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Abstract. Based on the application of the standard Adomian method, the current paper proposes two modification

approaches for the classes of the fractional differential equations and the system of fractional differential equations,

which are featured through initial-value problems. Certainly, the constructed iterative schemes for the two classes are

shown to be reliable, considering a number of test problems for demonstration, and upon deploying other existing

numerical approaches for contrasting. In fact, the proposed schemes are found to portray less error, rapidity, accuracy

and consume less computational time among others.

1. Introduction

Fractional calculus is a branch of mathematics that investigates the properties of derivatives

and integrals of non-integer orders (also known as fractional derivatives and integrals; briefly

fractional calculus). The differential equations of fractional order are generalizations of classical

differential equations of integer order. Compared with the integer order calculus, many real-world

phenomena can be better described by using the fractional operator [1, 2]. They are increasingly

used in such fields as fluid flow, control theory of dynamical systems, diffusive transport akin to

diffusion, probability, and statistics [3,4]. Moreover, since most fractional differential equations do

not have exact analytical solutions, approximate and numerical techniques are used extensively

to treat the fractional differential models, including, for example, the homotopy analysis method

[5], homotopy perturbation approach [6], variational iteration technique [7], Chebyshev spectral

method [8], orthogonal polynomial method [9], Grunwald-Letnikov method [10], fractional Adams

method [11], and several other methods; read [12, 13] and the given references therewith.
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Moreover, the base method of the present paper is the Adomian decomposition method

(ADM) [14], which is a potent semi-analytical approach that was initiated by George Adomian

in the mid 1980’s. For more on the convergence of the ADM when applied to different types of

functional equations, one may read the famous work of Abbaoui and Cherruault [15], and the

comprehensive review work by Duan et al. [16] with regards to the method and its applications to

fractional functional equations; see also Sadeghinia and Kumar [17] for the extension of the method

to the class of multi-term fractional differential equations. Besides, this method is widely used in

solving real-life problems that are modeled in both differential equations and fractional differential

equations; in particular, Guo [18], and Afreen and Raheem [19] recently employed ADM to solve

fractional differential equations and a system of nonlinear fractional differential equations, respec-

tively. In addition, the ADM has seen several modifications with the view to improve its accuracy,

rapidity, reduction in computational time, or even improvement to fit various classes of functional

equations to mention a few. What is more, the powerful modifications of ADM demonstrated a

rapid convergence of the series solution if compared with the standard ADM, and therefore, pre-

sented major progress. The modification of ADM has been shown to be computationally efficient

in several models, which are important to researchers in applied science [20, 21].

However, the purpose of this study is to extend the modification of the ADM, which was

recently given in [22–25] for different types of initial-value problems of the classical differential

equations to the classes of fractional differential equations and systems of fractional differential

equations. Indeed, with the modification method to be proposed, promising iterative schemes

are set to be constructed with regard to both the fractional differential equations and systems of

fractional differential equations; in addition, certain numerical test models will be considered to

illustrate the application of the devised modified approach. Furthermore, the study will equally

beseech some efficient numerical methods from the open literature to assess the competence of

the proposed approach in order to establish a comparative study. Finally, the organization of

the manuscripts follows the following order: Section 2 recalls some basics on fractional calculus;

Section 3 outlines the two modified approaches to the fractional differential equations and systems

of fractional differential equations; Section 4 applies the constructed scheme on certain test models,

while Section 5 presents some concluding notes.

2. Basic definitions and properties of the fractional calculus

Some basic definitions and properties of the fractional calculus theory are given in this section.

Indeed, these definitions and properties are reported in renowned books, read [1, 2].

Definition 2.1. For a function y(x) ∈ C([a, b]) and a < x < b, the Riemann-Liouville fractional integral
operator of order α > 0 is defined as

Iαa y(x) =
1

Γ(α)

∫ x

a
y(t)(x− t)α−1dt. (2.1)
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Note from the above that for α = 0, we have I0
a y(x) = y(x), which is the identity operator. Additionally,

when α ∈N, then Iαa y(x) coincides with that classical integral.

