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SOME COUPLED COINCIDENCE POINTS RESULTS OF

MONOTONE MAPPINGS IN PARTIALLY ORDERED METRIC

SPACES

STOJAN RADENOVIĆ

Abstract. In this paper, we introduce the concepts of a monotone mappings

and monotone mapping with respect to other mapping to obtain some cou-
pled coincidence point results in partially ordered metric spaces. Our results

generalize, extend and complement various comparable results in the existing

literature.

1. Introduction and preliminaries

The existence of fixed points in partially ordered metric spaces was first investi-
gated in 2004 by Ran and Reurings [19], and then by Nieto and Lopez [13]. Further
results in this direction were proved, e.g ([2], [3], [4], [7], [9], [17], [20]. Results on
weak contractive mappings in such spaces, together with applications to differential
equations, were obtained by Harjani and Sadarangani in [10].

The notion of a coupled fixed point was introduced and studied by Opoitsev ([14]-
[16]) and then by Guo and Lakshmikantham [8]. Bhashkar and Lakshmikantham
in [5] introduced the concept of a coupled fixed point of a mapping F : X×X → X
and investigated some coupled fixed point theorems in partially ordered complete
metric spaces. They also discussed an application of their result by investigating
the existence and uniqueness of solution for a periodic boundary value problem.
Choudhury and Kundu [6] obtained coupled coincidence point results in partially
ordered metric spaces for compatible mappings.

Recently, Abbas et al. [1] proved coupled coincidence and coupled common fixed
point results in cone metric spaces for w− compatible mappings (see also, [11]).
The aim of this paper is to prove some coupled coincidence points results for so-
called monotone mappings or monotone mappings with respect some other mapping
in partially ordered metric spaces. The results presented in this paper generalize,
extend and complement various comparable results in the existing literature ([5, 6,
11, 12, 18]).

We start with the following.
Definition 1.1. [12] Let (X,�) be a partially ordered set. A mapping F :
X ×X → X is a monotone with respect to g : X → X, if for any x, y ∈ X,

x1, x2 ∈ X, gx1 � gx2 implies F (x1, y) � F (x2, y),
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and

y1, y2 ∈ X, gy1 � gy2 implies F (x, y1) � F (x, y2).

If we take g = IX (an identity mapping on X ), then F is a monotone mapping
on X. ([5]).
Definition 1.2. [5] An element (x, y) ∈ X ×X is called a coupled fixed point of
mapping F : X ×X → X if x = F (x, y) and y = F (y, x).
Definition 1.3. [1] An element (x, y) ∈ X ×X is called:

a coupled coincidence point of mappings F : X×X → X and g : X → X if g(x) =
F (x, y) and g(y) = F (y, x), and (gx, gy) is called coupled point of coincidence;

a common coupled fixed point of mappings F : X ×X → X and g : X → X if
x = g(x) = F (x, y) and y = g(y) = F (y, x).
Definition 1.4. [18] Let (X,�) be an ordered set and d be a metric on X. We say
that (X, d,�) is regular if it has the following properties:

(i) if for non-decreasing sequence {xn} holds d (xn, x) → 0, then xn � x for all
n,

(ii) if for non-increasing sequence {yn}holds d (xn, x) → 0 , then yn � y for all
n.

2. Main results

All the results in [2], [5], [6], [7], [9], [10], [18] are obtained for mixed monotone
mappings, that is., for mappings F : X×X → X which are increasing with respect
to the first variable and decreasing with respect to the second variable.

It is our main aim in this paper to consider coupled coincidence points of map-
pings which are of the same monotonicity with respect to both variables.

