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Bertrand Offsets of Spacelike Ruled Surfaces With Blaschke Approach

Awatif Al-Jedani∗

Department of Mathematics Faculty of Science, University of Jeddah 23890, Saudi Arabia

∗Corresponding author: amaljedani@uj.edu.sa

Abstract. Dual parametrizaions of the Bertrand offset- spacelike ruled surfaces are assigned and sundry modern

outcomes are acquired in view of their integral invariants. A modern characterization of the Bertrand offsets of

spacelike developable surfaces is specified. Further, many connections among the striction curves of Bertrand offsets of

spacelike ruled surfaces and their integral invariants are gained.

1. Introduction

The context of Bertrand offset (BO) for ruled surface (RS) is a paramount and influential

instrument in model-depend industrialization of mechanical outputs, and geometrical exampling.

TheBO can be applied to produce geometrical models of shell-style forms and solid surfaces [1–4].

Thus, abundant engineers and geometers have searched and gained much geometric-kinematical

ownerships of these kind surfaces in Euclidean and non-Euclidean spaces; for epitome Ravani

and Ku used the Bertrand curves (BC) for ruled surfaces depend on line geometry [5]. They

manifested that a RS can have an infinity of BO, in the same view of a planar curve can have

an infinity of Bertrand mates. Via the E. Study map, Küçük and Gürsoy considered numerous

descriptives of BO of trajectory RS in view of the interrelations via the projection areas for the

spherical indicatrix ofBO and their integral invariants [6]. In [7], Kasap and Kuruoglu acquired the

connections through integral invariants of the common of the Bertrand RS in Euclidean 3-space

E
3. In [8] Kasap and Kuruoglu inaugurated the address of BO of RS in Minkowski 3-space. The

involute-evolute offsets of RS is defined by Kasap et al. in [9]. Orbay et al. [10] examined the

realization of Mannheim offsets of the RS. Onder and Ugurlu acquired the connections via the

invariants of Mannheim offsets of timelike (TL) RS and they gave the cases for these surface

offsets to be developable [11]. Aldossary and Abdel-Baky utilized the theory of BC for RS, via

the E. Study map [12]. Senturk and Yuce have appraised the integral invariants of the offsets by
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the geodesic Frenet frame [13]. Serious achievements to the BO of these ruled surfaces have been

researched in [14–18].

In this work, an extension of the BO is provided for spacelike (SL) ruled and developable

surfaces in Minkowski 3-space E3
1. In view of the E. Study map, two SL ruled surfaces which are

offsets in the sense of Bertrand are contemplated. It is offered that, generally, any SL RS can have

a binary infinity of BO; however for a SL developable RS to have a SL developable BO, a linear

equation should be specified through the curvature and torsion of its edge of regression. Further,

it is expounded that the SL developable offsets of a developable surface are parallel offsets. The

ramifications, in addendum to being of theoretical regard, have achievements in geometricial

modelling and the manufacturing of outputs.

2. Basic Concepts

In this section we list an abstract notations of dual numbers and dual Lorentzian vectors [1–3,

14–18]. A non-null directed lineL in Minkowski 3-spaceE3
1 can be designated by a point y ∈ L and

a unit vector λ of L, that is, ‖λ‖2 = ±1. To have coordinates for L, one demonstrate the moment

vector λ∗ = y× λ. If y is substituted by any point x = y+tλ, t ∈ R on L, this show that λ∗ is not

based on y. For the two non-null vectors λ and λ∗ we find

< λ,λ >= ±1, < λ∗,λ >=0. (2.1)

The 6-components λi, λ∗i (i = 1, 2, 3) of λ and λ∗ are the normalized Plűcker coordinates of L.

Hence, the two non-null vectors λ and λ∗ specified the directed line L.

A dual number (DN) λ̂ is a number λ+ ελ∗, where (λ, λ∗) ∈ R ×R, ε is a dual unit with ε ,,

and ε2 = 0. Thus, the set

D
3 = {̂λ:= λ+ ελ∗ =(λ̂1, λ̂2, λ̂3)}, (2.2)

with the Lorentzian scalar product

< λ̂, λ̂ >= λ̂2
1 − λ̂

2
2 + λ̂2

3, (2.3)

is dual Lorentzian 3-spaceD3
1. Then a point λ̂ = (λ̂1, λ̂2, λ̂3)t has dual coordinates λ̂i = (λi + ελ∗i ) ∈

D. If λ , 0 the norm
∥∥∥∥λ̂∥∥∥∥ of λ̂ =λ+ελ∗ is

∥∥∥∥λ̂∥∥∥∥ = √∣∣∣∣< λ̂, λ̂ >
∣∣∣∣ = ‖λ‖ (1+ε< λ,λ∗ >

‖λ‖2
). (2.4)