Definition 2.2. For y(x) ∈ C([a, b]), the Caputo fractional derivative of order α > 0 is defined by

Dα
∗ y(x) =

Im−αy(m)(x), m− 1 < α < m,
dm

dtm y(t), α = m.
(2.2)

Property 2.3. In fact, based on the aforementioned definitions, we outline some important proper-

ties for the fractional deferential and integral operators in what follows.

i).

IαIβy(x) = Iα+βy(x), α, β ≥ 0. (2.3)

ii).

IαDα
∗ y(x) = y(x) −

m−1∑
k=0

y(k)(0+)
xk

Γ(k + 1)
, (2.4)

where m− 1 < α ≤ m.

iii).

IαDβ
∗ y(x) = Iβ−αy(x) −

m−1∑
k=0

y(k)(0+)
xk−α+β

Γ(k− α+ β+ 1)
, (2.5)

where m− 1 < β, α ≤ m, and β < α.

iv).

Iαxn =
Γ(n + 1)

Γ(α+ n + 1)
xn+α, x > 0, (2.6)

where m− 1 < α ≤ m, n > −1.

v).

Dα
∗C = 0, where C is a real constant. (2.7)

vi).

Dα
∗ x

n =

 0, n < m− 1,
Γ(n+1)

Γ(n+1−α)xn−α, n ≥ m− 1.
(2.8)

Moreover, the above outline properties of the fractional calculus will be used in deriving the

resulting iterative schemes for the fractional differential equations and systems of fractional dif-

ferential equations. In addition, Caputo’s fractional derivative [1,2] would particularly be used in

the present study. Indeed, the choice of Caputo’s fractional definition is owing to its application

in perfectly modeling a variety of real-life scenarios; besides, the initial conditions of the classical

calculus are rightly used in Caputo’s fractional models without the need to infuse fractional orders

in the prescribed initial and boundary data.
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3. Modified Adomian decomposition method

This section presents the modified Adomian decomposition methods (MADMs) for the solution

of initial-value problems (IVPs) for fractional differential equations and systems of fractional

differential equations.

3.1. MADM for fractional differential equations. To exhibit the MADM for fractional differential

equations, we make consideration of the IVP for the nonlinear fractional differential equation as

follows

Dα
∗ y(x) + Ry(x) + Ny(x) = g(x), ff > 0. (3.1)

yk(0) = ck, k = 0, 1, 2, ..., m− 1, m− 1 < α < m.

In the above equation, y(x) is the unknown function, Dα
∗ is the Caputo fractional derivative operator

of high-order α, which is easily invertible, N is the nonlinear operator, R is the remaining linear

operator which might include other Caputo fractional derivative operators Dv
∗ (v < α) and g is the

given source function.

Next, to solve the governing IVP, we operate on Eq. Iα on both sides of (3.1), which is indeed

the inverse operator of Dα
∗ , and further make use of (2.4) to obtain

Iα[Dα
∗ y(x) + Ry(x) + Ny(x)] = Iα[g(x)]. (3.2)

Thus, from the above equation, one gets

y(x) =
m−1∑
n=0

ck
xk

k!
+ [Iαg(x)] − [IαRy(x)] − [IαNy(x)]. (3.3)

or equally upon writing the latter equation using the standard Adomian decomposition method

way the following

∞∑
n=0

yn(x) =
m−1∑
n=0

ck
xk

k!
+ [Iαg(x)] − [IαR

∞∑
n=0

yn(x)] − [Iα
∞∑

n=0

An(x)], (3.4)

where An’s are the Adomian polynomials, which are to be computed using the following compacted

formula

An =
1
n!

dn

dλn

N
 ∞∑

i=0

λiyi



λ=0

, n = 0, 1, 2, . . . .

Notably, from (3.4), the solution of the equation y(x) is decomposed into a sum of infinite compo-

nents yn, for n = 0, 1, 2, ..., that it, y(x) =
∞∑

n=0
yn(x). Further, MADM requires the addition of the

expression

Iα[
∞∑

n=0

anxn] − pIα[
∞∑

n=0

anxn],

into (3.4), where p is an artificial parameter and for all n ∈N∪ 0, and an are unknown coefficients.