Now, we start with the following result.
Theorem 2.1. Let (X, d,�) be a partially ordered metric space. Suppose that a
mapping F : X ×X → X is a monotone with respect to g : X → X and

d(F (x, y), F (u, v)) + d (F (y, x) , F (v, u))

≤ φ(max{d(gx, gu) + d(gy, gv)

2
,
d(F (x, y), gx) + d(F (x, y), gu)

2
,

(2.1)
d(gy, gv) + d(F (x, y), gx)

2
,
d(gy, gv) + d(F (x, y), gu)

2
})

for all x, y, u, v ∈ X, for which g(x) � g(u) and g(y) � g(v), where φ : [0,∞) →
[0,∞) is continuous, nondecreasing function such that φ(t) < t for all t > 0. If
F (X ×X) is contained in a complete set g(X), (X, d �) is a regular and if there
exist x0, y0 ∈ X such that

g(x0) � F (x0, y0) and g(y0) � F (y0, x0),

then there exist x, y ∈ X such that g (x) = F (x, y) and g (y) = F (y, x) .
Proof. Let x0, y0 ∈ X be such that g(x0) � F (x0, y0) and g(y0) � F (y0, x0).
Set gx1 = F (x0, y0) and gy1 = F (y0, x0), this can be done as F (X ×X) ⊆ g(X).
Similarly, g(x2) = F (x1, y1) and g(y2) = F (y1, x1) because F (X × X) ⊆ g(X).
Continuing this process we can construct sequences {xn} and {yn} in X such that

(2.2) g(xn+1) = F (xn, yn) and g(yn+1) = F (yn, xn) for all n ≥ 0.

We shall show that g(xn) � g(xn+1) and g(yn) � g(yn+1) for all n ≥ 0.
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By induction, let n = 0. Since gx0 � F (x0, y0) and gy0 � F (y0, x0) also gx1 =
F (x0, y0) and gy1 = F (y0, x0), so that gx0 � gx1 and gy0 � gy1. Now, let it
holds for some fixed n ≥ 0. Since gxn � gxn+1 and gyn � gyn+1, and as F is
monotone mapping with respect to g, so that gxn+1 = F (xn, yn) � F (xn+1, yn) �
F (xn+1, yn+2) = gxn+2 and gyn+1 = F (yn, xn) � F (yn+1, xn) � F (yn+1, xn+1) =
gyn+2. Hence gxn+1 � gxn+2 and gyn+1 � gyn+2. Thus by the mathematical
induction we conclude that for all n ≥ 0,

gx0 � gx1 � ... � gxn � gxn+1 � ..., and

gy0 � gy1 � ... � gyn � gyn+1 � ....

We will suppose that d(gxn, gxn+1) > 0 and d(gyn, gyn+1) > 0 for all n, since if
gxn = gxn+1 and gyn = gyn+1 for some n, then by (2.2),

gxn = F (xn, yn) and gyn = F (yn, xn),

that is, F and g have a coupled coincidence point (xn, yn), and so we have finished
the proof. Now from (2.1), we have

d(gxn, gxn+1) + d (gyn, gyn+1)

= d(F (xn−1, yn−1), F (xn, yn)) + d(F (yn−1, xn−1), F (yn, xn))

≤ φ(max{d(gxn−1, gxn) + d(gyn−1, gyn)

2
,

d(F (xn−1, yn−1), gxn−1) + d(F (xn−1, yn−1), gxn)

2
,

d(gyn−1, gyn) + d(F (xn−1, yn−1), gxn−1)

2
,
d(gyn−1, gyn) + d(F (xn−1, yn−1), gxn)

2
})

= φ(max{d(gxn−1, gxn) + d(gyn−1, gyn)

2
,
d(gxn, gxn−1)

2
,
d(gyn−1, gyn)

2
}),

and hence

d(gxn, gxn+1) + d (gyn, gyn+1) ≤ φ(
d(gxn−1, gxn) + d(gyn−1, gyn)

2
)

(2.3) < φ (d(gxn−1, gxn) + d(gyn−1, gyn))

Now

d(gxn, gxn+1) + d(gyn, gyn+1)

≤ φ(d(gxn−1, gxn) + d(gyn−1, gyn))

≤ φ2(d(gxn−2, gxn−1) + d(gyn−2, gyn−1))

≤ ...

≤ φn(d(gx0, gx1) + d(gy0, gy1)).

Since lim
n→∞

φn(d(gx0, gx1) + d(gy0, gy1)) = 0, then for a given ε > 0, there is a

positive integer n0 such that for all n ≥ n0,

(2.4) φn(d(gx0, gx1) + d(gy0, gy1)) <
ε− φ(ε)

2
.