So, the vector λ̂ is a TL (SL)) dual unit vector (DUV) if
∥∥∥∥λ̂∥∥∥∥2

= −1(
∥∥∥∥λ̂∥∥∥∥2

=1). Then,

∥∥∥∥λ̂∥∥∥∥2
= ±1⇐⇒ ‖λ‖2 = ±1, < λ,λ∗>=0. (2.5)
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For any two dual vectors λ̂ =
(̂
λ1, λ̂2, λ̂3

)
and ε̂ = (̂ε1, ε̂2, ε̂3) ofD3

1, the vector product is

λ̂×ε̂ =

∣∣∣∣∣∣∣∣∣∣
ê1 −̂e2 ê3

λ̂1 λ̂2 λ̂3

ε̂1 ε̂2 ε̂3

∣∣∣∣∣∣∣∣∣∣ ,
where ê1, ê2, ê3 is the canonical dual basis of D3

1. The hyperbolic and Lorentzian (de Sitter space)

DU spheres with the joint center 0̂, respectively, are:

H
2
+ =

{̂
λ∈D3

1 | λ̂
2
1 − λ̂

2
2 + λ̂2

3 = −1
}

, (2.6)

and

S
2
1 =

{̂
λ∈D3

1 | λ̂
2
1 − λ̂

2
2 + λ̂2

3 = 1
}

. (2.7)

Hence, we have the following map (E. Study’s map): The ring mod hyperboloid is in bijection

with the set of SL lines, the mutual asymptotic cone is in bijection with the set of null-lines, and

the oval shaped hyperboloid is in bijection with the set of TL lines (see Fig. 1). Then, a regular

curve onH2
+ symbolizes a TL RS in E3

1. Also a regular curve on S2
1 symbolizes a SL or TL RS

in E3
1 [14–19].

Figure 1. Hyperbolic and Lorentzian (de Sitter space) DU spheres.

2.1. The Blaschke approach. A differentiable dual curve (DC)

v ∈ R 7→ ĝ(v) ∈ S2
1, v ∈ R,

is a TL or SL RS (ĝ) in Minkowski 3-space E3
1. It will be supposed a SL RS in our study. The

TL DUV

ĝ2(v) = g2 + εg∗2 =
dĝ
dv

∥∥∥∥∥∥dĝ
dv

∥∥∥∥∥∥−1

,
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is the tangent vector on ĝ. Inserting the SL DU vector ĝ3(v) = g3(v) + εg∗3(v) = ĝ× ĝ2 we have

the moving frame {ĝ = ĝ1(v), ĝ2(v), ĝ3(v)} on ĝ(v) named Blaschke frame. Then,

< ĝ1, ĝ1 > = − < ĝ2, ĝ2 >= < ĝ3,ĝ3>=1,

ĝ3 = ĝ1 × ĝ2, ĝ2 = ĝ1 × ĝ3, ĝ1 = ĝ2 × ĝ3.

 (2.8)

The DU vectors ĝ1, ĝ2, and ĝ3 represents three orthogonally intersected oriented lines at a point

c named the central point. The places of the central points is the striction curve on (ĝ). Via the

spherical kinematics, the locomotion of the Blaschke frame is a turnover with the Darboux vector

ω̂ of this frame. Then,

d
dv


ĝ1

ĝ2

ĝ3

 =


0 p̂ 0

p̂ 0 q̂
0 q̂ 0




ĝ1

ĝ2

ĝ3

 = ω̂×


ĝ1

ĝ2

ĝ3

 , (2.9)

where ω̂(v) = q̂(v)ĝ1(v) − p̂(v)ĝ3(v) and

p̂(v) = p(v) + εp∗(v) =

∥∥∥∥∥∥dĝ
dv

∥∥∥∥∥∥ , q̂(v) = q(v) + εq∗(v) = −det(ĝ,
dĝ
dv

,
d2 ĝ
dv2 ),

are the Blaschke invariants of ĝ(v) ∈ S2
1. Also, we realize the SL DUV

ê(v) := e + εe∗ =
ω̂∥∥∥ω̂∥∥∥= q̂√

p̂2 + q̂2
ĝ1 −

p̂√
p̂2 + q̂2

ĝ3. (2.10)

It is visible that ê is the Disteli-axis (curvature-axis or striction-axis) of (ĝ). The tangent of the

striction curve c(v) is specified by [12]:

dc(v)
dv

= q∗g1(v) − p∗(v)g3(v). (2.11)

Via the presumption that p(v) , 0, we appoint the functions

χ(v) =
q(t)
p(t)

, z(v) =
q∗(v)
p(v)

, κ(v) =
p∗(v)
p(v)

