convergence occurs even for approximations with a low number of terms. In addition, the

results introduced in Figs. (3)-(6) confirm this fact.
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Figure 6. Convergence of the approximate solutions Φm(t), m = 1, 2, 3, 4 at a = −1/4.
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5. Conclusions

In this paper, an ansatz method was developed to solve a delay model with a proportional delay

parameter. The advantage of the developed approach is confirmed via performing a comparison

between the current solution and the exact one at a specific value of the proportional delay

parameter. Moreover, the convergence of the present approximate solution was demonstrated

through several plots. The main advantage of the current approach is that it is straightforward

and can further applied to solve more complex delay models of the same type.

Conflicts of Interest: The author declares that there are no conflicts of interest regarding the

publication of this paper.
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