Hence

(2.5) d(gxn, gxn+1) + d(gyn, gyn+1) < ε− φ(ε),
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for all n ≥ n0. That is,

(2.6) d(gxn, gxn+1) < ε− φ(ε) and d(gyn, gyn+1) < ε− φ(ε).

Now, for any m,n ∈ N with m > n ≥ n0, we claim that

(2.7) d(gxn, gxm) < ε

(2.8) and d(gyn, gym) < ε.

We prove the inequality (2.7) and (2.8) by induction on m. The inequality (2.7)
and (2.8) hold for m = n+ 1 by using (2.6). Assume that (2.7) and (2.8) hold for
m = k. Since gxn � gxk and gyn � gyk, so that for m = k + 1, we have

d(gxn, gxm) + d(gyn, gym) = d(gxn, gxk+1) + d(gyn, gyk+1)

≤ d(gxn, gxn+1) + d(gxn+1, gxk+1) + d(gyn, gyn+1) + d(gyn+1, gyk+1)

< ε− φ(ε) + d(gxn+1, gxk+1) + d(gyn+1, gyk+1)

= ε− φ(ε) + d(F (xn, yn), F (xk, yk)) + d (F (yn, xn) , F (yk, xk))

≤ ε− φ(ε) + φ(max{d(gxn, gxk) + d(gyn, gyk)

2
,
d(F (xn, yn), gxn) + d(F (xn, yn), gxk)

2
,

d(gyn, gyk) + d(F (xn, yn), gxn)

2
,
d(gyn, gyk) + d(F (xn, yn), gxk)

2
})

= ε− φ(ε) + φ(max{d(gxn, gxk) + d(gyn, gyk)

2
,
d(gxn+1, gxn) + d(gxn+1, gxk)

2
,

d(gyn, gyk) + d(gxn+1, gxn)

2
,
d(gyn, gyk) + d(gxn+1, gxk)

2
})

≤ ε− φ(ε) + φ(max{ε+ ε

2
,
ε− φ(ε) + ε

2
,
ε+ ε− φ(ε)

2
,
ε+ ε

2
})

= ε− φ(ε) + φ(ε) = ε.

By induction on m, we conclude that (2.7) and (2.8) hold for m > n ≥ n0. Hence
{gxn} and {gyn} are Cauchy sequences in g(X), so there exists x and y in X such
that {gxn} and {gyn} converges to gx and gy respectively. Now, we prove that
F (x, y) = gx and F (y, x) = gy.
Since gxn � gx and gyn � gy for all n ≥ 0, so that we have

d(F (x, y), gx) + d (F (y, x) , gy)

≤ d(F (x, y), gxn+1) + d(gxn+1, gx) + d (F (y, x) , gyn+1) + d (gyn+1, gy)

= d(F (xn, yn), F (x, y)) + d (F (yn, xn) , F (y, x)) + d(gxn+1, gx) + d (gyn+1, gy)

≤ φ(max{d(gxn, gx) + d(gyn, gy)

2
,
d(F (xn, yn), gxn) + d(F (xn, yn), gx)

2
,

d(gyn, gy) + d(F (xn, yn), gxn)

2
,
d(gyn, gy) + d(F (xn, yn), gx)

2
})

+d(gxn+1, gx) + d (gyn+1, gy)

= φ(max{d(gxn, gx) + d(gyn, gy)

2
,
d(gxn+1, gxn) + d(gxn+1, gx)

2
,

d(gyn, gy) + d(gxn+1, gxn)

2
,
d(gyn, gy) + d(gxn+1, gx)

2
}) + d(gxn+1, gx) + d (gyn+1, gy) .