, (2.12)

which are invariants of ĝ(v) ∈ S2
1. Let dû = du + εdu∗ be the dual-arc length of ĝ(v), that is,

dû = p̂dv = p(1 + εκ)dv. Then, from Equations 2.9 and 2.12 we acquire

dc(u)
du

= z(u)g1(u) −κ(u)g3(u), (2.13)

and 
ĝ
′

1

ĝ
′

2

ĝ
′

3

 =


0 1 0

1 0 χ̂

0 χ̂ 0




ĝ1

ĝ2

ĝ3

 ; (′=
d

dû
), (2.14)

where χ̂(û) := q̂
p̂ = χ+ εχ∗ is the dual geodesic curvature of ĝ(û) ∈ S2

1. Thus, a non-developable

SL RS (ĝ) can be realized as follows:

(ĝ) : Γ(u, t) =

u∫
0

(z(u)g1(u) +κ(u)g3)du + tg1(u), u ∈ I, ∈ t ∈ R. (2.15)
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The TL unit normal vector field at any point is

ξ(u, t) =
∂Γ(u,t)
∂u ×

∂Γ(u,t)
∂t∥∥∥∥∂Γ(u,t)

∂u ×
∂Γ(u,t)
∂t

∥∥∥∥ = ±
κg2 − tg3
√

κ2 − t2
, |κ| > |t| , (2.16)

which is the TL central normal at the striction point (t = 0). Let ϕ be a hyperbolic rotation angel

through ξ and the central normal g2, then

ξ(u, t) = coshϕg2 − sinhϕg3, with tanhϕ =
t
κ

. (2.17)

Equation 2.17 is a Minkowski version of the well known Chasles Theorem [1–3].

3. Bertrand Offsets of Spacelike Ruled Surfaces

In this section, we meditate the B offsets of SL ruled and developable surfaces, then a theory

hassling to the theory of B curves can be advanced for such surfaces.

Definition 3.1. Let (ĝ) and (̂g) be two non-developable SL ruled surfaces in E3
1. The surface (̂g) is said

to be BO of (ĝ) if there exists a bijection through their generators such that both surfaces have a joint TL
central normal at the conformable central points.

Let (̂g) be a SL BO of (ĝ) with the Blaschke frame {̂g1(̂u), ĝ2(̂u), ĝ3(̂u)}, it can be stated as

aforementioned in the above equations. Let ψ̂ = ψ + εψ∗ be the SL dual angle through the

generators of (ĝ) and (̂g) at the corresponding points, that is,

< ĝ, ĝ >= cos ψ̂. (3.1)

By differentiating of Equation 3.1 with respect to û, we find

< ĝ2, ĝ > û
′

+ < ĝ, ĝ2 >= −ψ̂
′

sin ψ̂. (3.2)

Since (ĝ) and (̂g) are BO (ĝ2=ĝ2), then we have ψ̂
′

= 0, so that ψ̂ = ψ+ εψ∗ is an stationary dual

number.

Theorem 3.1. The offset angle ψ and the offset distance ψ∗ among the rgenerators of a non-developable SL
RS and its BO are stationary.

It is apparent via Theorem 3.1 that a SL RS, mostly, has a couple infinity of SL BO. Each BO

can be traced by an stationary linear offset ψ∗ ∈ R and an stationary angular offset ψ ∈ [0, 2π]. Any

two SL ruled surfaces of this set of SL ruled surfaces are reciprocal of one another; if (̂g) is a SL

BO of (ĝ), then (ĝ) is as well a SL BO of (̂g). Moreover, we can set

ĝ1(̂u)= cos ψ̂ĝ1(û) + sin ψ̂ĝ3(û). (3.3)
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Via Theorem 1 the TL central tangents ĝ3 and ĝ3 are also have the same stationary dual angle at

the matching central points. Then,
ĝ1

ĝ2

ĝ3

 =


cos ψ̂ 0 sin ψ̂

0 1 0

− sin ψ̂ 0 cos ψ̂




ĝ1

ĝ2

ĝ3

 . (3.4)

The considerable point to note here is the technique we have utilized (compared with [5, 6]).

Furthermore we also have

d

d̂u


ĝ1

ĝ2

ĝ3

 =


0 1 0

1 0 χ̂

0 χ̂ 0




ĝ1

ĝ2

ĝ3

 , (3.5)

where

dû = (cos ψ̂+ χ̂ sin ψ̂)dû, χ̂d̂u = (χ̂ cos ψ̂− sin ψ̂)dû.

By eliminating dû/dû, we gain

(χ̂− χ̂) cos ψ̂+ (1 + χ̂χ̂) sin ψ̂ = 0. (3.6)

This is a dual Minkowski version for SL RS and its SL BO RS in terms of their dual geodesic

curvatures.

Theorem 3.2. Any two non-developable SL ruled surfaces are BO iff the Equation 3.6 is fulfilled.

