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Abstract. The predator-prey model is a widely mathematical structure that explains the dynamics between two inter-

acting populations: predators and prey. The predator-prey interaction represents a fundamental dynamic in nature,

influencing the stability and balance of ecosystems worldwide. The purpose of this article is to provide insight into the

complex interactions and feedback mechanisms between predators and prey in ecological systems via mathematical

tools such as stability and bifurcation. We investigate a fractional-order Lotka-Volterra model with a harvesting effect

using stability and bifurcation theory. The equilibrium points and local stability of the purposed model are presented

in this article. The bifurcation analysis, which is a potent approach used to analyse the qualitative behavior of the

predator-prey system as the parameter values are varied, is also explored. In particular, a Neimark-Sacker bifurcation

and a period-doubling bifurcation are theoretically and numerically examined. Furthermore, we illustrate some 2D

figures to show the phase portriat and bifurcations of this model at various points.

1. Introduction

One of the most frequently discussed topics in biomathematics is population dynamics. Begin-

ning with populations of only one species and progressing to more realistic models where several

species compete and interact in an identical habitat, the investigation of population development

has long been of significant interest. Some experts have successfully explored models in which

populations communicate in ways such as competition, symbiosis, commensalism, or predator-

prey relationships. Some predator-prey dynamical systems have been investigated with some

effects, including the immigration effect, fear effect, cannibalism effect and Allee effect. Lotka-

Volterra systems, which were first proposed by Volterra and Lotka [1,2] in the nineteenth century,
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are probably the most well-known predator-prey models. The predator-prey model is usually

characterized as a system of ordinary differential equations, where the population sizes of preda-

tors and prey are expressed by variables that evolve over time. The model includes significant

factors such as birth rates, death rates, predation rates, and competition for resources. In the

predator-prey model, the prey is consumed by the predator. The predator may possibly eliminate

all the prey, which would lead to the extinction of the latter. However, if that occurs, the predator

will eventually become extinct. This cyclic may lead to the fact that the density of prey species

depends on the density of predator species for some time.

The mechanism of a variety of biological phenomena has been satisfactorily explained using math-

ematics. In actuality, many experts have used the concepts of differential equations and difference

equations to provide a clear clarification on such phenomena. This is observable in an extensive

range of discrete and continuous dynamical systems, including the Lotka-Volterra model. For

the purpose of offering a more logical explanation for the interaction between different kinds of

animals, this nonlinear model has been thoroughly investigated by a massive number of scholars.

For example, Uddin et al. [3] investigated a discrete prey–predator system with harvesting on the

predator species by using the Caputo fractional derivative. They showed that this model undergoes

a Neimark–Sacker and a Period-doubling bifurcations under some certain conditions. The chaos in

the dynamical system was also obtained in [3]. Lee and Baek [4] analysed a predator–prey system

with Beddington–DeAngelis functional response with harvesting. In [4], the authors proved that

the considered model goes through some types of bifurcation including the subcritical and su-

percritical Hopf bifurcation, the saddle–node bifurcation, and the Bogdanov–Takens bifurcation.

Moreover, Liu and Huang [5] investigated a harvested predator–prey model using the analysis of

two-prey and one-predator system. The occurrence and the attractivity behavior of seven fixed

points of these three equations were further presented. In [6], Sahoo et al. provided a detail study

about a predator–prey system with a square root functional response. This model, in which an

alternative resource was provided in the population predator, was successfully investigated with

a predator harvesting. Furthermore, Moitri et al. [7] explored a harvested predator–prey model

with alternative prey. Lin [8] investigated a model of two species with non-monotonic functional

response and non-selective harvesting. The local and global stability of this model were also

studied. Das and Pal [9] formulated and analysed a prey-predator model with a harvesting effect

for both the prey and predator population. The stability criteria of this model was also examined

for this model. Finally, Mohdeb [10] explored the stability of fixed points and the occurrence of

periodic solutions for a prey-predator model including nonlinear harvesting effect. Transcritical

and saddle node bifurcations were also discussed in [10]. More studies about predator-prey model

can be found in refs. [11, 14, 15, 19].

