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Abstract. In this paper, we introduce the concept of fuzzy δ-ideal continuous, fuzzy θ-ideal continuous, fuzzy strongly

δ-ideal continuous and fuzzy almost ideal continuous mappings in fuzzy ideal topological spaces given the definition

of Šostak. In addition, we study some properties between them.

1. Introduction and Preliminaries

The concept of fuzzy topology was first defined in 1968 by Chang [1] and later redefined in a

somewhat different way by Lowen [21] and by Hutton and Reilly [18]. According to Ŝostak’s [27],

in all these definitions, a fuzzy topology is a crisp subfamily of fuzzy sets and fuzziness in the

concept of openness of a fuzzy set has not been considered, which seems to be a drawback in the

process of fuzzification of the concept of topological spaces. Therefore Ŝostak’s introduced a new

definition of fuzzy topology in 1985 [28]. Later on, he developed the theory of fuzzy topological

spaces in [29]. After that several authors [2,3,5,19,20,23,25] have introduced the smooth definition

and studied smooth fuzzy topological spaces being unaware of Ŝostak’s works. In fuzzy topology,

by introducing the notion of ideal, [27], and several other authors [17,22] carried out such analysis.

The notion of continuity is an important concept in fuzzy topology and fuzzy topology in Ŝostak

sense as well as in all branches of mathematics and quantum physics (see [6, 7, 10–14]). We must

state that this subject has been researched by physicists [7, 10–13] as well as by others. El-Naschie

has shown that the notion of fuzzy topology in Ŝostak sense has very important applications

in quantum particle physics especially about both string theory and ε(∞) theory [8, 9, 12, 15, 16]

and also Saber et al. [30–39] who familiarized the concepts of single-valued neutrosophic ideal

open local function and single-valued neutrosophic topological space. In this paper, we give a

decomposition of fuzzy continuity, fuzzy ideal continuity and fuzzy ideal α-continuity, and we
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obtain several characterizations of fuzzy α-I-continuous functions. Moreover, we introduce the

concept of fuzzy α-I-open functions in fuzzy ideal topological spaces and obtain their properties

Throughout this paper, let X be a nonempty set I = [0, 1] and I0 = (0, 1]. For α ∈ I, α(x) = α for

all x ∈ X. The family of all fuzzy sets on X denoted by IX. For two fuzzy sets we write λqµ to mean

that λ is quasi-coincident (q-coincident, for short) with µ, i.e, there exists at least one point x ∈ X
such that λ(x) + µ(x) > 1. Negation of such a statement is denoted as λqµ.

Definition 1.1. [27]. A mapping τ : IX
→ I is called a fuzzy topology on X if it satisfies the following

conditions:

(O1) τ(0) = τ(1) = 1.

(O2) τ(
∨

i∈Γ µi) ≥
∧

i∈Γ τ(µi), for {µi}i∈Γ ∈ IX.

(O3) τ(µ1 ∧ µ2) ≥ τ(µ1)∧ τ(µ2), for µ1,µ2 ∈ IX.

Definition 1.2. [27]. A mapping I : IX
→ I is called fuzzy ideal on X iff:

(I1) I(0) = 1, I(1) = 0.

(I2) If λ ≤ µ, then I(λ) ≥ I(µ), for each λ,µ ∈ IX.

(I3) For each λ,µ ∈ IX, I(λ∨ µ) ≥ I(λ)∧ I(µ).

The pair (X, τ, I) is called fuzzy ideal topological space (fits, for short)

Corollary 1.1. [17]. Let (X, τ,I) be a fits. The simplest fuzzy ideal on X are I0,I1 : IX
→ I where

I0(λ) =

 1, if λ = 0,

0, otherwise.
I1(λ) =

 0, if λ = 1,

1, otherwise.

If I = I0, for each µ ∈ IX we have µ∗r = Cτ(µ, r).
If I = I1, for each µ ∈ Θ

′

we have µ∗r = 0, where, 1 < Θ
′

be a subset of IX.

Definition 1.3. [17]. Let (X, τ, I) be a fits. Let µ,λ ∈ IX, the r-fuzzy open local function µ∗r of µ is the
union of all fuzzy points xt such that if ρ ∈ Q(xt, r) and I(λ) ≥ r then there is at least one y ∈ X for which
ρ(y) + µ(y) − 1 > λ(y).

Theorem 1.1. [17]. Let (X, τ) be a fts. Then for each r ∈ I0, λ ∈ IX we define an operator Cτ : IX
× I0 → IX

as follows:

Cτ(λ, r) =
∧
{µ ∈ IX : λ ≤ µ, τ(1− µ) ≥ r}.

For λ,µ ∈ IX and r, s ∈ I0, the operator Cτ satisfies the following conditions:

(1) Cτ(0, r) = 0.

(2) λ ≤ Cτ(λ, r).
(3) Cτ(λ, r)∨Cτ(µ, r) = Cτ(λ∨ µ, r).
(4) Cτ(λ, r) ≤ Cτ(λ, s) if r ≤ s.

(5) Cτ(Cτ(λ, r), r) = Cτ(λ, r).
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Theorem 1.2. [17]. Let (X, τ) be a fts. Then for each r ∈ I0, λ ∈ IX we define an operator Iτ : IX
× I0 → IX

as follows:

Iτ(λ, r) =
∨
{µ ∈ IX : λ ≥ µ, τ(µ) ≥ r}.

For λ,µ ∈ IX and r, s ∈ I0, the operator Iτ satisfies the following conditions:

(1) Iτ(1− λ, r) = 1−Cτ(λ, r)
(2) Iτ(1, r) = 1.

(3) λ ≥ Iτ(λ, r).
(4) Iτ(λ, r)∧ Iτ(µ, r) = Iτ(λ∧ µ, r).
(5) Iτ(λ, r) ≤ Iτ(λ, s) if r ≥ s.

(6) Iτ(Iτ(λ, r), r) = Iτ(λ, r).

Theorem 1.3. [17]. Let (X, τ) be a fts and I1, I2 be two fuzzy ideals of X. Then for each r ∈ I0 and
µ, η,ρ ∈ IX.

(1) µ ≤ η, then µ∗r ≤ η∗r.
(2) I1 ≤ I2, ⇒ µ∗r(I1, τ) ≤ η∗r(I2, τ).

(3) µ∗r = Cτ(µ∗r, r) ≤ Cτ(µ, r).
(4) (µ∗r)

∗
≤ µ∗r.

(5) (µ∗r ∨ η
∗
r) = (µ∨ η)∗r.

(6) If I(ρ) ≥ r then (µ∨ ρ)∗r = µ∗r ∨ ρ
∗
r = µ∗r.

(7) If τ(ρ) ≥ r, then (ρ∧ µ∗r) ≤ (ρ∧ µ)∗r.

(8) (µ∗r ∧ η
∗
r) ≥ (µ∧ η)∗r.

Theorem 1.4. [17]. Let (X, τ, I) be a fits. Then for each r ∈ I0, µ ∈ IX we define C∗ : IX
× I0 → IX as

follows:

Cl∗(µ, r) = µ∨ µ∗r

For µ, η ∈ IX, the Cl∗ satisfies the following conditions:

(1) If µ ≤ η, then Cl∗(µ, r) ≤ Cl∗(η, r).
(2) Cl∗(Cl∗(µ, r), r) = Cl∗(µ, r).
(3) Cl∗(µ∨ η, r) = Cl∗(µ, r)∨Cl∗(η, r).
(4) Cl∗(µ∧ η, r) ≤ Cl∗(µ, r)∧Cl∗(η, r).

Definition 1.4. [17] Let (X, τ) be a fts. For λ ∈ IX and r ∈ I0.