On taking limit as n→∞, we obtain that

(2.9) d(F (x, y), gx) + d (F (y, x) , gy) ≤ 0,
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that is., F (x, y) = gx and F (y, x) = gy . Hence (x, y) is a coupled coincidence point
and (gx, gy) is coupled point of coincidence of mappings F and g. �

Following example support Theorem 2.1.
Example 2.2. Let X = [0, 1] be an ordered set with the natural ordering of
real numbers and d a usual metric on X. Let F : X × X → X, g : X → X and
φ : [0,∞)→ [0,∞) be defined by

(2.10) F (x, y) =
2x+ y + 1

18
, g(x) =

3x

4
for all x, y ∈ X,

and φ(t) = 8
9 t, for t ∈ [0,∞). Note that F (X ×X) ⊆ g(X) and φ is nondecreasing,

continuous with φ(t) < t for all t > 0.
Now for g(x) � g(u) and g(y) � g(v) , we obtain

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))

=
1

18
|2x+ y − 2u− v|+ 1

18
|2y + x− 2v − u|

≤ 1

18
|2(x− u) + (y − v)|+ 1

18
|2(y − v) + (x− u)|

≤ 6

18
(|x− u|+ |y − v|)

=
2

3

∣∣ 3
4x−

3
4u
∣∣+
∣∣ 3

4y −
3
4v
∣∣

2
· 4

3
=

8

9

∣∣ 3
4x−

3
4u
∣∣+
∣∣ 3

4y −
3
4v
∣∣

2

= φ(
d(gx, gu) + d(gy, gv)

2
)

≤ φ(max{d(gx, gu) + d(gy, gv)

2
,
d(F (x, y), gx) + d(F (x, y), gu)

2
,

d(gy, gv) + d(F (x, y), gx)

2
,
d(gy, gv) + d(F (x, y), gu)

2
}).

Thus (2.1) is satisfied and F and g have coupled coincidence points. Here,
(

2
21 ,

2
21

)
is a coupled coincidence point and

(
g
(

2
21

)
, g
(

2
21

))
=
(

1
14 ,

1
14

)
is coupled point of

coincidence of mappings F and g. �
Remark 2.3. Since F has not a mixed monotone property with respect to g, it
follows that a coupled coincidence point

(
2
21 ,

2
21

)
cannot be obtained by Theorem

2.1. from [2].
Corollary 2.4. Let (X, d,�) be a partially ordered metric space. Suppose that a
mapping F : X ×X → X is a monotone with respect to g : X → X and

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))

≤ kmax{d(gx, gu) + d(gy, gv), d(F (x, y), gx) + d(F (x, y), gu),

(2.11) d(gy, gv) + d(F (x, y), gx), d(gy, gv) + d(F (x, y), gu)}
for all x, y, u, v ∈ X, for which g(x) � g(u) and g(y) � g(v), where k ∈ [0, 1

2 ). If
F (X ×X) is contained in a complete set g(X), (X, d �) is a regular and if there
exist x0, y0 ∈ X such that

g(x0) � F (x0, y0) and g(y0) � F (y0, x0),

then there exist x, y ∈ X such that g (x) = F (x, y) and g (y) = F (y, x) .
Proof. Taking φ(t) = kt with k ∈ [0, 1

2 ) in Theorem 2.1, we obtain Corollary 2.1.
�
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Corollary 2.5. Let (X, d,�) be a partially ordered metric space. Suppose that
a mapping F : X ×X → X is a monotone and

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))

≤ φ(max{d(x, u) + d(y, v)

2
,
d(F (x, y), x) + d(F (x, y), u)

2
,

(2.12)
d(y, v) + d(F (x, y), x)

2
,
d(y, v) + d(F (x, y), u)

2
})

for all x, y, u, v ∈ X, for which x � u and y � v. If (X, d,�) is a complete and
regular and if there exist x0, y0 ∈ X such that

x0 � F (x0, y0) and y0 � F (y0, x0),

then there exist x, y ∈ X such that x = F (x, y) and y = F (y, x) .
Proof. The result follows by taking g = I (identity mapping) in Theorem 2.1. �
Corollary 2.6. Let (X, d,�) be a partially ordered metric space. Suppose that a
mapping F : X ×X → X is a monotone with respect to g : X → X and

(2.13) d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) ≤ φ(
d(gx, gu) + d(gy, gv)