Hence, on adding the above expression to (3.4), one obtains the following
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∞∑
n=0

yn(x) =
m−1∑
n=0

ck
xk

k!
+ [Iαg(x)] + Iα[

∞∑
n=0

anxn]− pIα[
∞∑

n=0

anxn]− [IαR
∞∑

n=0

yn(x)]− [Iα
∞∑

n=0

An(x)], (3.5)

which subsequently reveals the formal recursive scheme for the governing IVP as follows
y0(x) =

∑m−1
n=0 ck

xk

k! + Iα[
∑
∞

n=0 anxn],

y1(x) = [Iαg(x)] − pIα[
∑
∞

n=0 anxn] − IαR[y0(x)] − Iα[A0],

yn+1(x) = −IαR[yn(x)] − Iα[An], n ≥ 1.

(3.6)

In fact, to avoid the calculation of An, for n = 0, 1, 2, ..., we calculate the values of the coefficients

an for n = 0, 1, 2, ..., by setting y1(x) = 0 for all n ≥1. More precisely, setting p = 1, we get a hold

of the solution of the governing IVP in the following form

y(x) =
m−1∑
n=0

ck
xk

k!
+ Iα[

∞∑
n=0

anxn]. (3.7)

3.2. MADM for systems of fractional differential equations. Accordingly, we make considera-

tion of the coupled system of IVP, featuring nonlinear fractional differential equations as follows

Dαi
∗ yi(x) = Li(y1, y2, .., ym) + Ni(y1, y2, .., ym) + gi(x), (3.8)

i = 1, 2, ..., n, mi−1 ≤ α ≤ mi,

yki
i (0) = ci

k, ki = 0, 1, 2, ..., mi−1,

with Li and Ni representing the linear and nonlinear operators, respectively.

As proceed, the application of MADM begins by expressing the governing coupled model in

operator notation. Thus, we apply Iαi , the inverse operator of Dαi
∗ for i = 1, 2, ..., n on both sides of

(3.8) to get

Iαi [Dαi
∗ yi(x)] = Iαi [gi(x)] + Iαi [Li(y1, y2, .., ym) + Ni(y1, y2, .., ym)], (3.9)

or equally upon using the initial data the following

yi(x) =
m−1∑
n=0

ck
xk

k!
+ [Iαi gi(x)] + Iαi [Li(y1, y2, .., ym) + Ni(y1, y2, .., ym)]. (3.10)

Next, when using the standard Adomian’s method, the above equation is re-expressed as follow

∞∑
n=0

yi,n(x) =
m−1∑
n=0

ck
xk

k!
+ [Iαi gi(x)] + [Iαi

∞∑
n=0

yi,n(x)] + [Iαi

∞∑
n=0

Ai,n(x)], (3.11)

where in the above, the solution yi(x) is decomposed into a sum of infinite components yi,n(x), for

i = 0, 1, 2, ...n, and n = 0, 1, 2, ..., that it, yi(x) =
∞∑

n=0
yi,n(x), while the Adomian polynomials Ai,n’s

follow as in the preceding scenario.
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Further, MADM requires the addition of the following expression

Iαi [
∞∑

n=0

anxn] − pIαi [
∞∑

n=0

anxn],

into (3.11), where p is equally an artificial parameter and for all n ∈ N ∪ 0, and an are unknown

coefficients. Hence, the latter equation transforms to the following

∞∑
n=0

yi,n(x) =
m−1∑
n=0

ck
xk

k!
+ [Iαi gi(x)] + Iαi [

∞∑
n=0

anxn] − pIαi [
∞∑

n=0

anxn] + [Iαi

∞∑
n=0

yi,n(x)] + [Iαi

∞∑
n=0

Ai,n(x)],

(3.12)

which subsequently gives the formal recursive scheme for the governing coupled system of frac-

tional models as follows
yi,0(x) =

∑m−1
n=0 ck

xk

k! + Iαi [
∑
∞

n=0 anxn],

yi,1(x) = [Iαi gi(x)] − pIαi [
∑
∞

n=0 anxn] + [Iαi yi,0(x)] + [IαiAi,0(x)],

yi,n+1(x) = [Iαi yi,n(x)] + [IαiAi,n(x)], n ≥ 1.