(1) λ is called r-fuzzy semiopen (r-FSO, for short) iff λ ≤ Cτ(Iτ(λ, r), r).
(2) λ is called r-fuzzy semiclosed (r-FSC, for short) iff 1− λ is r-fuzzy semiopen set of X.
(3) λ is called r-fuzzy β-closed (r-FβC, for short) iff λ ≤ Cτ(Iτ(Cτ(λ, r), r), r).

Definition 1.5. [17]. Let (X, τ, I) be a fuzzy ideal topological space. For each µ ∈ IX and r ∈ I0.

(1) µ is called r-fuzzy ideal open (r-FIO, for short) iff µ ≤ Iτ(µ∗r, r).
(2) µ is called r-fuzzy ideal closed (r-FIC, for short) iff 1− µ is r-FIO.
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Lemma 1.1. [17]. Let (X, τ, I) be a fits.

(1) Any union of r-FIO sets is r-FIO.
(2) Any intersection of r-FIC sets is r-FIC .

Definition 1.6. [17]. Let (X, τ) and (X, η) be fts’s. Let f : X→ Y be a mapping.

(1) f is called fuzzy continuous iff η(µ) ≤ τ( f−1(µ)) for each µ ∈ IX.

(2) f is called fuzzy open iff τ(µ) ≤ η( f (µ)) for each µ ∈ IX.

(3) f is called fuzzy closed iff τ(1− µ) ≤ η( f (1− µ)) for each µ ∈ IX.

2. r-fuzzy θI-Open and r-Fuzzy δI-Open Sets

Definition 2.1. Let (X, τ,I) be a fits. ForA ∈ IX, xt ∈ Pt(X) and r ∈ I0. Then,

(1) A is called r-fuzzy<τI-neighborhood of xt if xtqA andA is r-FRIO.
We denote

<τI(xt, r) = {A ∈ IX
|xtqA, A is r− FRIO}.

(2) xt is called r-fuzzy θI-cluster point ofA if for every B ∈ Qτ(xt, r), we haveAqCl?(B, r).
(3) θI-closure operator is mapping CθIτ : IX

× I0 → IX defined as:

CθIτ(A, r) =
∨
{xt ∈ Pt(X) : xt is r− θI− cluster point o f A}.

Theorem 2.1. Let (X, τ,I) be a fits, for eachA,B ∈ IX and r ∈ I0. Then the following properties hold:

(1) A ≤ CθIτ(A, r).
(2) IfA ≤ B, then CθIτ(A, r) ≤ CθIτ(B, r).
(3) Cτ(A, r) ≤

∨
{xt ∈ Pt(X)|xt is r-fuzzy δI-cluster point ofA}.

(4) CθIτ(A, r) =
∧
{B ∈ IX

|A ≤ int?(B, r), τ(1−B) ≥ r}.
(5) CδIτ(A, r) =

∧
{B ∈ IX

|A ≤ B, B is r-fuzzy δI-closed}.
(6) xt is r-fuzzy θI-cluster point ofA iff xt ∈ CθIτ(A, r).
(7) xt is r-fuzzy δI-cluster point ofA iff xt ∈ CδIτ(A, r).
(8) IfA = Cτ(int?(A, r), r), then CδIτ(A, r) = A.

(9) A ≤ Cτ(A, r) ≤ CδIτ(A, r) ≤ CθIτ(A, r) ≤ Tτ(A, r).
(10) W(A∨B, r) =W(A, r)∨W(B, r) for eachW = {CδIτ, CθIτ}.
(11) CδIτ(CδIτ(A, r), r) = CδIτ(A, r).

Proof. (1) and (2) are easily proved from Definition 2.1.

(3) Put P =
∨
{xt ∈ Pt(X)|xt is r-fuzzy δI-cluster point ofA}.

Suppose that Cτ(A, r) � P, there exists x ∈ X and t ∈ (0, 1) such that

Cτ(A, r)(x) > t > P(x). (2.1)

Then xt is not r-fuzzy δI-cluster point ofA. So, there existsB ∈ Qτ(xt, r),A ≤ 1− intτ(Cl?(B, r), r) ≤
1−B. By definition of Cτ, Cτ(A, r)(x) ≤ (1−B)(x) < t. It is a contradiction for equation (2.1). Thus

Cτ(A, r) ≤ P.
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(4)© =
∧
{B ∈ IX

|A ≤ int?(B, r), τ(1−B) ≥ r}.
Suppose that CθIτ(A, r) � ©, then there exists x ∈ X and t ∈ (0, 1) such that

CθIτ(A, r)(x) < t ≤ ©(x). (2.2)

Then xt is not r-fuzzy θI-cluster point of A. So, there exists B ∈ Qτ(xt, r), and A ≤ 1 − Cl?(B, r).
Thus,A ≤ 1−Cl?(B, r) = int?(1−B, r), τ(B) ≥ r. Hence,

©(x) ≤ (1−B)(x) < t.

It is a contradiction for equation (2.2). Thus CθIτ(A, r) ≥ ©.

Suppose that CθIτ(A, r) � ©, then there exists r-fuzzy θI-cluster point ys ∈ Pt(X) of A, such

that

CθIτ(A, r)(y) > s > ©(y). (2.3)

By definition of©, there exists B ∈ IX withA ≤ int?(B, r), τ(1−B) ≥ r such that CθIτ(A, r)(y) >
s > B(y) ≥ ©(y). Then 1 −B ∈ Qτ(ys, r). Furthermore, A ≤ int?(B, r) = 1 − Cl?(1 −B, r) implies

AqCl?(1 −B, r). Hence ys is not r-fuzzy θI-cluster point of A. It is a contradiction for equation

(2.3). Thus CθIτ(A, r) ≤ ©.

(5) It is similarly proved as in (3) and (4).

(6) (⇒) It is trivial.

(⇐) Suppose that xt is not r-fuzzy θI-cluster point of A. Then there exists B ∈ Qτ(xt, r) such

that Cl?(B, r) ≤ 1−A. Thus

A ≤ 1−Cl?(B, r) = int?(1−B, r).

By (4), CθIτ(A, r)(x) ≤ (1−B)(x) < t. Hence xt < CθIτ(A, r).
(7) is similarly proved as in (6).

(8) Obvious from Theorem 1.1(4).

(9) Form Theorem 1.1(5), we show that only CδIτ(A, r) ≤ CθIτ(A, r). Suppose that CδIτ(A, r) �
CθIτ(A, r), then there exists x ∈ X and t ∈ I0 such that

CδIτ(A, r)(x) > t > CθIτ(A, r)(x). (2.4)

Since CθIτ(A, r)(x) < t, xt is not r-fuzzy θI-cluster point of A. So, there exists B ∈ Qτ(xt, r),
A ≤ 1−Cl?(B, r) implies Aqintτ(Cl?(B, r), r). Hence, xt is not r-fuzzy δI-cluster point ofA, by (7),

we have

CδIτ(A, r)(x) < t.

It is a contradiction for equation (2.4). Thus CδIτ(A, r) ≤ CθIτ(A, r).
On the other hand, suppose that CθIτ(A, r) � Tτ(A, r), then there exists x ∈ X and t ∈ I0 such

that

CθIτ(A, r)(x) > t > Tτ(A, r)(x). (2.5)
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Since Tτ(A, r)(x) < t, xt is not r-fuzzy θ-cluster point of A. So, there exists B ∈ Qτ(xt, r), A ≤
1−Cτ(B, r) implies AqCl?(B, r). Hence, xt is not r-fuzzy θI-cluster point ofA, by (6), we have

CθIτ(A, r)(x) < t.