2
)

for all x, y, u, v ∈ X, for which g(x) � g(u) and g(y) � g(v), where φ : [0,∞) →
[0,∞) is continuous, nondecreasing function such that φ(t) < t for all t > 0. If
F (X ×X) is contained in a complete set g(X), (X, d �) is a regular and if there
exist x0, y0 ∈ X such that

g(x0) � F (x0, y0) and g(y0) � F (y0, x0),

then there exist x, y ∈ X such that g (x) = F (x, y) and g (y) = F (y, x) .
As φ(max{a, b}) = max{φ(a), φ(b)} for all a, b ∈ [0,∞) if φ : [0,∞) → [0,∞) is

nondecreasing map, then we obtain following equivalent form of Theorem 2.1.
Theorem 2.7. Let (X, d,�) be a partially ordered metric space. Suppose that a
mapping F : X ×X → X is a monotone with respect to g : X → X and

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))

≤ max{φ(
d(gx, gu) + d(gy, gv)

2
), φ(

d(F (x, y), gx) + d(F (x, y), gu)

2
),

(2.14) φ(
d(gy, gv) + d(F (x, y), gx)

2
), φ(

d(gy, gv) + d(F (x, y), gu)

2
)}

for all x, y, u, v ∈ X, for which g(x) � g(u) and g(y) � g(v), where φ : [0,∞) →
[0,∞) is continuous, nondecreasing function such that φ(t) < t for all t > 0. If
F (X ×X) is contained in a complete set g(X), (X, d �) is a regular and if there
exist x0, y0 ∈ X such that

g(x0) � F (x0, y0) and g(y0) � F (y0, x0),

then there exist x, y ∈ X such that g (x) = F (x, y) and g (y) = F (y, x) .
Theorem 2.8. Let (X, d,�) be a partially ordered metric space. Suppose that a
mapping F : X ×X → X is a monotone with respect to g : X → X and

(2.15) d(F (x, y), F (u, v)) ≤ φ(d(F (x, y), gx)) + φ(d(F (u, v), gu))

2

for all x, y, u, v ∈ X, for which g(x) � g(u) and g(y) � g(v), where φ : [0,∞) →
[0,∞) is continuous, nondecreasing function such that φ(t) < t for all t > 0. If
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F (X ×X) is contained in a complete set g(X), (X, d �) is a regular and if there
exist x0, y0 ∈ X such that

g(x0) � F (x0, y0) and g(y0) � F (y0, x0),

then there exist x, y ∈ X such that g (x) = F (x, y) and g (y) = F (y, x) .
Proof. Let x0, y0 ∈ X be such that g(x0) � F (x0, y0) and g(y0) � F (y0, x0).
Using the similar arguments to those given in Theorem 2.1, we construct sequences
{xn} and {yn} in X such that g(xn+1) = F (xn, yn) and g(yn+1) = F (yn, xn) for
all n ≥ 0 and for all n ≥ 0,

gx0 � gx1 � ... � gxn � gxn+1 � ..., and

gy0 � gy1 � ... � gyn � gyn+1 � ....
Now we will suppose that d(gxn, gxn+1) > 0 and d(gyn, gyn+1) > 0 for all n,
otherwise, F and g have a coupled coincidence point at (xn, yn), and so we have
finished the proof. From (2.15),

d(gxn, gxn+1) = d(F (xn−1, yn−1), F (xn, yn))

≤ φ(d(F (xn−1, yn−1), gxn−1) + φ(d(F (xn, yn), gxn))

2

=
φ(d(gxn, gxn−1)) + φ(d(gxn+1, gxn))

2

≤ φ(d(gxn, gxn−1)) + d(gxn+1, gxn)

2
,

that is.,

(2.16) d(gxn, gxn+1) ≤ φ(d(gxn−1, gxn)).

Similarly,

(2.17) d(gyn, gyn+1) ≤ φ(d(gyn−1, gyn)).

From (2.16) and (2.17), we obtain

(2.18) d(gxn, gxn+1) + d(gyn, gyn+1) ≤ φ(d(gxn−1, gxn)) + φ(d(gyn−1, gyn)).