(3.13)

Consequently, to suppress the computation of An, n = 0, 1, 2, ..., one finds only the coefficients

an for n = 0, 1, 2, ..., through setting y1(x) = 0 for all n ≥1. Specifically, with these assumptions,

and upon setting p = 1, the overall recursive solution for the governing coupled system of the

fractional differential equation is determined in the following series form

yi(x) =
m−1∑
n=0

ck
xk

k!
+ Iαi [

∞∑
n=0

anxn]. (3.14)

4. Numerical applications

This section makes use of some test IVPs to ascertain the effectiveness of the proposed recursive

schemes by MADM numerically for the two classes of the fractional differential equations under

consideration. Indeed, several test models would be considered and further compared with the

approximate solutions reported in [26,27]. In the same vein, additional numerical methods would

be sought to assess the reliability of the proposed MADM.

Example 4.1. Consider the linear nonhomogeneous IVP for Bagley-Torvik equation [26]

D2
∗ y(x) + D0.5

∗ y(x) + y(x) = x2 + 2 +
2.6666666667x1.5

Γ(1/2)
, y(0) = y′(0) = 0. (4.1)

To solve (4.1) by using MADM we apply the inverse operator I2 on both sides of the equation

and thereafter makes use of MADM to obtain the following
∞∑

n=0

yn(x) = I2[x2 + 2 +
2.6666666667x1.5

Γ(1/2)
] + I2[

∞∑
n=0

anxn]

− pI2[
∞∑

n=0

anxn] − I2[D0.5
∗

∞∑
n=0

yn(x)] − I2[
∞∑

n=0

yn(x)].
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Therefore, the formal recursive scheme for the IVP is revealed as followsy0(x) = I2[
∑
∞

n=0 anxn].

y1(x) = I2[x2 + 2 + 2.6666666667x1.5

Γ(1/2) ] − pI2[
∑
∞

n=0 anxn] − I2[D0.5
∗ y0(x)] − I2[y0(x)].

which when expressed explicitly gives

y0(x) =
a0x2

2
+

a1x3

6
+

a2x4

12
+ . . . ,

y1(x) =
x4

12
+ x2 + 0.1719434921x7/2

−
pa0x2

2
−

pa1x3

6
−

pa2x4

12
+ · · · − 0.085797174606a0x7/2

− 0.01910483245a1x9/2
− 0.04168327078a2x11/2

−
a0x4

24
−

a1x5

120
−

a2x6

720
+ . . . .

Next, putting y1(x) = 0, we compute ai, for i = 0, 1, . . . , that is

y1(x) = (1−
pa0

2
)x2 + (

−pa1

6
)x3 + (

1
12
−

pa2

12
−

a0

24
)x4 + (

−a1

120
)x5 + (

−a2

720
)x6 + · · · = 0, (4.2)

which when setting p = 1, reveals a0 = 2, a1 = a2 = 0. Therefore, on substituting these values of

a0, a1 and a2 into y0(x), one gets the exact solution as follows

y(x) = x2, (4.3)

which indeed gives the exact solution for the IVP (4.1).

Notably, Shiralashetti and Deshi [26] solved the linear fractional IVP expressed in (4.1) through

the application of the Haar wavelet collocation method and obtained the resulting approximate

solution by calculating 8 terms. However, the proposed MADM revealed the exact solution while

using only 2 terms. Moreover, we establish a comparative analysis between the proposed solution

and that of the Haar wavelet collocation method presented in [26] in Table (1). In addition, we

besiege the approaches presented in [27], in the presence of the Haar wavelet collocation method

presented in [26] to further affirm the accuracy of the proposed MADM approach; see Table (2) for

the simulated error difference analysis.
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Table 1. Comparison of absolute errors between the Haar wavelet collocation
method’s solution [26] and the proposed MADM’s solution with respect to the
exact solution for the fractional IVP (4.1).

x Haar
wavelets
method [26]

Exact solution MADM Absolute error
in [26] with ex-
act solution

Absolute error
MADM with
exact solution

1/16 0.0039062498 0.0039062500 0.0039062500 2.000× 10−10 0
3/16 0.0351562489 0.0351562500 0.0351562500 1.1000× 10−9 0
5/16 0.0976562477 0.0976562500 0.0976562500 2.3000× 10−9 0
7/16 0.1914062468 0.1914062500 0.1914062500 3.2000× 10−9 0
9/16 0.3164062465 0.3164062500 0.3164062500 3.5000× 10−9 0
11/16 0.4726562466 0.4726562500 0.4726562500 3.4000× 10−9 0
13/16 0.6601562460 0.6601562500 0.6601562500 4.0000× 10−9 0
15/16 0.8789062455 0.8789062500 0.8789062500 4.5000× 10−9 0