It is a contradiction for equation (2.5). Thus CθIτ(A, r) ≤ Tτ(A, r).
(10) Let CδIτ(A, r) ∨ CδIτ(B, r) � CδIτ(A∨B, r). Then there exists x ∈ X and x = (0, 1) such

that

CδIτ(A, r)(x)∨CδIτ(B, r)(x) < t < CδIτ(A∨B, r)(x). (2.6)

Since CδIτ(A, r)(x) < t and CδIτ(B, r)(x) < t, xt is not r-fuzzy δI-cluster point of A and B So,

there exists A1,B1 ∈ Qτ(xt, r), and A ≤ 1 − intτ(Cl?(A1, r), r), B ≤ 1 − intτ(Cl?(B1, r), r). Thus,

(A1 ∧B1) ∈ Qτ(xt, r) and

A∨B ≤ 1− (intτ(Cl?(A1, r), r)∧ intτ(Cl?(B1, r), r))

= 1− (intτ(Cl?(A1, r)∧Cl?(B1, r), r), r)

≤ 1− (intτ(Cl?(A1 ∧B1, r), r)).

Thus,A∨Bqintτ(Cl?(A1 ∧B1, r), r). Hence, xt is not r-fuzzy δI-cluster point ofA∨B, by (7), we

have

CδIτ(A∨B, r)(x) < t.

It is a contradiction of equation (2.6) and CδIτ(A, r)∨CδIτ(B, r) ≥ CδIτ(A∨B, r).
On the other hand,A,B ≥ A∨B. Hence CδIτ(A, r)∨CδIτ(B, r) ≤ CδIτ(A∨B, r). Thus,

CδIτ(A, r)∨CδIτ(B, r) = CδIτ(A∨B, r).

(11) Since A ≤ CδIτ(A, r), CδIτ(A, r) ≤ CδIτ(CδIτ(A, r), r). On the other hand, suppose that

CδIτ(A, r) � CδIτ(CδIτ(A, r), r), there exists x ∈ X and t ∈ I0 such that

CδIτ(A, r)(x) < t < CδIτ(CδIτ(A, r), r)(x). (2.7)

Since CδIτ(A, r)(x) < t, xt is not r-fuzzy δI-cluster point of A. So, there exists B ∈ Qτ(xt, r)
such that A ≤ 1 − intτ(Cl?(B, r), r) = Cτ(int?(B, r), r). Since, Cτ(int?(B, r), r) is r-FRIC and A ≤
Cτ(int?(B, r), r). Then by Theorem 1.1(4), CδIτ(A, r) ≤ Cτ(int?(B, r), r). Again,

CδIτ(CδIτ(A, r), r) ≤ CδIτ(Cτ(int?(B, r), r), r) = Cτ(int?(B, r), r).

Hence, CδIτ(CδIτ(A, r), r)(x) ≤ Cτ(int?(B, r), r)(x) < t. It is a contradiction for equation (2.7). �

Theorem 2.2. Let (X, τ,I) be a fits,A ∈ IX and r ∈ I0. Then the following properties are holds:

(1) A is r-FPIC iff Cτ(A, r) = CδIτ(A, r).
(2) A is r-FSIC iff Cτ(A, r) = CθIτ(A, r).
(3) A is r-FαIO iff Cτ(A, r) = CδIτ(A, r) = CθIτ(A, r).
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Proof. (1) LetA be r-FPIC. ThenA ≤ Cτ(int?(A, r), r) and by Theorem 1.1(3) and (4), we have

CδIτ(A, r) ≤ CδIτ(Cτ(int?(A, r), r), r)

= Cτ(int?(A, r), r)

≤ Cτ(A, r) ≤ CδIτ(A, r).

Conversely, suppose that there existA ∈ IX, r ∈ I0 x ∈ X and t ∈ (0, 1) such that

CδIτ(A, r)(x) > t > Cτ(A, r)(x).

Then xt is not r-fuzzy δ-cluster point of A. So, there exists B ∈ Qτ(xt, r), with A ≤ 1 −B. Since xt

is r-fuzzy δI-cluster point ofA, for B ∈ Qτ(xt, r), we have intτ(Cl?(B, r), r)qA. Since

intτ(Cl?(B, r), r) ≤ intτ(Cl?(1−A, r), r),

and

A ≥ 1− intτ(Cl?(B, r), r) ≥ 1− intτ(Cl?(1−A, r), r) = Cτ(int?(A, r), r).

Hence,A is not r-FPIC.

(2) Let A be r-FSIC. Then A ≤ int?(Cτ(A, r), r), τ(1 − Cτ(A, r)) ≥ r, by Theorem 4.3.2(4), we

have CθIτ(A, r) ≤ Cτ(A, r).
Conversely, suppose that there existA ∈ IX, r ∈ I0 x ∈ X and t ∈ (0, 1) such that

CθIτ(A, r)(x) > t > Cτ(A, r)(x).

Then 1−Cτ(A, r) = intτ(1−A, r) ∈ Qτ(xt, r). Since xt is r-fuzzy θI-cluster point ofA, Cl?(intτ(1−
A, r), r)qA. It impliesA � 1−Cl?(intτ(1−A, r), r) = int?(Cτ(A, r), r). ThusA is not r-FSIC.

(3) It is similarly proved as in (1) and (2). �

Definition 2.2. Let (X, τ,I) be a fits, forA,B ∈ IX and r ∈ I0. Then,

(1) A is called is r-fuzzy δI-closed (resp. r-fuzzy θI-closed) iff CδIτ(A, r) = A (resp. CθIτ(A, r) =
A). We define

∆τI(A, r) =
∧
{B| A ≤ B, B = CδIτ(B, r)}.

ΘτI(A, r) =
∧
{B| A ≤ B, B = CθIτ(B, r)}.

(2) The complement of r-fuzzy δI-closed (resp. r-fuzzy θI-closed) set is called r-fuzzy δI-open (resp.
r-fuzzy θI-open).

Theorem 2.3. Let (X, τ,I) be a fits, forA ∈ IX and r ∈ I0. Then the following properties are holds:

(1) ∆τI(A, r) = CδIτ(A, r)
(2) ∆τI(A, r) is r-fuzzy δI-closed.
(3) ΘτI(A, r) = CθIτ(ΘτI(A, r), r).
(4) ΘτI(A, r) is r-fuzzy θI-closed.
(5) CθIτ(A, r) ≤ ΘτI(A, r).
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Proof. From Theorem 2.1 (9,11), A ≤ CδIτ(A, r) = CδIτ(CδIτ(A, r), r) implies ∆τI(A, r) ≤
CδIτ(A, r).

Suppose that ∆τI(A, r) � CδIτ(A, r), there exist x ∈ X and t ∈ I0 such that

∆τI(A, r)(x) < t < CδIτ(A, r)(x).

Form the definition of ∆τI(A, r). There exist B ∈ IX andA ≤ B = CδIτ(B, r) such that

∆τI(A, r)(x) ≤ B(x) < t < CδIτ(A, r)(x).

On the other hand, CδIτ(A, r) ≤ CδIτ(B, r) = B. It is a contradiction. Hence, ∆τI(A, r) ≥
CδIτ(B, r).

(2) Form Theorem 2.1(11), it is trivial.

(3) LetA ≤ Bi = CθIτ(Bi, r) for each i ∈ Γ. Then∧
i∈Γ

Bi ≤ CθIτ(
∧
i∈Γ

Bi, r) ≤ CθIτ(Bi, r) = Bi.

So,
∧

i∈ΓBi ≤ CθIτ(
∧

i∈ΓBi, r). Hence, ΘτI(A, r) = CθIτ(ΘτI(A, r), r).
(4) Form (3), it is trivial.