Now

d(gxn, gxn+1) + d(gyn, gyn+1)

≤ φ(d(gxn−1, gxn)) + φ(d(gyn−1, gyn))

≤ φ2(d(gxn−2, gxn−1)) + φ2(d(gyn−2, gyn−1))

≤ ... ≤ φn(d(gx0, gx1)) + φn(d(gy0, gy1)).

For a given ε > 0, since lim
n→∞

[φn(d(gx0, gx1)) + φn(d(gy0, gy1))] = 0 and φ(ε) < ε,

there is a positive integer n0 such that for all n ≥ n0,

(2.19) φn(d(gx0, gx1)) + φn(d(gy0, gy1)) < ε− φ(ε).

Hence
d(gxn, gxn+1) + d(gyn, gyn+1) < ε− φ(ε),

that is.,

(2.20) d(gxn, gxn+1) < ε− φ(ε) and d(gyn, gyn+1) < ε− φ(ε).

Now, for any m,n ∈ N with m > n, we claim that

(2.21) d(gxn, gxm) < ε
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and

(2.22) d(gyn, gym) < ε.

We prove the inequalities (2.21) by induction on m. The inequalities (2.21) holds
for m = n+1 by using (2.20). Assume that (2.21) holds for m = k. Since gxn � gxk
and gyn � gyk, so that for m = k + 1, we have

d(gxn, gxm) = d(gxn, gxk+1) ≤ d(gxn, gxn+1) + d(gxn+1, gxk+1)

≤ ε− φ(ε) + d(gxn+1, gxk+1) = ε− φ(ε) + d(F (xn, yn), F (xk, yk))

≤ ε− φ(ε) +
φ(d(F (xn, yn), gxn)) + φ(d(F (xk, yk), gxk))

2

= ε− φ(ε) +
φ(d(gxn+1, gxn)) + φ(d(gxk+1, gxk))

2

≤ ε− φ(ε) +
φ(ε− φ(ε)) + φ(ε− φ(ε))

2
= ε− φ(ε) + φ(ε− φ(ε)) ≤ ε− φ(ε) + φ(ε) = ε.

Similarly, we obtain

d(gyn, gym) < ε.

By induction on m, we conclude that (2.21) and (2.22) holds for m > n ≥ n0.
Hence {gxn} and {gyn} are Cauchy sequences in g(X), so there exists x and y in
X such that {gxn} and {gyn} converges to gx and gy respectively. Now, we prove
that F (x, y) = gx and F (y, x) = gy.
Since gxn � gx and gyn � gy for all n ≥ 0, so that we have

d(F (x, y), gx) ≤ d(F (x, y), gxn+1) + d(gxn+1, gx)

= d(F (xn, yn), F (x, y)) + d(gxn+1, gx)

≤ φ(d(F (xn, yn), gxn)) + φ(d(F (x, y), gx))

2
+ d(gxn+1, gx)

=
φ(d(gxn+1, gxn)) + φ(d(gx, gx))

2
+ d(gxn+1, gx).

On taking limit as n→∞, we obtain

(2.23) d(F (x, y), gx) ≤ φ(0) = 0,

and F (x, y) = gx. Similarly, it can be shown that F (y, x) = gy. Hence (x, y) is a
coupled coincidence point and (gx, gy) is coupled point of coincidence of mappings
F and g. �

Corollary 2.9. Let (X, d,�) be a partially ordered metric space. Suppose that a
mapping F : X ×X → X is a monotone and

(2.24) d(F (x, y), F (u, v)) ≤ φ(d(F (x, y), x) + d(F (u, v), u))

2
,

for all x, y, u, v ∈ X, for which x � u and y � v. If (X, d,�) is a complete and
regular and if there exist x0, y0 ∈ X such that

x0 � F (x0, y0) and y0 � F (y0, x0),

then there exist x, y ∈ X such that x = F (x, y) and y = F (y, x) .
Proof. The results follows by taking g = I (identity mapping) in Theorem 2.7. �
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Theorem 2.10. Let (X, d,�) be a partially ordered metric space. Suppose that a
mapping F : X ×X → X is a monotone with respect to g : X → X and

d(F (x, y), F (u, v)) + d (F (y, x) , F (v, u))