The motivation behind writing this article stems from the profound significance and applicability

of this ecological concept. By exploring this model, we gain insights into the complicated con-

nections between the considered species, the influence of population dynamics, and the delicate
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equilibrium that exists in natural communities. Understanding the predator-prey model can shed

light on the mechanisms driving population fluctuations, the impacts of predation on biodiversity,

and the potential consequences of disturbances or interventions within ecosystems. Furthermore,

elucidating this model can have broader implications, aiding in the development of effective con-

servation strategies, wildlife management practices, and even informing our understanding of

human socio-ecological systems. This paper aims to investigate the following fractional order

dynamical system: 
Tαu(t) = Ru(t)(1− u(t)) − Bu(t)v(t) −H1u(t),

Tαv(t) = v(t)(eBu(t) −D) −H2v(t).
(1.1)

Here, all parameters are positive. We present a brief description for each parameter in terms of its

biological meaning in Table 1.

Parameter Biological description

t Time

u(t) Population densities of prey at time t

v(t) Population densities of predator at time t

R Intrinsic growth rates of prey

B Consumption rate of the prey

H1 Harvesting effect on prey population

e Conversion factor

D Death rates of predator

H2 Harvesting effect on predator population

α Fractional-order parameter with 0 < α ≤ 1

Tα Fractional derivative of the conformable-type

Table 1. Biological description of parameters and variables present in model (1.1).

We also provide a detail investigation about the Neimark-Sacker and period-doubling bifurcations.

Bifurcations occur when the dynamics of the system encounter qualitative changes, such as the

emergence of new stable states, limit cycles, or chaotic behavior. These changes can have significant

implications for the long-term stability and coexistence of predator and prey populations. In

addition, we present numerical investigations for the obtained results.

We outline this paper as follows. Section 2 discusses the discretization method which we use to

discretize the proposed model. In Section 3, the occurrence and stability of the fixed points are

shown. Moreover, the bifurcation analysis is given in Section 4. Section 5 presents the chaos

control. Section 6 is added to confirm the obtained results using numerical examples. Ultimately,

we conclude this work in Section 7.
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Definition 1.1 ( [20, 21]). Let H : (0,∞) → R be a function. Then, the conformable fractional derivative
of order 0 < α ≤ 1 of H at t > 0 is defined by

TαSH(t) = lim
ε→0

H(t + ε(t− S)1−α) −H(t)
ε

, 0 < α ≤ 1. (1.2)

Here, TαS is the conformable-type fractional derivative. The discretization parameter is S > 0. It was
presented in [22], the derivative of Eq. (1.2) is given by

TαSH(t) = (t− S)1−αH′(t). (1.3)

2. Discretization Strategy

This part will discretize the proposed model using the piecewise constant argument approach

[23]. We also employ the concept of the conformable fractional derivative [11, 24] (Definition

1.1). Using this concept and simplify the obtained results, model (1.1) can be converted into the

following system: 
ui+1 = uie(R(1−ui)−Bvi−H1)

Sα
α ,

vi+1 = vie(eBui−D−H2)
Sα
α ,

(2.1)

where S represents the discretization parameter.

3. Equilibrium Points and Stability Analysis

In this section, we study the existence and stability of equilibrium points of system (2.1). The

equilibrium point (u, v) of system (2.1) satisfies

u = ue(R(1−u)−Bv−H1)
Sα
α , v = ve(eBu−D−H2)

Sα
α .

Clearly, system (2.1) always has the boundary equilibrium points O = (0, 0) and BE =
(

R−H1
R , 0

)
if R > H1. Moreover, if ReB > RD + RH2 + eBH1 then it also has a positive equilibrium point

PE =
(

D+H2
eB , ReB−RD−RH2−eBH1

eB2

)
. In order to analyse the stability of the obtained equilibrium points,

we introduce the following lemmas.

Lemma 3.1 ( [23, 24]). Suppose that (u, v) is a equilibrium point for system (2.1) with multipliers γ1 and
γ2. Then,

(1) The point (u, v) is a sink if |γ1| < 1 and |γ2| < 1.
(2) The point (u, v) is a source if |γ1| > 1 and |γ2| > 1.
(3) The point (u, v) is a saddle if |γ1| < 1 and |γ2| > 1 (or if |γ1| > 1 and |γ2| < 1).
(4) The point (u, v) is a non-hyperbolic if |γ1| = 1 or |γ2| = 1.