The equation of the striction curve of the offset surface (̂g), in view of its base surface (ĝ), can

therefore be located as

c(u) = c(u) +ψ∗ ĝ2(u). (3.7)

So, the equation of (̂g) in view of (ĝ) can be acquired as

(̂g) : Γ(u, t) = c(u) +ψ∗ ĝ2(u) + t (cosψĝ1(u) + sinψĝ3(u)) , t ∈ R. (3.8)

Let ξ(u, t) be the TL unit normal of an arbitrary point on (̂g). Then, as in Eq. (16), we have:

ξ(u, t) = ±
κg2 − tg3√
κ

2
− t2

,
∣∣∣κ∣∣∣ > |t| , (3.9)

where κ is the distribution parameter of (̂g). It is lucid from Equations 2.16 and 3.9 that the TL

normal to a SL RS and its BO are not the same. This importances that the BO of a SL RS are,

mostly, not parallel offsets. Thus, the parallel situations through (̂g) in view of (ĝ) can be described

by the next theorem:

Theorem 3.3. Any two non-developable SL BO ruled surfaces are parallel offsets iff (a) κ = κ, (b) each
axis of the Blaschke frame of (ĝ) is collinear with the congruent axis for (̂g).
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Proof. Let (ĝ) and (̂g) are parallel offsets non-developable SL RS, that is, ξ(u, t) × ξ(u, t) = 0.

Then, we have the following

t(κ cosψ−κ)g1−t2 sinψg2+tκ sinψg3 = 0.

The above equation should be hold true for any value t , 0, which leads to ψ = 0 and κ = κ.

Suppose that the two conditions (a) and (b) are hold true, that is, ψ = 0,κ = κ. Then substitute

them into ξ(u, t) × ξ(u, t), that is,

ξ(u, t) × ξ(u, t) =
κg2 − tg3√
κ

2
− t2
×
κg2 − tg3
√

κ2 − t2

It is obvious that past equation is the zero vector, which implies that (ĝ) and (̂g) are parallel

offsets. �

Once more in the same method, but now for developable SL RS, that is, κ = κ = 0, we have:

Corollary 3.1. Any two developable SL BO ruled surfaces are parallel offsets iff their Blaschke frames are
colinear.

3.1. The striction curves. In this subsection we investigate the possessions and connections of

the striction curves. Furthermore, we assign novel geometric and kinematical descriptions of the

invariants of the B offsets. In view of Equation 3.7, the tangent of the striction curve c(u) of (̂g) is

dc(u)
du

= [(z+ψ∗)g1 + (κ+ χψ∗)g3]
du
du

, (3.10)

whereas, as in Equations 2.11-2.13, is:

dc(u)
du

= z(u)g1(u) +κ(u)g3(u). (3.11)

From Equations 3.10, and 3.11 we attain

du
du

=
z+ψ∗

z cosψ−κ sinψ
=

κ+ χψ∗

z sinψ+κ cosψ
. (3.12)

A)- In the case of (ĝ) is aSL tangential developable surface (TDS), that is, κ(u) = 0. In this issue,

we attian

κ = z
(z+ψ∗) sinψ− χψ∗ cosψ
(z+ψ∗) cosψ− χψ∗ sinψ

. (3.13)

Then, the BO of a SL TDS is not TDS, that is, κ(u) , 0. Also, we have dc/du = z(u)g1(u). Let

s be arc length parameter of c(u) and {t1(s), t2(s), t3(s)} is the moving Serret-Frenet frame of c(s).
Then,

d
ds


t1

t2

t3

 =


0 κ(s) 0

κ(s) 0 τ(s)
0 τ(s) 0




t1

t2

t3

 ,
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where κ(s) and τ(s) are the natural curvature and torsion of the striction curve c(s), respectively;

κ(s) =
1
z(s)

, τ(s) =
χ(s)
z(s)

, with z(s) , 0.

So, the function z(s) is the radii of curvature of the SL striction curve c(s). If (̂g) is also a SL

tangential surface, that is, κ(u) = 0. Then,

κ(s) =
1

z(s)
, τ(s) =

χ(s)
z(s)

, with z(s) , 0,

is obtained. In this case, the Equation 3.13 reduces to

(1 +ψ∗κ(s)) sinψ− τ(s)ψ∗ cosψ = 0. (3.14)

Corollary 3.2. (ĝ) and (̂g) are SL BO tangential surfaces iff their striction curves are B curves.

From Equation 3.14 we may also state the following:

1) If ψ = 0, then ψ∗ = 0 or τ(s) = 0,

2) If ψ∗ = 0, then ψ = 0, that is, the rulings are colinear,

3) If τ(s) = 0, and ψ∗ , 0, then κ(s) = −1/ψ∗ is constant or ψ = 0,

4) ψ = π/2, and ψ∗ , 0, then κ(s) = −1/ψ∗ is constant.