(5) SinceA ≤ ΘτI(A, r), by (3), CθIτ(A, r) ≤ CθIτ(ΘτI(A, r), r) = ΘτI(A, r). �

Definition 2.3. Let (X, τ,I) be a fits,A,B ∈ IX and r ∈ I0. Then X is called:

(1) Fuzzy I-regular if for eachA ∈ Qτ(xt, r), there exists B ∈ Qτ(xt, r) such that Cl?(B, r) ≤ A.

(2) Fuzzy almostI-regular if for eachA ∈ <τI(xt, r), there existsB ∈ <τI(xt, r) such that Cl?(B, r) ≤
A.

Theorem 2.4. Let (X, τ,I) be a fits, forA,B ∈ IX and r ∈ I0. Then the following statements are equivalent:

(1) (X, τ,I) is called fuzzy almost I-regular.
(2) For each xt ∈ Pt(X) and each A ∈ Qτ(xt, r), there exists B ∈ <τI(xt, r) such that Cl?(B, r) ≤

intτ(Cl?(A, r), r).
(3) For each xt ∈ Pt(X) and each A ∈ Qτ(xt, r), there exists B ∈ Qτ(xt, r) such that Cl?(B, r) ≤

intτ(Cl?(A, r), r).
(4) For each xt ∈ Pt(X) and r-FRIC set D ∈ IX with xt < D, there exists B ∈ Qτ(xt, r) and A is

r-fuzzy ?-open set such thatD ≤ A and Cl?(A, r)qCl?(B, r).
(5) For each xt ∈ Pt(X) and r-FRIC set D ∈ IX with xt < D, there exists B ∈ Qτ(xt, r) and A is

r-fuzzy ?-open set such thatD ≤ A and Cl?(B, r)qA.

(6) For each r-FRIO set A ∈ IX with DqA, there exists r-FRIO set B ∈ IX such that DqB ≤
Cl?(B, r) ≤ A.

(7) For each r-FRIC setA ∈ IX withD � A, there exist r-FRIO set B ∈ IX and is r-fuzzy ?-open set
C ∈ IX such thatDqB,A ≤ C and BqC.

Proof. The proof of (1)⇒(2) and (2)⇒(3) are obvious.
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(3)⇒(1): Let xt ∈ Pt(X) and A ∈ <τI(xt, r). Then, by (3), there exists B ∈ Qτ(xt, r) such that

Cl?(B, r) ≤ intτ(Cl?(A, r), r) = A. Since B ∈ Qτ(xt, r), intτ(Cl?(B, r), r) ∈ <τI(xt, r). Also, since

D = intτ(Cl?(B, r), r) ≤ Cl?(B, r), Cl?(D, r) ≤ Cl?(B, r) and hence xtqD ≤ Cl?(D, r) ≤ Cl?(B, r) ≤
AwhereD ∈ <τI(xt, r).

(3)⇒(4): Let D be r-FRIC set in X and xt ∈ Pt(X) with xt < D. Then xtq1 −D and 1 −D ∈

<τI(xt, r) ⊂ Qτ(xt, r). By (3), there exists C ∈ Qτ(xt, r) such that Cl?(C, r) ≤ intτ(Cl?(1−D, r), r) =
1−D.

Now, xtqintτ(Cl?(C, r), r), then, intτ(Cl?(C, r), r) ∈ QτI(xt, r), and hence by hypothesis, there

exists B ∈ Qτ(xt, r) such that Cl?(B, r) ≤ intτ(Cl?(C, r), r). Then, D ≤ 1 − Cl?(C, r). Put A =

1−Cl?(C, r), thenA is r-fuzzy ?-open set. Hence

Cl?(A, r) ≤ 1− intτ(Cl?(C, r), r) ≤ 1−Cl?(B, r).

Hence, Cl?(B, r)qCl?(A, r)
(4)⇒(5): It is trivial.

(5)⇒(6): Suppose thatA is r-FRIO set withDqA, thenD � 1−A. Hence there exists xt ∈ Pt(X)

such that xt ∈ D and Dt � 1 −A where 1 −A is r-FRIC set. By (5), there exists B ∈ Qτ(xt, r) and

C ∈ IX is r-fuzzy ?-open set such that 1 −A ≤ C and Cl?(B, r)qC. From B ∈ Qτ(xt, r) we have

xtqB ≤ intτ(Cl?(B, r), r). Put B1 = intτ(Cl?(B, r), r), we haveDqB1 and B1 is r-FRIO set such that

DqB1 ≤ Cl?(B1, r) ≤ Cl?(B, r) ≤ 1−C ≤ A.

(6)⇒(7): LetA be r-FRIC setA ∈ IX withD � A. Then,Dq1−A and hence by (6), there exists

r-FRIO set B ∈ IX such that DqB ≤ Cl?(B, r) ≤ 1 −A. Then, B is r-FRIO set and 1 − Cl?(B, r) is

r-fuzzy ?-open set such thatDqB,A ≤ 1−Cl?(B, r) and Bq1−Cl?(B, r).
(7)⇒(1): LetA ∈ <τI(xt, r). Then xt < 1−A and 1−A is r-FRIC set. By (7), there exist r-FRIO

setB ∈ IX and is r-fuzzy?-open setC ∈ IX such that xtqB, 1−A ≤ C andBqC. Then,B ∈ <τI(xt, r).
Since C is r-fuzzy ?-open set, Cl?(B, r)qC. Thus xtqB ≤ Cl?(B, r) ≤ 1 − C ≤ A. Hence (X, τ,I) is

called fuzzy almost I-regular. �

The following theorem is similarly proved in Theorem 2.4.

Theorem 2.5. Let (X, τ,I) be a fits, forA ∈ IX and r ∈ I0. Then the following statements are equivalent:

(1) (X, τ,I) is called fuzzy I-regular.
(2) For each xt ∈ Pt(X) and eachA ∈ IX with τ(1−A) ≥ r and xt < A, there exists B ∈ IX with B is

r-fuzzy ?-open such that xt < Cτ(B, r) andA ≤ B.

(3) For each xt ∈ Pt(X) and each A ∈ IX with τ(1 −A) ≥ r and xt < A, there exists B ∈ Qτ(xt, r)
and C ∈ IX with C is r-fuzzy ?-open such thatA ≤ B and BqC.

(4) For each D ∈ IX and A ∈ IX with τ(1 −A) ≥ r and D � A, there exists B ∈ Qτ(xt, r) and
B,C ∈ IX with τ(B) ≥ r and C is r-fuzzy ?-open sets such thatDqB,A ≤ C and BqC.

Theorem 2.6. An fits (X, τ,I) is fuzzy almost I-regular iff for each A ∈ IX and r ∈ I0, CδIτ(A, r) =

CθIτ(A, r).
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Proof. From Theorem 4.3.2(9), we only show that CδIτ(A, r) ≥ CθIτ(A, r). Let CδIτ(A, r) �
CθIτ(A, r). Then there exist x ∈ X and t ∈ I0 such that

CδIτ(A, r)(x) < t < CθIτ(A, r)(x). (2.8)

Since CδIτ(A, r)(x) < t, xt is not a r-fuzzy δI-cluster point of A. So, there exists B ∈ Qτ(xt, r),
with A ≤ 1 − intτ(Cl?(B, r), r). Since B ∈ Qτ(xt, r), intτ(Cl?(B, r), r) ∈ <τI(xt, r). By fuzzy almost

I-regularity of X, there existsD ∈ <τI(xt, r) such that Cl?(D, r) ≤ intτ(Cl?(B, r), r). Thus,

A ≤ 1− intτ(Cl?(B, r), r) ≤ 1−Cl?(D, r) = int?(1−D), τ(D) ≥ r.