Table 2. Comparison of various absolute error differences for the fractional IVP
(4.1)

x Method
(1a) [27]

Method
(1b) [27]

Method (2)
[27]

Method (3)
[27]

Haar wavelets
method [26]

MADM

1/32 4.84× 10−3 1.30× 10−2 9.08× 10−4 4.84× 10−3 5.2585× 10−12 0
1/64 1.66× 10−3 7.40× 10−3 3.32× 10−4 1.66× 10−3 2.4630× 10−13 0
1/128 5.74× 10−4 4.02× 10−3 1.20× 10−4 5.74× 10−4 3.3482× 10−16 0
1/256 2.00× 10−4 2.12× 10−3 4.30× 10−5 2.00× 10−4 5.5057× 10−21 0
1/512 7.00× 10−5 1.10× 10−3 1.54× 10−5 7.00× 10−5 4.2352× 10−22 0

Example 4.2. Consider the nonlinear fractional IVP [26]

aD2
∗ y(x) + bDα

∗ y(x) + cDβ
∗ y(x) + ey3(x) = 2ax +

2bx3−α

Γ(4− α)
+

2cx3−β

Γ(4− β)
+

ex9

27
, (4.4)

where 0 < α, β ≤ 1 and a = 1, b = 2, c = 1/2, e = 1,α = 0.07621 and β = 0.00196; together with the
following initial conditions

y(0) = y′(0) = 0.

To begin with, we explicitly rewrite the equation by using the above constants as follows

D2
∗ y(x) + 2D0.07621

∗ y(x) +
1
2

D0.00196
∗ y(x) + y3(x) = 2x +

4x2.92374

Γ(3.92374)
+

x2.99804

Γ(3.99804)
+

x9

27
. (4.5)

Therefore, to solve (4.5) using MADM with the prescribed initial data, we apply the inverse

operator I2 on both sides of the equation, and thus obtain the following
∞∑

n=0

yn(x) = I2[2x +
4x2.92374

Γ(3.92374)
+

x2.99804

Γ(3.99804)
+

x9

27
] + I2[

∞∑
n=0

anxn]

− pI2[
∞∑

n=0

anxn] − 2I2[D0.07621
∗

∞∑
n=0

yn(x)] −
1
2

I2[D0.00196
∗

∞∑
n=0

yn(x)] − I2[
∞∑

n=0

An(x)],
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where An(x)’s are the Adomian polynomial for nonlinear term y3(x). In fact, upon using the given

formula in Section 3 for the acquisition of Adomian polynomials, one get the polynomials for the

y3(x) as follows

A0 = y3
0,

A1 = 3(y0)
2y1,

A2 = 3(y0)
2y2 + 3y2

1y0,

A3 = 3(y0)
2y3 + 6y0y1y2 + y3

1,

...

(4.6)

Accordingly, the recursive scheme is obtain as follows
y0(x) = I2[

∑
∞

n=0 anxn],

y1(x) = I2[2x + 4x2.92374

Γ(3.92374) +
x2.99804

Γ(3.99804) +
x9

27 ] − pI2[
∑
∞

n=0 anxn] − 2I2[D0.07621
∗ y0(x)]

−
1
2 I2[D0.00196

∗ y0(x)] − I2[A0(x)],

or in more details as follows

y0(x) =
a0x2

2
+

a1x3

6
+

a2x4

12
+ . . . ,

y1(x) =
x3

3
+ 0.03794496196x4.9237 + 0.008361243657x4.9980 +

x11

2970
−

pa0x2

2
−

pa1x3

6
−

pa2x4

12
+ . . .

− 2I2[D0.07621
∗ [

a0x2

2
+

a1x3

6
+

a2x4

12
+ . . . ]] −

1
2

I2[D0.07621
∗ [

a0x2

2
+

a1x3

6
+

a2x4

12
+ . . . ]]

− [
a3

0x8

448
+

a3
1x11

23760
+

a3
2x14

314496
+ . . . ].