≤ a1d(gx, gu) + a2d(gy, gv) + a3d(F (x, y), gx)

(2.25) +a4d(F (u, v), gu) + a5d(F (x, y), gu)

for all x, y, u, v ∈ X, for which g(x) � g(u) and g(y) � g(v), with nonnegative real

numbers ai, i = 1, 2, ..., 5 and
∑5

i=1ai < 1. If F (X×X) is contained in a complete
set g(X), (X, d �) is a regular and if there exist x0, y0 ∈ X such that

g(x0) � F (x0, y0) and g(y0) � F (y0, x0),

then there exist x, y ∈ X such that g (x) = F (x, y) and g (y) = F (y, x) .
Proof. Let x0, y0 ∈ X be such that g(x0) � F (x0, y0) and g(y0) � F (y0, x0). Using
the similar arguments to those given in Theorem 2.1, we construct sequences {xn}
and {yn} in X such that

g(xn+1) = F (xn, yn) and g(yn+1) = F (yn, xn) for all n ≥ 0,

and for all n ≥ 0,

gx0 � gx1 � ... � gxn � gxn+1 � ..., and

gy0 � gy1 � ... � gyn � gyn+1 � ....

Now we will suppose that d(gxn, gxn+1) > 0 and d(gyn, gyn+1) > 0 for all n,
otherwise, F and g have a coupled coincidence point at (xn, yn), and so we have
finished the proof. From (2.25), we have

d(gxn, gxn+1) + d (gyn.gyn+1)

= d(F (xn−1, yn−1), F (xn, yn)) + d (F (yn−1, xn−1) , F (yn, xn))

≤ a1d(gxn−1, gxn) + a2d(gyn−1, gyn) + a3d(F (xn−1, yn−1), gxn−1)

+a4d(F (xn, yn), gxn) + a5d(F (xn−1, yn−1), gxn)

= a1d(gxn−1, gxn) + a2d(gyn−1, gyn) + a3d(gxn, gxn−1)

+a4d(gxn+1, gxn) + a5d(gxn, gxn)

= (a1 + a3)d(gxn−1, gxn) + a2d(gyn−1, gyn) + a4d(gxn+1, gxn),

from which it follows
(2.26)

d(gxn, gxn+1)+d (gyn.gyn+1) ≤ 1

1− a4
[(a1 + a3) d(gxn−1, gxn)+a2d(gyn−1, gyn)].

From (2.26), we obtain

d(gxn, gxn+1) + d(gyn, gyn+1)

≤ a1 + a3

1− a4
[d(gyn−1, gyn) + d(gxn−1, gxn)],

that is.,

(2.27) d(gxn, gxn+1) + d(gyn, gyn+1) ≤ λ[d(gxn−1, gxn) + d(gyn−1, gyn)],
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where λ =
a1 + a3

1− a4
. Obviously, 0 ≤ λ < 1. Now

d(gxn, gxn+1) + d(gyn, gyn+1) ≤ λ[d(gxn−1, gxn) + d(gyn−1, gyn)]

≤ λ2[d(gxn−2, gxn−1) + d(gyn−2, gyn−1)]

≤ ...

≤ λn[d(gx0, gx1) + d(gy0, gy1)].

Then, for all n,m ∈ N, m > n, we have

d(gxn, gxm) + d(gyn, gym) ≤ d(xn, xn+1) + d(yn, yn+1) + d(xn+1, xx+2)

+d(yn+1, yx+2) + ...+ d(xm−1, xm) + d(ym−1, ym)

≤ λn

1− λ
[d(gx0, gx1) + d(gy0, gy1)],

which implies that d(gxn, gxm)+d(gyn, gym)→ 0, as n,m→∞, that is., d(gxn, gxm)→
0 and d(gyn, gym)→ 0 as n,m→∞. Hence {gxn} and {gyn} are Cauchy sequences
in g(X), so there exists x and y in X such that {gxn} and {gyn} converges to gx
and gy respectively. Now, we prove that F (x, y) = gx and F (y, x) = gy.
Since gxn � gx and gyn � gy for all n ≥ 0, so that we have

d(F (x, y), gx) + d (F (y, x) , gy)