By Theorem 2.1(4), CθIτ(A, r)(x) ≤ (1−D)(x) < t. It is a contradiction for equation (4.9).

Conversely, Let A ∈ <τI(xt, r) ⊂ Qτ(xt, r). Then by Theorem 2.1(8), t > (1 −A)(x) = CδIτ(1 −
A, r)(x). Since, CδIτ(1 −A, r) = CθIτ(1 −A, r), xt xt is not a r-fuzzy θI-cluster point of 1 −A.

Then there exists B ∈ Qτ(xt, r) such that 1−AqCl?(B, r) implies Cl?(B, r) ≤ A = intτ(Cl?(A, r), r)
and by Theorem 2.4(3), (X, τ,I) is fuzzy almost I-regular. �

Theorem 2.7. An fits (X, τ,I) is fuzzy almost I-regular iff for each r-FRIC set A ∈ IX and r ∈ I0,

CθIτ(A, r) = A.

Proof. The necessary part follows from Theorem 4.3.9 and the fact that r-FRIC set is r-fuzzy δI-

closed.

Conversely, let A be any r-FRIC set with xt < A. Then, xt < CθIτ(A, r) and hence, xt is not

r-fuzzy θI-cluster point of A so, there there exists B ∈ Qτ(xt, r) such that AqCl?(B, r). Thus,

A ≤ 1−Cl?(B, r) = D andD is r-fuzzy ?-open impliesDqCl?(B, r). Hence, by Theorem 4.3.7(5),

(X, τ,I) is fuzzy almost I-regular. �

Lemma 2.1. IfA,B ∈ IX, r ∈ I0 such thatAqB where B is r-fuzzy δI-open, then CδIτ(A, r)qB.

Proof. LetAqBwhereB is r-fuzzy δI-open. Then,A ≤ 1−B = CδIτ(1−B, r), by Theorem 2.1(11),

CδIτ(A, r) ≤ CδIτ(CδIτ(1−B, r), r) = CδIτ(1−B, r) = 1−B.

Hence, CδIτ(A, r)qB. �

Lemma 2.2. Let (X, τ,I) be a fits andA ∈ IX is r-fuzzy δI-open set iff for every xt ∈ Pt(X) with xtqA,

there exists r-FRIO set B ∈ IX such that xtqB ≤ A.

Proof. Let xt ∈ Pt(X) with xtqA. Then xt < 1 −A. Since A is r-fuzzy δI-open set, xt < 1 −A =

CδIτ(1−A, r). Thus, xt is not r-fuzzy δI-cluster point of 1−A. So, there existsD ∈ Qτ(xt, r) such

that 1−Aqintτ(Cl?(D, r), r). Put B = intτ(Cl?(D, r), r), so, B is r-FRIO set with xtqB ≤ A.

Conversely, suppose 1−A , CδIτ(1−A, r), then there exist x ∈ X and t ∈ I0 such that

(1−A)(x) < t < CδIτ(1−A, r)(x).

Since xtqA, there exists a r-FRIO set B such that xtqB ≤ A. It implies

1−A ≤ 1−B = Cτ(int?(1−B, r), r).



Int. J. Anal. Appl. (2024), 22:59 11

By Theorem 1.1(4), CδIτ(1 −A, r)(x) ≤ (1 − B)(x) < t. It is a contradiction. Hence, 1 −A =

CδIτ(1−A, r), i.e.,A is r-fuzzy δI-open set. �

Lemma 2.3. If τ(A) ≥ r, then Cτ(A, r) = CδIτ(A, r).

Proof. Let τ(A) ≥ r. Then, A is r-fuzzy ?-open set and so, A = int?(A, r). Then, by Theorem

2.1(8),

Cτ(A, r) = Cτ(int?(A, r), r) = CδIτ(A, r).

�

Theorem 2.8. Let (X, τ,I) be a fits. Then the following statements are equivalent:

(1) (X, τ,I) is fuzzy almost I-regular.
(2) For each r-fuzzy δI-open set A ∈X and each xt ∈ Pt(X) with xtqA, there exists r-fuzzy δI-open

set B ∈ IX such that xtqB ≤ Cl?(B, r) ≤ A.

Proof. (1)⇒(2): Let A be r-fuzzy δI-open set such each xtqA. Then by Lemma 2.3., there exists

r-FRIO set C ∈ IX such that xtqC ≤ A. By fuzzy almost I-regularity of X, there exists r-FRIO set B

(which is also r-fuzzy δI-open) such that xtqB ≤ Cl?(B, r) ≤ C ≤ A.

(2)⇒(1): It is obvious. �

3. Fuzzy θI-Continuous

Definition 3.1. Let (X, τ,I1)→ (Y, η,I2) be a mapping. Then,

(1) f is called fuzzy δ-ideal continuous (FδI-continuous, for short) iff for eachA ∈ Qη( f (xt), r), there
exists B ∈ Qτ(xt, r) such that

f (intτ(Cl?(B, r), r)) ≤ intη(Cl?(A, r), r).

(2) f is called fuzzy θ-ideal continuous (FθI-continuous, for short) iff for eachA ∈ Qη( f (xt), r), there
exists B ∈ Qτ(xt, r) such that

f (Cl?(B, r)) ≤ Cl?(A, r).

(3) f is called fuzzy strongly θ-ideal continuous (FSθI-continuous, for short) iff for each A ∈
Qη( f (xt), r), there exists B ∈ Qτ(xt, r) such that

f (Cl?(B, r)) ≤ A.

(4) f is called fuzzy almost ideal continuous (FAI-continuous, for short) iff for eachA ∈ Qη( f (xt), r),
there exists B ∈ Qτ(xt, r) such that

f (B) ≤ intη(Cl?(A, r), r).
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From the above definition, we obtain the following diagram:

F strongly continuous ⇒ F super continuous

⇓ ⇓

FSθI-continuous ⇒ FδI-continuous⇒ FAI-continuous.

Theorem 3.1. Let f : (X, τ,I1)→ (Y, η,I2) be a mapping. Then the following statements are equivalent:

(1) f is FδI-continuous.
(2) For eachA ∈ <ηI2

( f (xt), r) there exists B ∈ <τI1
(xt, r) such that f (B) ≤ A.

(3) f (CδI1τ(A, r)) ≤ CδI2η( f (A), r) for eachA ∈ IX and r ∈ I0.

(4) CδI1τ( f−1(B), r)) ≤ f−1(CδI2η(B, r)) for each B ∈ IY and r ∈ I0.

(5) For each r-fuzzy δI-closed (resp. r-fuzzy δI-open) set B ∈ IY, f−1(B) is r-fuzzy δI-closed (resp.
r-fuzzy δI-open) set in X.

(6) For each r-FRIO (resp. r-FRIC) set D ∈ IY, f−1(D) is r-fuzzy δI-open (resp. r-fuzzy δI-closed)
set in X.

Proof. (1)⇒(2): This follows immediately from Definition 3.1.

(2)⇒(3): Suppose there existsA ∈ IX and r ∈ I0 such that

f (CδI1τ(A, r)) � CδI2η( f (A), r).

Then there exists y ∈ Y and t ∈ I0 such that

f (CδI1τ(A, r))(y) > t > CδI2η( f (A), r)(y).

If f−1({y}) = ∅, provides a contradiction that f (CδI1τ(A, r))(y) = 0.