In addition, we determine the values of ai for i = 0, 1, ..., from the above by setting y1(x) = 0 in

order to bypass the computations of the Adomian polynomials An. Thus, setting y1(x) = 0, one

gets

y1(x) = (
−pa0

2
)x2 + (

1
3
−

pa1

6
)x3 + (

−pa2

12
)x4 + (

−pa3
0

448
)x8 + (

−pa3
1

23760
+

1
2970

)x11 + · · · = 0, (4.7)

upon which when fixing p = 1 reveals the values of the coefficients as follows a0 = 0, a1 = 2, and

a2 = 0. Therefore, on substituting these values back into y0(x), one obtains

y(x) =
1
3

x3, (4.8)

which is indeed the required exact solution for (4.5).

Accordingly, Shiralashetti and Deshi [26] equally solved the governing nonlinear fractional IVP

(4.5) with the help of Haar wavelet collocation, where the approximate solution was reported by

calculating the first 8 terms. However, MADM gives a better result by calculating only 2 terms.

Moreover, we report the absolute error differences between the MADM’s solution and the Haar
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wavelet collocation method’s solution in Table (3). Certainly, the proposed MADM outperformed

the contending method.

Table 3. Comparison of absolute errors between the Haar wavelet collocation
method’s solution [26] and the proposed MADM’s solution with respect to the
exact solution for the fractional IVP (4.5)

x Haar
wavelets
method
[26]

Exact so-
lution

ADM
[28]

MADM Absolute
error in [26]
with exact

Absolute
error ADM
with exact
solu-
tion [28]

Absolute
error
MADM
with exact
solution

1/16 0.000243 0.000081 0.000081 0.000081 1.61× 10−4 0 0
3/16 0.002674 0.002197 0.002197 0.002197 4.77× 10−4 0 0
5/16 0.010945 0.010172 0.010171 0.010172 7.72× 10−4 1× 10−6 0
7/16 0.028947 0.027913 0.027903 0.027913 1.034× 10−3 1× 10−5 0
9/16 0.060578 0.059326 0.059268 0.059326 1.252× 10−3 5.7× 10−5 0
11/16 0.109736 0.108317 0.108089 0.108317 1.419× 10−3 2.27× 10−4 0
13/16 0.180320 0.178792 0.178074 0.178792 1.527× 10−3 7.17× 10−4 0
15/16 0.276231 0.274658 0.272742 0.274658 1.573× 10−3 1.915× 10−3 0

Example 4.3. Consider nonlinear fractional IVP [29]

D4
∗ y(x) + D7/2

∗ y(x) + y3(x) = x9, y(0) = y′(0) = y′′(0) = 0, y′′′(0) = 6. (4.9)

As a result, solving the nonlinear fractional IVP expressed in (4.9) by MADM requires the

expression of the IVP in an operator form. Therefore, on doing so, and upon applying the inverse

operator I4 on both sides of the equation, MADM thus gives
∞∑

n=0

yn(x) = x3 + I4[x9] + I4[
∞∑

n=0

anxn] − pI4[
∞∑

n=0

anxn] − I4[D7/2
∗

∞∑
n=0

yn(x)] − I4[
∞∑

n=0

An(x)],

where An(x) are the Adomian polynomial for nonlinear term y3(x); see (4.6) for the explicit

expression for some of these polynomial for y3(x). Moreover, the resulting recursive scheme is

thus obtained as followsy0(x) = x3 + I4[
∑
∞

n=0 anxn],

y1(x) = I4[x9] − pI2[
∑
∞

n=0 anxn] − I4[D7/2
∗

∑
∞

n=0 yn(x)] − I4[
∑
∞

n=0 An(x)],

or more explicitly as follows

y0(x) = x3 +
a0x4

24
+

a1x5

120
+

a2x6

360
+ . . . ,

y1(x) =
x13

17160
−

pa0x4

24
−

pa1x5

120
−

pa2x6

360
− 0.5158304763x7/2

− 0.01910483264a0x9/2

− · · · −
x3

17160
− . . . .