Lemma 3.2 ( [14,23,25]). Suppose that the polynomial ρ(γ) = γ2
−Pγ+ Q, where ρ(1) > 0, and γ1 and

γ2 are the two roots of ρ(γ) = 0. Then,

(1) |γ1| < 1 and |γ2| < 1 if and only if ρ(−1) > 0 and ρ(0) < 1.
(2) |γ1| > 1 and |γ2| > 1 if and only if ρ(−1) > 0 and ρ(0) > 1.
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(3) |γ1| < 1 and |γ2| > 1 (or |γ1| > 1 and |γ2| < 1) if and only if ρ(−1) < 0.
(4) γ1 = −1 and |γ2| , 1 if and only if ρ(−1) = 0 and P , 0, 2.
(5) γ1 and γ2 are complex numbers and |γ1| = |γ2| = 1 if and only if |P| < 2 and ρ(0) = 1.

Note that the Jacobian matrix of system (2.1) calculated at any point (u, v) is written as

MJ((u, v)) =


(
1−

RSαu
α

)
e(R(1−u)−Bv−H1)

Sα
α −

BSαu
α

e(R(1−u)−Bv−H1)
Sα
α

eBSαv
α

e(eBu−D−H2)
Sα
α e(eBu−D−H2)

Sα
α

 . (3.1)

Hence, evaluating matrix (3.1) at the point O gives

MJ(O) =


e(R−H1)

Sα
α 0

0 e(−D−H2)
Sα
α

 . (3.2)

As a result, the eigenvalues of matrix (3.2) are given by γ1 = e(R−H1)
Sα
α and γ2 = e(−D−H2)

Sα
α < 0.

Furthermore, the Jacobian matrix at the equilibrium point BE is given by

MJ(BE) =


(
1−

(R−H1)Sα

α

)
−

B(R−H1)Sα

Rα

0 e

(
eB(R−H1)

R −D−H2

)
Sα
α

 , (3.3)

whose eigenvalues are γ1 =
(
1− R(R−H1)Sα

α

)
and γ2 = e

(
eB(R−H1)

R −D−H2

)
Sα
α .

Hence, using Lemma (3.1), we attain the local stability of the points O and BE, as shown in Lemma

(3.3) and (3.4), respectively.

Lemma 3.3. The trivial equilibrium O = (0, 0) is a

1 sink if R < H1;
2 saddle if R > H1;
3 non-hyperbolic if R = H1.

Lemma 3.4. When R > H1 is satisfied, the boundary equilibrium BE =
(

R−H1
R , 0

)
is a

1 sink if 0 < S <
(

2α
R(R−H1)

)1/α
and eB(R−H1)

R < D + H1;

2 source if S >
(

2α
R(R−H1)

)
and eB(R−H1)

R > D + H1;

3 saddle if S >
(

2α
R(R−H1)

)1/α
and eB(R−H1)

R < D + H1 (or 0 < S <
(

2α
R(R−H1)

)
and eB(R−H1)

R > D + H1);

4 non-hyperbolic if S =
(

2α
R(R−H1)

)1/α
or eB(R−H1)

R = D + H1.
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Now, we calculate the Jacobian matrix of system (2.1) at the positive equilibrium point PE as

follows:

MJ(PE) =


(
1−

R(D + H2)Sα

eBα

)
−
(D + H2)Sα

eα

(ReB−RD−RH2 − eBH1)Sα

αB
1

 . (3.4)

The characteristic polynomial of matrix (3.4) is shown as follows:

ρ(γ) = γ2
− Pγ+ Q, (3.5)

where

P = 2−
(

R(D + H2)

eBα

)
Sα,

Q = 1−
(

R(D + H2)

eBα

)
Sα +

(
(D + H2)(ReB−RD−RH2 − eBH1)

eBα2

)
S2α.

Hence, we have

ρ(−1) = 4− 2
(

R(D + H2)

eBα

)
Sα +

(
(D + H2)(ReB−RD−RH2 − eBH1)

eBα2

)
S2α,

ρ(0) = 1−
(

R(D + H2)

eBα

)
Sα +

(
(D + H2)(ReB−RD−RH2 − eBH1)

eBα2

)
S2α,

ρ(1) =
(
(D + H2)(ReB−RD−RH2 − eBH1)

eBα2

)
S2α > 0.

According to the above results and Lemma (3.2), we can state and prove the following Lemma.