If f−1({y}) , ∅, there exists x ∈ f−1({y}) such that

f (CδI1τ(A, r))(y) ≥ CδI1τ(A, r)(x) > t > CδI2η( f (A), r)( f (x)). (3.1)

Since CδI2η( f (A), r)( f (x)) < t, by Theorem 2.1(7), f (x)t is not r-fuzzy δI-cluster point of

f (A). So, there exists D ∈ Qη( f (x)t, r) such that f (A) ≤ 1 − intη(Cl?(D, r), r). Since D ∈

Qη( f (x)t, r), intη(Cl?(D, r), r) ∈ <ηI2
( f (x)t, r). By (2), there exists B ∈ <τI1

(xt, r) such that

f (B) ≤ intη(Cl?(D, r), r). Hence, B ∈ Qτ(xt, r) and f (A) ≤ 1 − f (B) = 1 − f (intτ(Cl?(B, r), r))
implies that A ≤ 1 − intτ(Cl?(B, r), r). Thus xt is not r-fuzzy δI-cluster point of A, by Theorem

2.1(7), CδI1τ(A, r)(x) < t. It is a contradiction for equation (3.1).

(3)⇒(4): For all B ∈ IY and r ∈ I0. PutA = f−1(B) form (3). Then

f (CδI1τ( f−1(B), r)) ≤ CδI2η( f ( f−1(B)), r) ≤ CδI2η(B, r).

It implies

CδI1τ( f−1(B), r) ≤ f−1( f (CδI1τ( f−1(B), r))) ≤ f−1(CδI2η(B, r)).

(4)⇒(5): Let B ∈ IY be r-fuzzy δI-closed. By (4), we have

CδI1τ( f−1(B), r) ≤ f−1(CδI2η(B, r)) = f−1(B),
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and always f−1(B) ≤ CδIτ( f−1(B), r), implies f−1(B) = CδI1τ( f−1(B), r). Hence, f−1(B) is r-fuzzy

δI-closed set. Other case is similarly proved

(5)⇒(6): Let D be r-FRIO set in Y. Then, by Theorem 2.1(8), D is r-fuzzy δI-open set. By (5),

we have f−1(D) is r-fuzzy δI-open set. Other cases are similarly proved

(6)⇒(1): LetA ∈ Qη( f (xt), r). Then, intη(Cl?(A, r), r) ∈ <ηI2( f (x)t, r). By (6), we have

1− f−1(intη(Cl?(A, r), r)) = CδI1τ(1− f−1(intη(Cl?(A, r), r)), r).

Since f (xt)qA ≤ intη(Cl?(A, r), r), xtq f−1(intη(Cl?(A, r), r)), that is

t > (1− f−1(intη(Cl?(A, r), r)))(x) = CδI1τ(1− f−1(intη(Cl?(A, r), r)), r).

Thus, xt is not r-fuzzy δI-cluster point of 1− f−1(intη(Cl?(A, r), r)). Then, there existsB ∈ Qτ(xt, r)
such that 1− f−1(intη(Cl?(A, r), r)) ≤ 1− intτ(Cl?(B, r), r). Hence,

f (intτ(Cl?(B, r), r)) ≤ intη(Cl?(A, r), r).

Therefore, f is FδI-continuous. �

Theorem 3.2. f : (X, τ,I1)→ (Y, η,I2) be a mapping. Then the following statements are equivalent:

(1) f is FθI-continuous.
(2) for eachA ∈ <ηI2

( f (xt), r) there exists B ∈ Qτ(xt, r) such that f (Cl?(B, r)) ≤ A.

(3) f (CθI1τ(A, r)) ≤ CδI2η( f (A), r) for eachA ∈ IX and r ∈ I0.

(4) CθI1τ( f−1(B), r)) ≤ f−1(CδI2η(B, r)) for each B ∈ IY and r ∈ I0.

(5) For each r-fuzzy δI-closed (resp. r-fuzzy δI-open) set B ∈ IY, f−1(B) is r-fuzzy θI-closed (resp.
r-fuzzy θI-open) set.

Proof. (1)⇒(2): This follows immediately from Definition 3.1.

(2)⇒(3): Suppose there existsA ∈ IX and r ∈ I0 such that

f (CθI1τ(A, r)) � CδI2η( f (A), r).

Then there exists y ∈ Y and t ∈ I0 such that

f (CθI1τ(A, r))(y) > t > CδI2η( f (A), r)(y).

If f−1({y}) = ∅, provides a contradiction that f (CθI1τ(A, r))(y) = 0.

If f−1({y}) , ∅, there exists x ∈ f−1({y}) such that

f (CθI1τ(A, r))(y) ≥ CθI1τ(A, r)(x) > t > CδI2η( f (A), r)( f (x)). (3.2)

Since CδI2η( f (A), r)( f (x)) < t, f (x)t is not r-fuzzy δI-cluster point of f (A). So, there exists

D ∈ Qη( f (x)t, r) such that f (A) ≤ 1− intη(Cl?(D, r), r). SinceD ∈ Qη( f (x)t, r), intη(Cl?(D, r), r) ∈
<ηI2

( f (xt), r). By (2), there exists B ∈ Qτ(xt, r) such that f (Cl?(B, r)) ≤ intη(Cl?(D, r), r). Hence,

f (A) ≤ 1− f (Cl?(B, r)) implies thatA ≤ 1−Cl?(B, r). Thus, xt is not r-fuzzy θI-cluster point of

A, by Theorem 2.1(6), CθI1τ(A, r)(x) < t. it is a contradiction for equation (3.2).
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(3)⇒(4): For all B ∈ IY and r ∈ I0. PutA = f−1(B) form (2). Then

f (CθI1τ( f−1(B, r)) ≤ CδI2η( f ( f−1(B), r) ≤ CδI2η(B, r).

It implies that

CθI1τ( f−1(B, r) ≤ f−1( f (CθI1τ( f−1(B), r))) ≤ f−1(CδI2η(B, r)).

(4)⇒(5): Let B ∈ IY be r-fuzzy δI-closed by (4), we have

CθI1τ( f−1(B), r) ≤ f−1(CδI2η(B, r)) = f−1(B),

and since f−1(B) ≤ CθI1τ( f−1(B), r), f−1(B) = CθI1τ( f−1(B), r). Another case is similarly proved.

(5)⇒(1): Let A ∈ Qη( f (xt), r). Then, intη(Cl?(A, r), r) ∈ <ηI2
( f (x)t, r), by Theorem 2.1(8), we

have

1− intη(Cl?(A, r), r) = CδI2η(1− intη(Cl?(A, r), r), r).

Hence, intη(Cl?(A, r), r) is r-fuzzy δI-open set. By (5),

1− f−1(intη(Cl?(A, r), r)) = CθI1τ(1− f−1(intη(Cl?(A, r), r)), r).

Since f (xt)qA ≤ intη(Cl?(A, r), r), xtq f−1(intη(Cl?(A, r), r)), that is

t > (1− f−1(intη(Cl?(A, r), r)))(x) = CθI1τ(1− f−1(intη(Cl?(A, r), r)), r).

Thus, xt is not r-fuzzy θI-cluster point of 1− f−1(intη(Cl?(A, r), r)). Then, there existsB ∈ Qτ(xt, r)
such that 1− f−1(intη(Cl?(A, r), r)) ≤ 1−Cl?(B, r). Hence,

f (Cl?(B, r)) ≤ intη(Cl?(A, r), r) ≤ Cl?(A, r).

Therefore, f is FθI-continuous. �

The following theorem is similarly proved as in Theorem 3.2.

Theorem 3.3. Let f : (X, τ,I1)→ (Y, η,I2) be a mapping. Then the following statements are equivalent:

(1) f is F θI-continuous.
(2) f (CθI1τ(A, r)) ≤ CθI2η( f (A), r) for eachA ∈ IX and r ∈ I0.