(4.10)
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Equally, we bypass the computation of the Adomian polynomial An by computing the values of

the coefficients ai, for i = 0, 1, ..., by equating y1(x) = 0, that is,

y1(x) = (
−pa0

24
)x4 + (−

pa1

120
)x5 + (−

pa2

360
)x6 + · · · = 0. (4.11)

What is more, on further setting p = 1 gives a0 = 0, a1 = 0 and a2 = 0, upon which when substitute

these values into y0(x) yields the following solution

y(x) = x3, (4.12)

which is indeed the required exact solution for (4.9). Notably, Yang [29] made use of the Legendre

polynomial method to equally solve the governing nonlinear fractional IVP in (4.9). However, in

Yang [29] approach, the approximate solution was acquired after calculating the first 4 terms of the

series; which is against the present MADM, which perfectly gives the exact solution by calculating

the first 2 terms.

Example 4.4. Consider the system of linear fractional IVPs as follows [30]D1.5
∗ y1 = y2, y1(0) = y′1(0) = 1,

D0.5
∗ y2 = −y2 − y1 + 1 + x, y2(0) = 0.

(4.13)

Consequently, upon applying the related inverse operators on both sides of the respective

equations, alongside utilizing the MADM procedure, one gets the following equations
∑
∞

n=0 yn,1(x) = I1.5[
∑
∞

n=0 yn,2] + 1 + x + I1.5[
∑
∞

n=0 anxn] − pI1.5[
∑
∞

n=0 anxn],∑
∞

n=0 yn,2(x) = I0.5[−
∑
∞

n=0 yn,2 −
∑
∞

n=0 yn,1 + 1 + x] + I0.5[
∑
∞

n=0 anxn]

− pI0.5[
∑
∞

n=0 anxn].

(4.14)

Moreover, the recursive schemes in yn,1(x) and yn,2(x) for n = 0, 1 are accordingly obtained as

follow 
y0,1(x) = 1 + x + I1.5[

∑
∞

n=0 anxn] = 1 + x + a0x1.5

1.5Γ(1.5) +
a1x2.5

Γ(2+1.5) + 2 a2x3.5

1.5Γ(3+1.5) + . . . ,

y0,2(x) = I0.5[
∑
∞

n=0 anxn] + I0.5[x + 1] = x0.5

0.5Γ(0.5) +
x1.5

Γ(2.5) + a0
x0.5

0.5Γ(0.5) + a1
x1.5

Γ(2.5)

+ a2
2x2.5

Γ(3.5) + . . . .
y1,1(x) = I1.5[y0,2] − pI1.5[

∑
∞

n=0 anxn] = −p a0x1.5

1.5Γ(1.5) − p a1x2.5

Γ(2+1.5) − 2p a2x3.5

1.5Γ(3+1.5) − . . . ,

y1,2(x) = I0.5[−y0,2 − y0,1] − pI0.5[
∑
∞

n=0 anxn] = −pa0
x0.5

0.5Γ(0.5) − pa1
x1.5

Γ(2.5) − pa2
2x2.5

Γ(3.5)

−
xΓ(1.5)

1 −
x2Γ(2.5)

2 − a0
xΓ(1.5)

1 − a1
x2Γ(2.5)

2 − . . . .

Further, on equating y1,1(x) and y1,2(x) to zero, that is, y1,1(x) = 0 and y1,2(x) = 0, one gets
y1,1(x) = I1.5[y0,2] − pI1.5[

∑
∞

n=0 anxn] = −p a0x1.5

1.5Γ(1.5) − p a1x2.5

Γ(2+1.5) − 2p a2x3.5

1.5Γ(3+1.5) − · · · = 0,

y1,2(x) = I0.5[−y0,2 − y0,1] − pI0.5[
∑
∞

n=0 anxn] = −pa0
x0.5

0.5Γ(0.5) − pa1
x1.5

Γ(2.5) − pa2
2x2.5

Γ(3.5)

−
xΓ(1.5)

1 −
x2Γ(2.5)

2 − a0
xΓ(1.5)

1 − a1
x2Γ(2.5)

2 − · · · = 0,
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which eventually yields a0 = a1 = −1 and a2 = 0 from y1,2(x) = 0, and a0 = a1 = a2 = 0 from

y1,1(x) = 0. Therefore, on substituting the respective values into y0,1(x) and y0,2(x), one gets the

overall solution of the system of coupled fractional IVPs as followsy1(x) = 1 + x,

y2(x) = 0.
(4.15)