≤ d(F (x, y), gxn+1) + d (F (y, x) , gyn+1) + d(gxn+1, gx) + d (gyn+1, gy)

= d(F (xn, yn), F (x, y)) + d (F (yn, xn) , F (y, x)) + d(gxn+1, gx) + d (gyn+1, gy)

≤ a1d(gxn, gxn) + a2d(gyn, gyn) + a3d(F (xn, yn), gxn) + a4d(F (x, y), gx)

a5d(F (xn, yn), gx) + d(gxn+1, gx) + d (gyn+1, gy)

= a3d(gxn+1, gxn) + a4d(F (x, y), gx) + a5d(gxn+1, gx) + d(gxn+1, gx) + d (gyn+1, gy)

On taking the limit as n→∞, we obtain that

d(F (x, y), gx) + d (F (y, x) , gy) ≤ a4d(F (x, y), gx).

Since a4 < 1, so that F (x, y) = gx and F (y, x) = gy. Hence (x, y) is a coupled co-
incidence point and (gx, gy) is coupled point of coincidence of mappings F and g. �

Corollary 2.11. Let (X, d,�) be a partially ordered set and d a metric on X.
Suppose that a mapping F : X ×X → X is a monotone with respect to g : X → X
and

(2.28) d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) ≤ kd(F (x, y), gx) + ld(F (u, v), gu)]

for all x, y, u, v ∈ X, for which g(x) � g(u) and g(y) � g(v) and k, l ≥ 0 with
k + l < 1. If F (X ×X) is contained in a complete set g(X), (X, d �) is a regular
and if there exist x0, y0 ∈ X such that

g(x0) � F (x0, y0) and g(y0) � F (y0, x0),

then there exist x, y ∈ X such that g (x) = F (x, y) and g (y) = F (y, x) .

Remarks 2.12. Also, almost all known results from several papers on partially
ordered metric spaces can be considered with monotone mappings instead with
mappings which have a mixed monotone property. We note that the concept of
coupled coincidence point for monotone mappings is essentially different of the
corresponding one for mixed monotone mappings (for tripled case see [12]).
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[7] H. S. Ding, Lu Li and S. Radenović, Coupled coincidence point theorems for generalized
nonlinear contraction in partially ordered metric spaces, Fixed Point Theory Appl. 2012,

2012:96.

[8] D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications,
Nonlinear Anal. TMA 11 (1987) 623-632.

[9] A. A. Harandi and H. Emami, A fixed point theorem for contractive type maps in partially
ordered metric spaces and application to ordinary differential equations, Nonlinear Anal.

TMA 72 (2010) 2238-2242.

[10] J. Harjani and K. Sadarangani, Fixed point theorems for weakly contractive mappings in
partially ordered sets, Nonlinear Anal. 71 (2009) 3403-3410.

[11] E. Karapinar, Coupled fixed point theorems for nonlinear contractions in cone metric spaces,

Comput. Math. Appl. 59 (2010) 3656-3668.
[12] M. Borcut, Tripled fixed point theorems for monotone mappings in partially ordered metric

spaces, Carpanthian J. Math. 28 (2012), No. 2, 207-214.

[13] J. J. Nieto and R. R. Lopez, Contractive mapping theorems in partially ordered sets and
applications to ordinary differential equations, Order 22 (2005) 223-239.

[14] V.I. Opoitsev, Heterogenic and combined-concave operators, Syber. Math. J. 16 (1975) 781-

792 (in Russian).
[15] V.I. Opoitsev, Dynamics of collective behavior. III. Heterogenic systems. Avtomat. i Tele-

mekh. 36 (1975), 124-138 (in Russian).

[16] V.I. Opoitsev, T.A. Khurodze, Nonlinear operators in space with a cone. Tbilis. Gos. Univ.
Tbilisi (1984) 271 (in Russian).
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