(B) If (ĝ) is a SL binormal ruled surface (BRS), that is, z = 0. In this issue, from Equa-

tion 3.13, we find

z = −κ
ψ∗ cosψ+ (χψ∗ +κ) sinψ
ψ∗ cosψ− (χψ∗ +κ) cosψ

. (3.15)

Then, the BO of a SL RS is not BRS, that is, z(u) , 0. Also, we have dc/du = −κ(u)g3(u).
Correspondingly, let s be arc length parameter of c(u) and {b1(s), b2(s), b3(s)} is the mobile Serret-

Frenet frame of c(s). Then

d
ds


b1

b2

b3

 =


0 κ(s) 0

κ(s) 0 τ(s)
0 τ(s) 0




b1

b2

b3

 ,

where κ(s) and τ(s) are the natural curvature and torsion of the striction curve c(u), respectively;

κ(s) =
χ(s)
κ(s)

, τ(s) =
1
κ(s)

, with κ(s) , 0.

Therefore, the curvature function κ(s) is the radii of torsion of the spacelike striction curve c(s).
Further, if the SL BO (̂g) is also a BRS, then we reach

(1 +ψ∗κ) sinφ+ψ∗τ cosψ = 0.

Corollary 3.3. (ĝ) and (̂g) are SL BO binormal surfaces iff their striction curves are B curves.

In a similar manner, all the outcomes of the tangential surface may be stated for the SL BRS.
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3.2. Bertrand offsets with a constant Disteli-axis. In this subsection, we are going to deal with

and construct BOwith a constant Disteli-axis. Therefore, via Equation 2.10, let φ̂ = φ+ εφ∗ be the

dual radii of curvature from ê to ĝ1. Then, we gain

ê(û) = cos φ̂ĝ1 − sin φ̂ĝ3, with cot φ̂ = χ̂. (3.16)

Then, we have:

χ̂(û) = χ+ ε (z− χκ) = cot φ̂ = cotφ− εφ∗(1 + cot2 φ),

κ̂(û) := κ+ εκ∗ =
√

1 + χ̂2 = 1
sin φ̂

= 1
ρ̂(û) ,

τ̂(û) := τ+ ετ∗ = ±φ̂
′

= ±χ̂
′

(1 + χ̂2)−1,

 (3.17)

where κ̂(û) is the dual curvature, and τ̂(û) is the dual torsion of the TL DC ĝ(û) ∈ S2
1.

Proposition 3.1. If the dual geodesic curvature function χ̂(û) is constant, ĝ(û) is a TL dual circle on S2
1.

Proof. From Equation 3.17 we can find that χ̂(û) is dual constant yields that τ̂(̂s) = 0, and κ̂(û) is

dual constant, which reveals that ĝ(v) is a TL dual circle on S2
1. �

Definition 3.2. A non-developable RS is a constant Disteli-axis RS if its dual geodesic curvature is
constant.

Via the E. Study map, the constant Disteli-axis SL RS (ĝ) is traced by a SL line undergoing a

Lorentzian helical locomotion of constant pitch h about the SL constant Disteli-axis ê. The pencil

of the constant Disteli-axis SL RS is necessary to the curvature theory of RS. We therefore will

hand its assets in somewhat detail.

3.2.1. Height dual functions. Via [20], a dual point ê0 ∈ S
2
1 will be coined an êk evolute of the

DC ĝ(û) ∈ S2
1; for all û such that < ê0, ĝk(û) >= 0, but < ê0, ĝk+1(û) >, 0. Here ĝk+1 signalizes the

k-th derivatives of ĝ(û) with respect to û. For the 1st evolute ê of ĝ(û), we have < ê, ĝ
′

>= ± <

ê, ĝ2 >= 0, and < ê, ĝ
′′

>= ± < ê, ĝ1+χ̂ĝ3 >, 0. So, ê is at least an ê2 evolute of ĝ(û) ∈ S2
1.

We now describe a dual function σ̂ : I ×S2
1 → D, by σ̂(û, ê0) =< ê0, ĝ >. We call σ̂ a height dual

function on ĝ(û) ∈ S2
1. We employ the entry σ̂(û) = σ̂(û, ê0) for any steady point ê0 ∈ S

2
1. Hence,

we state the following:

Proposition 3.2. Under the above hypotheses, the following holds:
i- σ̂ will be stable in the 1st estimation iff ê0 ∈ Sp{ĝ1,ĝ3}, that is,

σ̂
′

= 0⇔< ĝ, ê0>=0⇔< ĝ2, ê0>=0⇔ ê0=ĉ1 ĝ1+ĉ3 ĝ3;

for some dual numbers ĉ1, ĉ3 ∈ D, and â2
1 + â2

3 = 1.
ii- σ̂ will be stable in the 2nd estimation iff ê0 is ê2 evolute of ĝ(û) ∈ S2

1, that is,

σ̂
′

= σ̂
′′

= 0⇔ ê0= ± ê.

iii- σ̂ will be stable in the 3rd estimation iff ê0 is ê3 evolute of ê0 ∈ S
2
1, that is,

σ̂
′

= σ̂
′′

= σ̂
′′′

= 0⇔ ê0= ±̂e, and χ̂
′

, 0.
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iv- σ̂ will be stable in the 4th estimation iff ê0 is ê4 evolute of ê0 ∈ S
2
1, that is,

σ̂
′

= σ̂
′′

= σ̂
′′′

= σ̂iv = 0⇔ ê0= ±̂e, χ̂
′

= 0, and χ̂
′′

, 0.