(3) CθI1τ( f−1(B), r)) ≤ f−1(CθI2η(B, r)) for each B ∈ IY and r ∈ I0.

Theorem 3.4. Let f : (X, τ,I)→ (Y, η) be a mapping. Then the following statements are equivalent:

(1) f is FSθI-continuous.
(2) f (CθIτ(A, r)) ≤ Cη( f (A), r) for eachA ∈ IX and r ∈ I0.

(3) CθIτ( f−1(B), r)) ≤ f−1(Cη(B, r)) for each B ∈ IY and r ∈ I0.

(4) For each η(1 −B) ≥ r (resp. η(B) ≥ r), f−1(B) is r-fuzzy θI-closed (resp. r-fuzzy θI-open) set
in X.
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Proof. (1)⇒(2): Suppose there existsA ∈ IX and r ∈ I0 such that

f (CθIτ(A, r)) � Cη( f (A), r).

Then there exists y ∈ Y and t ∈ I0 such that

f (CθIτ(A, r))(y) > t > Cη( f (A), r)(y).

If f−1({y}) = ∅, provides a contradiction that f (CθIτ(A, r))(y) = 0.

If f−1({y}) , ∅, there exists x ∈ f−1({y}) such that

f (CθIτ(A, r))(y) ≥ CθIτ(A, r)(x) > t > Cη( f (A), r)( f (x)). (3.3)

Since Cη( f (A), r)( f (x)) < t, we have, f (x)t is not r-fuzzy δ-cluster point of f (A). So, there exists

D ∈ Qη( f (x)t, r) such that f (A) ≤ 1 − D. Since f is FSθI-continuous, for D ∈ Qη( f (x)t, r),
there exists B ∈ Qτ(xt, r) such that f (Cl?(B, r)) ≤ D. Hence, f (A) ≤ 1 − f (C?(B, r)) implies

A ≤ 1−Cl?(B, r) = int?(1−B, r). Since τ(B) ≥ r, by Theorem 2.1(4), we have CθIτ(A, r) ≤ 1−B.

Since xtqB, we have CθIτ(A, r)(x) ≤ (1−B)(x) < t. It is a contradiction of equation (3.3).

(3)⇒(4): For all B ∈ IY and r ∈ I0. PutA = f−1(B) form (3). Then

f (CθIτ( f−1(B, r)) ≤ Cη( f ( f−1(B), r) ≤ Cη(B, r).

Implies CθIτ( f−1(B, r) ≤ f−1( f (CθIτ( f−1(B), r))) ≤ f−1(Cη(B, r)).
(4)⇒(5): Let η(1−B) ≥ r. Then B = Cη(B, r). By (4), we have

CθIτ( f−1(B), r)) ≤ f−1(Cη(B, r)) = f−1(B).

And always f−1(B) ≤ CθIτ( f−1(B), r). Hence f−1(B) = CθI1τ( f−1(B), r). Another case is similarly

proved.

(5)⇒(1): Let A ∈ Qη( f (xt), r). Then, τ(A) ≥ r. By (5), 1 − f−1(A) = CθI1τ(1 − f−1(A), r). Since

f (xt)qA, xtq f−1(A), that is

t > (1− f−1(A))(x) = CθIτ(1− f−1(A), r).

Thus, xt is not r-fuzzy θI-cluster point of 1 − f−1(A). Then, there exists B ∈ Qτ(xt, r) such that

1− f−1(A) ≤ 1− (Cl?(B, r). Hence, f (Cl?(B, r)) ≤ A. Therefore, f is FSθI-continuous. �

The following theorem is similarly proved as in Theorem 3.4.

Theorem 3.5. f : (X, τ)→ (Y, η,I) be a mapping. Then the following statements are equivalent:

(1) f is FAI-continuous.
(2) f (Cτ(A, r)) ≤ CδIη( f (A), r) for eachA ∈ IX and r ∈ I0.

(3)[ Cτ( f−1(B), r)) ≤ f−1(CδIη(B, r)) for each B ∈ IY and r ∈ I0.

(4) For each r-fuzzy δI-closed (resp. r-fuzzy δI-open) set B ∈ IY, τ(1 − f−1(B)) ≥ r (resp.
τ( f−1(B)) ≥ r).

(5) For each r-FRIO (resp. r-FRIC) set B ∈ IY, τ( f−1(B)) ≥ r (resp. τ(1− f−1(B)) ≥ r).
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Example 3.1. Define τ1, τ2,I1,I2 : IX
→ I as follows:

τ1(B) =


1, if B ∈ {1, 0},
1
2 , if B = 0.4,

0, otherwise,

τ2(B) =


1, if B ∈ {1, 0},
1
2 , if B = 0.4,
1
2 , if B = 0.3,

0, otherwise,

I1(B) =


1, if B = 0,
2
3 , if B = 0.5,
1
2 , if 0 < B < 0.5,

0, otherwise,

I2(B) =


1, if B = 0,
2
3 , if B = 0.7,
1
2 , if 0 < B < 0.7,

0, otherwise.

From Theorem 2.1(4), and 2.3, we obtain Cτ, Dτ, CδIτ : IX
× I0 → IX as follows:

(Dτ1 = CδI1τ1)(B, r) =


0, if B = 0,

0.6, if 0 , B ≤ 0.6, 0 < r ≤ 1
2 ,

1, otherwise,

Cτ2(B, r) =


0, if B = 0,

0.6, if 0 , B ≤ 0.6, 0 < r ≤ 1
2 ,

0.7, if 0.6 < B ≤ 0.7, 0 < r ≤ 1
2 ,

1, otherwise,

CδI2τ2(B, r) =

 0, if B = 0,

1, otherwise,

By Theorem 3.1(3), the identity mapping idX : (X, τ1,I1) → (Y, τ2,I2) is FδI-continuous but it is not
F-super continuous because, by Theorem 1.4.6, 1 = Dτ1(0.7, 1

2 ) ≥ Cτ2(0.7, 1
2 ) = 0.7.

Example 3.2. Define τ1, τ2,I1,I2 : IX
→ I as follows:

τ1(B) =


1, if B ∈ {1, 0},
1
2 , if B = 0.6,

0, otherwise,

τ2(B) =


1, if B ∈ {1, 0},
1
2 , if B ∈ {0.6, 0.3},

0, otherwise,

I1(B) =


1, if B = 0,
1
2 , if B = 0.3,
2
3 , if 0 < B < 0.3,

0, otherwise,

I2(B) =


1, if B = 0,
1
2 , if B = 0.4,
2
3 , if 0 < B < 0.4,

0, otherwise.

From Theorem 2.1(4), and 2.3, we obtain CθIτ, Tτ, Cτ : IX
× I0 → IX as follows:

CθI1τ1(B, r) =


0, if B = 0,

0.4, if 0 , B ≤ 0.4, 0 < r ≤ 1
2 ,

1, otherwise,
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Cτ2(B, r) =


0, if B = 0,

0.4, if 0 , B ≤ 0.4, 0 < r ≤ 1
2 ,

0.7, if 0.4 < B ≤ 0.7, 0 < r ≤ 1
2 ,

1, otherwise,

CθI2τ2(B, r) =


0, if B = 0,

0.7, if 0 , B ≤ 0.4, 0 < r ≤ 1
2 ,

1, otherwise,

Tτ1(B, r) =

 0, if B = 0,

1, otherwise,

By Theorem 3.1(3), the identity mapping idX : (X, τ1,I1) → (Y, τ2,I2) is FSθI-continuous but f it is
not F-strongly continuous because, Tτ1(B, r) � Cτ2(B, r).