Lemma 3.5. Suppose that ReB > (RD + RH2 + eBH1) and let

δ = R2(D + H2) − 4eB(ReB−RD−RH2 − eBH1), S0 =

(
αR

(ReB−RD−RH2 − eBH1)

)1/α

,

S1 =

α(R(D + H2) −
√

R2(D + H2)2 − 4eB(D + H2)(ReB−RD−RH2 − eBH1))

(D + H2)(ReB−RD−RH2 − eBH1)

1/α

,

and S1 =

α(R(D + H2) +
√

R2(D + H2)2 − 4eB(D + H2)(ReB−RD−RH2 − eBH1))

(D + H2)(ReB−RD−RH2 − eBH1)

1/α

.

Then, there exist different topological types of the stability of the positive equilibrium point PE for all possible
parameters.

(1) The point PE is a sink (locally asymptotic stable) if one of the following conditions hold:
(i) δ < 0 and 0 < S < S0,

(ii) δ ≥ 0 and 0 < S < S1.
(2) The point PE is source if one of the following conditions hold:

(i) δ < 0 and S > S0,
(ii) δ ≥ 0 and S > S2.
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(3) The point PE is saddle if δ ≥ 0 and S1 < S < S2.
(4) The point PE is non-hyperbolic if one of the following conditions hold:

(i) δ < 0 and S = S0,

(ii) δ ≥ 0 and S = S1,2 and S ,
(

2αeB
R(D+H2)

)1/α
.

Lemma 3.6. The positive equilibrium point PE of system (2.1) loses its stability in two cases.

(1) The point PE loses its stability via a period-doubling bifurcation if

R2(D + H2) ≥ 4eB(ReB−RD−RH2 − eBH1), S ,
(

2αeB
R(D + H2)

)1/α

,

and

S = S1,2 =

α(R(D + H2) ∓
√

R2(D + H2)2 − 4eB(D + H2)(ReB−RD−RH2 − eBH1))

(D + H2)(ReB−RD−RH2 − eBH1)

1/α

.

(2) The point PE loses its stability via a Neimark-Sacker bifurcation if

R2(D + H2) < 4eB(ReB−RD−RH2 − eBH1), and S = S0 =

(
αR

(ReB−RD−RH2 − eBH1)

)1/α

.

4. Bifurcation Analysis

Our main purpose in this section is to extensively examine whether the considered populations

exhibit cyclic dynamics over time. We now prove that system (2.1) can either undergo a Neimark-

Sacker bifurcation or a period-doubling bifurcation when the positive equilibrium point

PE =
(D + H2

eB
,

ReB−RD−RH2 − eBH1

eB2

)
,

loses its stability.

4.1. Neimark-Sacker bifurcation. The Neimark-Sacker bifurcation of system (2.1) is discussed

in this part. This type of bifurcation takes place when a closed invariant curve arises from a

fixed point in a discrete dynamical system. Then, the stability of the point changes via a pair

of complex eigenvalues with unit modulus [24–28]. In this discussion, we study the considered

system around the point PE. Note that this point loses its stability via a Neimark-Sacker bifurcation

if the parameters (R, B, H1, D, e, H2, S,α) vary in a neighborhood of the set:

K0 =


(R, B, H1, D, e, H2, S,α) ∈ R8

∣∣∣R2(D + H2) < 4eB(ReB−RD−RH2 − eBH1),

S = S0 =

(
αR

(ReB−RD−RH2 − eBH1)

)1/α

, α ∈ (0, 1]

 .

Next, assume that (R, B, H1, D, e, H2, S0,α) ∈ K0 and S̄ is a small perturbation of S0 where |S̄| � 1.

Then, system (2.1) can be expressed as follows:
ui+1 = uie(R(1−ui)−Bvi−H1)

(S0−S̄)α

α = F1(ui, vi, S̄),

vi+1 = vie(eBui−D−H2)
(S0−S̄)α

α F2(ui, vi, S̄).
(4.1)
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If we consider the shift Xi = ui −
D + H2

eB
and Yi = vi −

ReB−RD−RH2 − eBH1

eB2 , then the equilib-

rium point PE becomes the origin. Using Taylor series at origin and expanding F1 and F2 to the

3-order, system (4.1) gives

Xi+1 = A11Xi + A12Yi + A13X2
i + A14XiYi + A15Y2

i + A16X3
i +

A17X2
i Yi + A18XiY2

i + A19Y3
i +O1(|Xi|, |Yi|)

4,

Yi+1 = A21Xi + A22Yi + A23X2
i + A24XiYi + A25Y2

i + A26X3
i +

A27X2
i Yi + A28XiY2

i + A29Y3
i +O2(|Xi|, |Yi|)

4.