Proof. For the 1st derivation of â we gain

σ̂
′

=< ĝ
′

, ê0>. (3.18)

So, we gain

σ̂
′

= 0⇔< ĝ2, ê0>=0⇔ ê0=ĉ1 ĝ1+ĉ3 ĝ3;

for some dual numbers ĉ1, ĉ3 ∈ D, and ĉ2
1 + ĉ2

3 = 1, the result is evident.

2- Derivation of Equation 3.18 leads to:

σ̂
′′

=< ĝ
′′

, ê0>= < ĝ1 + χ̂ĝ3, ê0> . (3.19)

By the Equations 3.18, and 3.19 we find:

σ̂
′

= σ̂
′′

= 0⇔< ĝ
′

, ê0>= < ĝ
′′

, ê0>=0⇔ ê0= ±
ĝ
′

× ĝ
′′∥∥∥ĝ′ × ĝ′′
∥∥∥ = ±̂e.

3- Derivation of Equation 3.19 leads to:

σ̂
′′′

=< ĝ
′′′

, ê0 >=
(
1 + χ̂2

)
< ĝ2, ê0>+ χ̂

′

< ĝ3, ê0> .

Hence, we have:

σ̂
′

= σ̂
′′

= σ̂
′′′

= 0⇔ ê0= ±̂e, and χ̂
′

, 0.

4- By the comparable controversy, we can also have:

σ̂
′

= σ̂
′′

= σ̂
′′′

= σ̂
′′′′

= 0⇔ ê0= ±̂e, χ̂
′

= 0, and χ̂
′′

, 0.

The proof is completed.

�

In view of the Proposition 3.1, we have the following:

(a) The TL osculating circle S(ρ̂, ê0) of ĝ(û) ∈ S2
1 is showed by

< ê0,ĝ>=ρ̂(û), <ĝ
′

, ê0 >= <ĝ
′′

, ê0 >= 0,

which are stated via the status that the osculating circle must have osculate of at least 3rd order at

ĝ(û0) iff χ̂
′

, 0.

(b) The TL osculating circle S(ρ̂, e) and the TL curve ĝ(û) ∈ S2
1 have at least 4-th order at ĝ(u0)

iff χ̂
′

= 0, and χ̂
′′

, 0.

In this gate, by capturing into meditation the evolutes of ĝ(û) ∈ S2
1, we can acquire a sequence

of evolutes ê2, ê3,..., ên. The ownerships and the joint relationships by these evolutes and their

involutes are very important matters. For instance, it is easy to have that when ê0=± ê, and χ̂
′

= 0,

ê(û) is existing at φ̂ is steady with respect to ê0. In this circumstances, the Disteli-axis is constant up

to 2nd order, and the line ĝ change positions on it with constant pitch. Thus, the SL RS (ĝ) with
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SL constant Disteli-axis is created by SL line ĝ detected at a constant distance φ∗ and constant

angle φ on the SL Disteli-axis ê, that is,

χ̂(û) := χ+ ε (z− χκ) = cot φ̂ = ĉ,

where ĉ = c + εc∗ ∈ D. By separating the real and dual parts, the following theorem can be stated:

Theorem 3.4. A non-developable SL RS (ĝ) is a constant Disteli-axis iff χ(u)=constant, and z −
χκ=constant.

Furthermore, in view of Equation 3.6 and Theorem 3.4, we have:

Corollary 3.4. The BO of a constant Disteli-axis SL RS is also a constant Disteli-axis SL RS.

However, if

χ̂(û) := χ+ ε (z− χκ) = 0 = cotφ− εφ∗(1 + cot2 φ),

then φ = π
2 , and φ∗ = 0, that is,

S(1, ê) = {ĝ∈S2
1 |< ĝ, ê >= 0; with

∥∥∥̂e
∥∥∥2

= 1}.

In this case, all the rulings of (ĝ) intersected orthogonally with the Disteli-axis. Thus, we have

χ̂(û) := χ+ ε (z− χκ) = 0⇔(ĝ) is a SL helicoidal surface.

Theorem 3.5. A non-developable SL RS (ĝ) is a helicoidal ruled surface iff χ(u) = 0, and z(u) = 0.

In view of Equation 3.6 and Theorem 3.5, we have:

Corollary 3.5. The BO of a SL helicoidal surface, in general, does not have to be a SL helicoidal surface.