Example 4.5. Consider the system of nonlinear fractional IVPs as follows [30],D2.5
∗ y1 = y2, y1(0) = y′1(0) = 0, y′′(0) = 2,

D0.5
∗ y2 = −y2 − y2

1 + x4, y2(0) = 0.
(4.16)

In the same passion, and as detailed above, MADM portrays the coupled recurrent equations
∑
∞

n=0 yn,1(x) = I2.5[
∑
∞

n=0 yn,2] + x2 + I2.5[
∑
∞

n=0 anxn] − pI2.5[
∑
∞

n=0 anxn],∑
∞

n=0 yn,2(x) = I0.5[−
∑
∞

n=0 yn,2 −
∑
∞

n=0 An + x4] + I0.5[
∑
∞

n=0 anxn] − pI0.5[
∑
∞

n=0 anxn],
(4.17)

where An(x)’s are the Adomian polynomials corresponding to the nonlinear term y2(x), and which

take the following explicit forms

A0 = y2
0,

A1 = 2y0y1,

A2 = 2y0y2 + y2
1,

...y0,1(x) = x2 + I2.5[
∑
∞

n=0 anxn] = x2 + a0x2.5

2.5Γ(2.5) +
a1x3.5

Γ(4.5) + 2 a2x4.5

Γ(5.5) + . . . ,

y0,2(x) = I0.5[
∑
∞

n=0 anxn] + I0.5[x4] =
x4.5Γ(5)
Γ(5.5) + a0

x0.5

0.5Γ(0.5) + a1
x1.5

Γ(2.5) + a2
2x2.5

Γ(3.5) + . . . .

Accordingly, the recursive schemes take the following forms
y1,1(x) = −pI2.5[

∑
∞

n=0 anxn] + I2.5[y0,2] = −p a0x2.5

2.5Γ(2.5) − p a1x3.5

Γ(4.5) − 2p a2x4.5

Γ(5.5) + . . . ,

y1,2(x) = I0.5[−y0,2 −A1] − pI0.5[
∑
∞

n=0 anxn] = −pa0
x0.5

0.5Γ(0.5) − pa1
x1.5

Γ(2.5) − pa2
2x2.5

Γ(3.5)

−
x4.5Γ(5)
Γ(5.5) − pa0

x3Γ(3.5)
Γ(4) − . . . .

In the same way, set y1,1(x) = 0 and y1,2(x) = 0, and obtain from the latter equations the followingy1,1(x) = −p a0x2.5

2.5Γ(2.5) − p a1x3.5

Γ(4.5) − 2p a2x4.5

Γ(5.5) + · · · = 0,

y1,2(x) = −pa0
x0.5

0.5Γ(0.5) − pa1
x1.5

Γ(2.5) − pa2
2x2.5

Γ(3.5) −
x4.5Γ(5)
Γ(5.5) − pa0

x3Γ(3.5)
Γ(4) − · · · = 0,

where y1,2(x) = 0 yields a0 = a1 = a2 = 0, while y1,1(x) = 0 equally yields a0 = a1 = a2 = 0. Thus,

on substituting these values in the respective equation, one gets the solution of the coupled system
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of fractional IVPs as follows y1(x) = x2,

y2(x) = 0,

which indeed satisfies the governing coupled nonlinear model (4.16).

5. Conclusion

In this study, effective modification methods for the solution of the classes of fractional differ-

ential equations and system of fractional differential equations have been successfully proposed

and further applied to several linear and nonlinear test initial-value problems. Certainly, it was

observed that the proposed MADMs reduce the number of iterations greatly owing to the fact that

only y0 and y1 are utilized; unlike the standard ADM, which uses uncountable iterates. Hence the

size of the computation is hugely minimized in comparison with the standard ADM. Moreover,

the proposed approaches were equally noted to reduce the number of Adomian polynomials to

be constructed as only A0 is relevant. Thus, we can conclude that the proposed MADMs, in com-

parison with the standard ADM and several other numerical approaches are efficient, especially

looking at the revelation that they are rapid, accurate, less error, and consume less computational

time among others.
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publication of this paper.
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