(4.2)

Here,

A11 =

(
1−

R(D + H2)(S0 − S̄)α

eBα

)
, A12 = −

(D + H2)(S0 − S̄)α

eα
,

A21 =
(ReB−RD−RH2−eBH1)(S0−S̄)α

αB , A22 = 1, A13 = −
R(S0−S̄)α

α

(
2− R(S0−S̄)u∗

α

)
,

A14 = −
B(S0−S̄)α

α

(
1− B(S0−S̄)u∗

α

)
, A15 ==

B2(S0−S̄)αu∗

α , A16 =
(

R(S0−S̄)α

α

)2 (
3− R(S0−S̄)u∗

α

)
,

A17 =
B(S0−S̄)2α

α2

(
B + R

(
1− B(S0−S̄)u∗

α

))
, A18 = −

B2(S0−S̄)α

α

(
1− R(S0−S̄)u∗

α

)
,

A19 =
−B3u∗(S0−S̄)α

α , A23 =
(

eB(S0−S̄)α

α

)2
v∗, A24 =

(
eB(S0−S̄)α

α

)
, A25 = A28 = A29 = 0,

A26 =
(

eB(S0−S̄)α

α

)3
v∗, A27 =

(
eB(S0−S̄)α

α

)2
,

with

u∗ =
D + H2

eB
and v∗ =

ReB−RD−RH2 − eBH1

eB2 .

The Jacobian matrixMJ(PE) of system (4.2) about the point PE is

MJ(PE) =

 A11 A12

A21 A22

 .

Here, the characteristic equation of the linearization of system (4.2) at the origin is given by

γ2
− P(S̄)γ+ Q(S̄) = 0 , (4.3)

where

P(S̄) = 2−
(

R(D+H2)
eBα

)
(S0 − S̄)α and,

Q(S̄) = 1−
(

R(D+H2)
eBα

)
(S0 − S̄)α +

(
(D+H2)(ReB−RD−RH2−eBH1)

eBα2

)
(S0 − S̄)2α.

We have (R, B, H1, D, e, H2, S0,α) ∈ K0. Therefore, the complex conjugate roots with unit modulus

of Eq. (4.3) are

γ1,2(S̄) =
P(S̄)

2
±

i
2

√
4Q(S̄) − P2(S̄) .



Int. J. Anal. Appl. (2024), 22:51 9

Hence, |γ1,2(S̄)| =
√

Q(S̄) and Q(0) = 1 from which we have(
d|γ1,2|

dS̄

)
S̄=0

=

d
√

Q(S̄)
dS̄


S̄=0

=
R(D + H2)

2eB

(
αR

(ReB−RD−RH2 − eBH1)

) α−1
α

> 0.

The following conditions must be satisfied to ensure the existence of a Neimark-Sacker bifurcation:

(
d|γ1,2(S̄)|

dS̄

)
S̄=0
, 0, (4.4)

and

γ1,2(0)n , 1, n = 1, 2, 3, 4. (4.5)

The constraint P(0) , 0, 1 implies that

S0 ,

(
2αeB

R(D + H2)

) 1
α

,
(

αeB
R(D + H2)

) 1
α

.

This is exactly equivalent to γn
1,2 , 1 with n = 1, 2, 3, 4. Moreover, the normal form of system (4.2)

at S̄ = 0 is obtained by defining the following transformation: Xi

Yi

 =  A12 0

R−A11 −I

  ūi

v̄i

 ,

with R =
P(0)

2 and I =

√
4−P(0)2

2 . Using the previous transformation, system (4.2) becomes

ūi+1 = Rūi −Iv̄i + F̃1(ūi, v̄i) ,

v̄i+1 = Iūi +Rv̄i + F̃2(ūi, v̄i) , (4.6)

where

F̃1(ūi, v̄i, S0) =
A13

A12
X2

i +
A14

A12
XiYi +

A15

A12
Y2

i +
A16

A12
X3

i +
A17

A12
X2

i Yi +
A18

A12
XiY2

i +

A19

A12
Y3

i + Õ1(|Xi|, |Yi|)
4,

F̃2(ūi, v̄i, S0) =

(
A13(R−A11)