3.3. Construction of the constant Disteli-axis SL RS. In this subsection, we consider the con-

struction of the constant Disteli-axis SL RS. In view of Equations 2.14 and 3.17, and since χ̂(û) is

a constant dual number we have the ODE, ĝ
′′′

− κ̂2 ĝ
′

= 0. After several algebraic manipulations,

the general solution of this equation is:

ĝ(ϑ̂) =
(
sin φ̂ cosh ϑ̂, sin φ̂ sinh ϑ̂, cos φ̂

)
, (3.20)

Here κ̂û := ϑ̂ = ϑ+ εϑ∗; where 0 ≤ ϑ ≤ 2π, and ϑ∗ ∈ R. It is readily seen that:
ĝ1

ĝ2

ĝ3

 =


sin φ̂ cosh ϑ̂ sin φ̂ sinh ϑ̂ cos φ̂

sinh ϑ̂ cosh ϑ̂ 0

cos φ̂ cosh ϑ̂ cos φ̂ sinh ϑ̂ − sin φ̂




ê1

ê2

ê3

 . (3.21)

Furthermore, in view of Equations 3.16 and 3.21 the SL Disteli-axis ê is:

ê := cos φ̂ĝ1 − sin φ̂ĝ3 = ê3. (3.22)

This shows that the instantaneous screw of the mobile Blaschke frame is the SL constant

DUV ê3. If we let ϑ̂ = ϑ(1 + εh); where h being the constant pitch of the Blaschke frame.
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By differentiation Eq (38) with respect to ϑ and after several algebraic manipulation, we have

p̂(ϑ) = (1 + εh) sin φ̂, q̂(ϑ) = (1 + εh) cos φ̂ and then

κ = φ∗ cotφ+ h and z = h tanφ−φ∗. (3.23)

From the real and dual parts of Equation 3.20, resp., we have:

g(ϑ) = (sinφ coshϑ, sinφ sinhϑ, cosφ) ,

and

g∗(ϑ) =


g∗11

g∗12

g∗13

 =

φ∗ cosφ coshϑ+ ϑ∗ sinφ sinhϑ

φ∗ cosφ sinhϑ+ ϑ∗ sinφ coshϑ

−φ∗ sinφ

 .

Let r(r1, r2, r3) be a point on ĝ. Since r× g = g∗ we have the system of linear equations in r1, r2, and

r3:

r2 cosφ− r3 sinφ sinhϑ = g∗11,

r1 cosφ− r3 sinφ coshϑ = g∗12,

(r1 sinhϑ− r2 coshϑ) sinφ = g∗13.


The matrix of coefficients of unknowns r1, r2, and r3 is

A =


0 cosφ − sinφ sinhϑ

cosφ 0 sinφ coshϑ

sinφ sinhϑ − sinφ coshϑ 0

 .

It is clear that rank(A)=2; where φ , pπ (p is an integer) and ϑ , 0. The rank of the augmented

matrix: 
0 cosφ − sinφ sinhϑ g∗11

cosφ 0 sinφ coshϑ g∗12

sinφ sinhϑ − sinφ coshϑ 0 g∗13

 ,

is 2. Then, this set has infinitely numerous solutions specfied with

r1 = φ∗ coshϑ+ (ϑ∗ + r3) tanφ sinhϑ,

r2 = φ∗ sinhϑ+ (ϑ∗ + r3) tanφ coshϑ,

−r1 sinhϑ+ r2 coshϑ = φ∗.

(3.24)

Since r3 is assumed at random, then we may set ϑ∗ + r3 = 0. In this case, Equation 3.24 reads

r1 = φ∗ coshϑ, m2 = φ∗ sinhϑ, ϑ∗ + r3 = 0.

We now just find the base curve as;

r(ϑ) = (φ∗ coshϑ,φ∗ sinhϑ,−hϑ) .

Since < r
′

, g
′

>= 0; (′ = d
dϑ ), then r(ϑ)(= c(ϑ)) is the striction curve of (ĝ). Also, it can be show

that c(ϑ) is a SL (resp. TL) if and only if
∣∣∣φ∗∣∣∣ ≤ |h| (resp. |h| ≤

∣∣∣φ∗∣∣∣). The curvature κc(ϑ) and the
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torsion τc(ϑ) are

κc(ϑ) =

∥∥∥c
′

× c
′′
∥∥∥∥∥c′

∥∥3 =
φ∗

−φ∗2 + h2 , and τc(ϑ)
det(c

′

, c
′′

, c
′′′

)∥∥c′ × c′′
∥∥2 =

h
−φ∗2 + h2 .