Example 3.3. Define τ1, τ2,I1,I2 : IX
→ I as follows:

τ1(B) =


1, if B ∈ {1, 0},
1
2 , if B = 0.4,

0, otherwise,

τ2(B) =


1, if B ∈ {1, 0},
1
2 , if B ∈ {0.7, 0.4},

0, otherwise,

I1(B) =


1, if B = 0,
2
3 , if 0 < B ≤ 0.2,

0, otherwise,

I2(B) =


1, if B = 0,
2
3 , if 0 < B ≤ 0.4,

0, otherwise.

From Theorems 2.1 (4), we obtain CδIτ, CθIτ : IX
× I0 → IX as follows:

Cτ2(B, r) =


0, if B = 0,

0.3, if 0 , B ≤ 0.3, 0 < r ≤ 1
2 ,

0.6, if 0.3 < B ≤ 0.6, 0 < r ≤ 1
2 ,

1, otherwise,

(CθI1τ1 = CδI2τ2 = CδI1τ1)(B, r) =


0, if B = 0,

0.6, if 0 , B ≤ 0.6, 0 < r ≤ 1
2 ,

1, otherwise,

By Theorem 3.2(3), the identity mapping idX : (X, τ1,I1) → (Y, τ2,I2) is FδI-continuous but it is not
FSθI-continuous because, CθI1τ1(B, r) � Cτ2(B, r).

Definition 3.2. Let (X, τ,I) be a fits, A,B ∈ IX and r ∈ I0. Then X is called fuzzy I-semiregular (for
short, FIS-regular) if for eachA ∈ Qτ(xt, r), there exists B ∈ Qτ(xt, r) such that intτ(Cl?(B, r), r) ≤ A.

Theorem 3.6. Let f : (X, τ,I1)→ (Y, η,I2) be a mapping. Then the following statements are hold:

(1) If Y isFIS-regular and f is FδI-continuous, then f is F-continuous.
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(2) If X is FIS-regular and f is FAI-continuous, then f is FδI-continuous.
(3) If Y is fuzzy almost I-regular and f is FθI-continuous, then f is FδI-continuous.
(4) If X is fuzzy almost I-regular and f is FδI-continuous, then f is FSθI-continuous.

Proof. (1) Let η(A) ≥ r for each f (x)t ∈ A. Then, A ∈ Qη( f (xt), r). Since (Y, η,I2) is fuzzy I-

semiregular, there existsD ∈ Qη( f (xt), r) with intη(Cl?(D, r), r) ≤ A. By FδI-continuity of f , there

exists B ∈ Qτ(xt, r) such that f (intτ(Cl?(B, r), r)) ≤ intη(Cl?(D, r), r). Since τ(B) ≥ r,

f (B) ≤ f (intτ(Cl?(B, r), r)) ≤ intη(Cl?(D, r), r) ≤ A.

Thus, f (B) ≤ A and hence f is F-continuous.

(2-4) are similar. �

Lemma 3.1. Let If (X, τ1,I1), (Y, τ2,I2) and (Z, τ3,I3) be fits’s. Let f : X → Y and g : Y → Z be a
mappings. If f is FSθI-continuous and g is FAI-continuous, then g ◦ f is FδI-continuity.

Proof. Obvious. �

Definition 3.3. Let (X, τ,I) be a fits. Then,

(1) the pair (A,B) is said to be fuzzy ideal r-θ-separation relative to X iff AqB, AqΘτI(B, r) and
ΘτI(A, r)qB.

A fuzzy setD ∈ IX is said to be fuzzy ideal r-θ-connected iff there do not exist two fuzzy setsA
and B in X such that (A,B) is fuzzy ideal r-θ-separation relative to X andD = A∨B.

(2) The pair (A,B) is said to be fuzzy ideal r-δ-separation relative to X iff AqB, Aq∆τI(B, r) and
∆τI(A, r)qB.

A fuzzy setD ∈ IX is said to be fuzzy ideal r-δ-connected iff there do not exist two fuzzy setsA
and B in X such that (A,B) is fuzzy ideal r-δ-separation relative to X andD = A∨B.

Lemma 3.2. It is clear that every fuzzy ideal r-δ-connected is fuzzy ideal r-θ-connected.

Example 3.4. Define τ,I : IX
→ I as follows:

τ1(B) =


1, if B ∈ {1, 0},
1
2 , if B ∈ {0.7, 0.4},

0, otherwise,

I1(B) =


1, if B = 0,
2
3 , if 0 < B ≤ 0.5,

0, otherwise,

From Theorem 3.2 (2) CθIτ : IX
× I0 → IX as follows:

∆τI(B, r) =


0, if B = 0,

0.6, if 0 , B ≤ 0.6, 0 < r ≤ 1
2 ,

1, otherwise,

CθIτ(B, r) =


0, if B = 0,

0.6, if 0 , B ≤ 0.3, 0 < r ≤ 1
2 ,

1, otherwise,
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Then by Definition 3.4, we have

ΘτI(B, r) =

 0, if B = 0,

1, otherwise,

For 0.4 = 0.3∨ 0.4 we have 0.3q0.4, 0.6 = ∆τI(0.3, 1
2 )q0.4 and 0.3q∆τI(0.4, 1

2 ) = 0.6. Hence, (0.3, 0.4)

is fuzzy ideal 1
2 − δ-separation and 0.4 is not fuzzy ideal 1

2 − δ-connected.
For any representation 0.4 = A∨C, where A and C are non-empty, ΘτI(B, r) = 1 for B ∈ {A,C}.

Thus, 0.4 is fuzzy ideal 1
2 − θ-connected.

Lemma 3.3. If (X, τ,I) is fuzzy almost I-regular, then the concepts fuzzy ideal r-δ-connectedness and
fuzzy ideal r-θ-connectedness are equivalent.

Proof. The proof is easily from Theorem 4.3.9. �

Theorem 3.7. Let Let f : (X, τ,I1)→ (Y, η,I2) be a mapping. Then the following statements are hold:

(1) IfA is fuzzy ideal r-θ-connected and f is FθI-continuous, then f (A) is fuzzy ideal r-θ-connected.
(2) IfA is fuzzy ideal r-δ-connected and f is FδI-continuous, then f (A) is fuzzy ideal r-δ-connected.
(3) IfA is fuzzy ideal r-δ-connected and f is FSθI-continuous, then f (A) is fuzzy ideal r-δ-connected.

Proof. Let (A,B) be fuzzy ideal r-θ-separation relative to Y such that f (D) = A∨B. Suppose

that C1 = D∧ f−1(A) and C2 = D∧ f−1(B). Then, D = C1 ∨ C2. To arrive at a contradiction it

suffices to show that (C1,C2) is fuzzy ideal r-θ-separation relative to X. Now, since f (D) ∨A , 0

(otherwiseA = 0), there exists y ∈ Y such that f (D)(y) > 0. Then, for some xt ∈ Pt(X),D(x) > 0.

Also, f−1(A)(x) = A( f (x)) > 0. Thus, C1 = D∨ f−1(A) , 0. Similarly C2 = D∨ f−1(B) , 0.

Now C1 ≤ f−1(A), by Theorem 3.5(1),

CδI1τ(C1, r) ≤ f−1(CδI2η(A), r) = f−1(∆ηI2(A, r).

Again, ∆ηI2(A, r)q f−1(B) implies that CδI1τ(C1, r)q f−1(B). But C2 ≤ f−1(C1). So, C2qCδI1τ(C1, r),
thus (C1,C2) is fuzzy ideal r-θ-separation relative to X.

The proof (2) and (3) it is clear. �
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