IA12
−

A23

I

)
X2

i +

(
A14(R−A11)

IA12
−

A24

I

)
XiYi+(

A15(R−A11)

IA12
−

A25

I

)
Y2

i +

(
A16(R−A11)

IA12
−

A26

I

)
X3

i +(
A17(R−A11)

IA12
−

A27

I

)
X2

i Yi +

(
A18(R−A11)

IA12
−

A28

I

)
XiY2

i +(
A19(R−A11)

IA12
−

A29

I

)
Y3

i + Õ2(|Xi|, |Yi|)
4,

with

Xi = A12ūi, Yi = (R−A11)ūi −Iv̄i.
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Ultimately, to make sure that the Neimark-Sacker bifurcation at (0, 0, S0) of system (4.6) exists, the

following discriminatory quantity must not be zero:

L = <(γ2n21) −<

 (1− 2γ1)γ2
2

1− γ1
n20n11

− 1
2
|n11|

2
− |n02|

2 , (4.7)

where

n20 =
1
8

[
∂2
F̃1

∂ū2 −
∂2
F̃1

∂v̄2 + 2
∂2
F̃2

∂ū∂v̄
+ i

(
∂2
F̃2

∂ū2 −
∂2
F̃2

∂v̄2 − 2
∂2
F̃1

∂ū∂v̄

)]∣∣∣∣∣∣
S̄=0

,

n11 =
1
4

[
∂2
F̃1

∂ū2 +
∂2
F̃1

∂v̄2 + i
(
∂2
F̃2

∂ū2 +
∂2
F̃2

∂v̄2

)]∣∣∣∣∣∣
S̄=0

,

n02 =
1
8

[
∂2
F̃1

∂ū2 −
∂2
F̃1

∂v̄2 − 2
∂2
F̃2

∂ū∂v̄
+ i

(
∂2
F̃2

∂ū2 −
∂2
F̃2

∂v̄2 + 2
∂2
F̃1

∂ū∂v̄

)]∣∣∣∣∣∣
S̄=0

,

n21 =
1
16

[
∂3
F̃1

∂ū3 +
∂3
F̃1

∂ū∂v̄2 +
∂3
F̃2

∂ū2∂v̄
+
∂3
F̃2

∂v̄3 + i
(
∂3
F̃2

∂ū3 +
∂3
F̃2

∂ū∂v̄2 −
∂3
F̃1

∂ū2∂v̄
−
∂3
F̃1

∂v̄3

)]∣∣∣∣∣∣
S̄=0

.

Theorem 4.1. Assume that conditions (4.4), (4.5) are satisfied, and let (R, B, H1, D, e, H2, S,α) ∈ K0 with
L , 0. Then, system (2.1) goes through a Neimark-Sacker bifurcation at the equilibrium point PE when the
bifurcation parameter S varies in a small neighbourhood of

S0 =

(
αR

(ReB−RD−RH2 − eBH1)

)1/α

.

If L < 0, the equilibrium point bifurcates in an attracting invariant closed curve for S̄ > 0. If L > 0, a
repelling invariant closed curve bifurcates from the equilibrium point for S̄ < 0.

4.2. Period-doubling bifurcation. The following lemma is utilized to demonstrate the period-

doubling bifurcation of system (2.1) at the point PE =
(D + H2

eB
,

ReB−RD−RH2 − eBH1

eB2

)
with

ReB > RD + RH2 + eBH1.