Then r(ϑ) is aSL (resp. TL) cylindrical helix if and only if
∣∣∣φ∗∣∣∣ ≤ |h| (resp. |h| ≤

∣∣∣φ∗∣∣∣). Furthermore,

we have

(ĝ) : Γ(ϑ, t) =


φ∗ coshϑ+ t sinφ coshϑ

φ∗ sinhϑ+ t sinφ sinhϑ

−hϑ+ t cosφ

 , (3.25)

where φ, φ∗, and h can control the shape of (ĝ). In view of the striction curve the SL RS (ĝ) can

be disseminated as follow:

(1) A SL helicoidal surface of the 3rd kind; for h = 3, φ∗ = 1, φ = π
4 , −3 ≤ ϑ ≤ 3 and −3 ≤ t ≤ 3

(Fig. 2),

(2) A SL helicoidal surface of the 2nd kind; for h = 2, φ∗ = 1, φ = π
2 , −3 ≤ ϑ ≤ 3 and −2 ≤ t ≤ 2

(Fig. 3),

(3) A SL helicoidal surface of the 1st kind; for h = 1, φ∗ = 0, φ = π
2 , −3 ≤ ϑ ≤ 3 and −2 ≤ t ≤ 2

(Fig. 4),

(5) (4) A SL cone; for h = φ∗ = 0, φ = π
4 , −3 ≤ ϑ ≤ 3 and −2 ≤ t ≤ 2 (Fig. 5),

(6) A SL cylinder; for h = φ = 0, φ∗ = 1, −2 ≤ ϑ ≤ 2 and −1 ≤ t ≤ 1 (Fig. 6).

Figure 2. A SL helicoidal surface of the 3rd kind.
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Figure 3. A SL helicoidal surface of the 2nd kind.

Figure 4. A SL helicoidal surface of the 1st kind.

Figure 5. A SL cone.5
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Figure 6. A spacelike cylinder.

On the other hand, the striction curve of (̂g), in terms of c(ϑ), can be written as:

c(ϑ) := c(ϑ) +ψ∗g2(θ) = (φ∗ coshϑ,φ∗ sinhϑ,−hϑ) +ψ∗ (sinhϑ, coshϑ, 0) . (3.26)

With the help of the Equations 3.8, 3.21 and 3.26, we obtain

(̂g) : Γ(ϑ, t) =


φ∗ coshϑ+ψ∗ sinhϑ+ t sin(φ+ψ) coshϑ

φ∗ sinhϑ+ψ∗ coshϑ+ t sin(φ+ψ) sinhϑ

−hϑ+ t cos(φ+ψ)

 . (3.27)

Example 3.1. In this example, we verify the idea of Corollary 3.5. In view of Equation 3.6 we have that:
χ̂ = cot φ̂ = 0 (φ = π

2 , φ∗ = 0)⇔ 1 + χ̂χ̂ = 0. Then,

(̂g) : Γ(θ, t) =


ψ∗ sinhϑ+ t cosψ coshϑ

ψ∗ coshϑ+ t cosψ sinhϑ

−hϑ− t sinψ

 , (3.28)

or,

(̂g) : −
x2

ψ∗2
+

y2

ψ∗2
+

Z2

β2 = 1,

where β = ψ∗ tanψ, and Z = z + hϑ. The constants h, ψ and ψ∗ can organize the constitute of the
SL RS (̂g). Hence, (̂g) is a 3-parameter pencil of hyperbolic unit spheres which are the BO of SL
helicoidal surface. The intersection of each hyperbolic unit sphere and the conformable TL plane z = hϑ
is a one-parameter pencil of hyperbola −x2 + y2 = ψ∗2 Therefore the envelope of (̂g) is a one-parameter
pencil of SL cylinders. Take ψ∗ = 1, ψ = π/4 and h = 1 for example, the SL BO is shown Fig.6; where
−3 ≤ ϑ ≤ 3 and −2 ≤ t ≤ 2. The graph of the SL helicoidal surface of the 1st kind (ĝ) and its SL BO (̂g)
is shown in Fig.7.
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Figure 7. A SL BO

Figure 8. A SL helicoidal surface of the 1st kind (ĝ) and its SL BO (̂g).

4. Conclusion

In this study, an addendum of B offsets of curves for SL ruled and developable surfaces has

been modulated. Noteworthy, there are many similarities meanwhile the SL B curves and the

BO for SL ruled surfaces. For epitome, a SL RS can have an infinity of BO in identification via a

plane curve can have an infinity ofBmates. From this outcome the conclusions of some beneficial

geometrical connections, epitomes and instructive figures of the SL ruled surfaces are ensured.

For future work, we will attract by the novel ideas that Gaussian and mean curvatures of these

Bertrand offsets can be acquired, when the W-map for the SL BO ruled surfaces is perceived. We

will also consider integrating the study of singularity and submanifold theories and so forth, given

in [21–23], with the consequences of this work to explore novel manners to find more theorems

linked to symmetric possessions on this theme.
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