Lemma 4.1 ( [29, 30]). [Existence of period-doubling bifurcation] Assume that Uk+1 = Gs(Uk) is a n-
dimensional discrete dynamical system where s ∈ R is a bifurcation parameter. Let U∗ be an equilibrium
point of Gs and suppose that the characteristic equation of the Jacobian matrix MJ(U∗) = (ai j)n×n of
n-dimensional map Gs(Uk) is expressed as

ρs(γ) = γn + a1γ
n−1 + · · ·+ an−1γ+ an. (4.8)

Here, ai = ai(s, u), i = 1, 2, 3, · · · , n and u is a control parameter. Suppose that ∆±0 (s, u) = 1,
∆±1 (s, u), · · · , ∆±n (s, u) are a sequence of the determinants described by

∆±i (s, u) = det(N1 ±N2), i = 1, 2, · · · , n, (4.9)
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where

N1 =



1 a1 a2 · · · ai−1

0 1 a1 · · · ai−2

0 0 1 · · · ai−3

· · · · · · · · · · · · · · ·

0 0 0 · · · 1


, N2 =



an−i+1 an−i+2 · · · an−1 an

an−i+2 an−i+3 · · · an 0

· · · · · · · · · · · · · · ·

an−1 an · · · 0 0

an 0 0 · · · 0


. (4.10)

Furthermore, suppose that the following statements hold.

C1- Eigenvalue criterion: ρs0(−1) = 0, ∆±n−1(s0, u) > 0, ρs0(1) > 0, ∆±i (s0, u) > 0, i = n − 2, n −
4, · · · , 1 (or 1), when n is even (or odd), respectively.

C2- Transversality criterion:

∑n
i=1(−1)n−ia′i∑n

i=1(−1)n−i(n− i + 1)ai−1
, 0, where a′i represents the derivative of a(s)

at s = s0. Then, a period-doubling bifurcation exists at critical value s0.

Theorem 4.2. System (2.1) goes through a P-D bifurcation at the positive equilibrium point PE, if the
following conditions hold:

1 + Q > 0,

1 + P + Q = 0,

1− P + Q > 0.

Hence, the period-doubling bifurcation takes place at S if the parameters (R, B, H1, D, e, H2, S,α) vary in a
neighborhood of the set

K1 =


(R, B, H1, D, e, H2, S,α) ∈ R8

∣∣∣R2(D + H2) ≥ 4eB(ReB−RD−RH2 − eBH1), α ∈ (0, 1]

S = S1 =

(
α(R(D+H2)−

√
R2(D+H2)2−4eB(D+H2)(ReB−RD−RH2−eBH1))

(D+H2)(ReB−RD−RH2−eBH1)

) 1
α

, S ,
(

2αeB
R(D+H2)

) 1
α

 .

Or,

K2 =


(R, B, H1, D, e, H2, S,α) ∈ R8

∣∣∣R2(D + H2) ≥ 4eB(ReB−RD−RH2 − eBH1), α ∈ (0, 1]

S = S2 =

(
α(R(D+H2)+

√
R2(D+H2)2−4eB(D+H2)(ReB−RD−RH2−eBH1))

(D+H2)(ReB−RD−RH2−eBH1)

) 1
α

, S ,
(

2αeB
R(D+H2)

) 1
α

 .

Proof. Using Lemmas 3.6, and 4.1, and from the evaluation of Eq. (3.5) of system (2.1) at PE, we

have

∆∓0 (S) = 1 > 0,

∆+
1 (S) = 1 + Q > 0,

(−1)2ρ(−1) = 1 + P + Q = 0,

ρ(1) = 1− P + Q > 0,

if and only if

S = S1,2 =

α(R(D + H2) ∓
√

R2(D + H2)2 − 4eB(D + H2)(ReB−RD−RH2 − eBH1))

(D + H2)(ReB−RD−RH2 − eBH1)


1
α

,
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and R2(D + H2) ≥ 4eB(ReB−RD−RH2 − eBH1).

Furthermore, the transversality condition is

P′ + Q′

P + 2
=

2
√

R2(D + H2)2 − 4eB(D + H2)(ReB−RD−RH2 − eBH1))

(ReB−RD−RH2 − eBH1)

×

α(R(D + H2) ∓
√

R2(D + H2)2 − 4eB(D + H2)(ReB−RD−RH2 − eBH1))

(D + H2)(ReB−RD−RH2 − eBH1)


α−1
α

, 0,

with P′ = dP
dS

∣∣∣
S=S1,2

and Q′ = dQ
dS

∣∣∣∣
S=S1,2

.

As a result, the period-doubling bifurcation occurs at S. �

5. Chaos Control

It is worth noting that the chaos consists of many periodic points and orbits that depend

massively on the initial conditions. Thus, the outcome of a chaotic system is unpredictable and

uncertain. A control tool is necessary. Several techniques, such as the state feedback method, the

hybrid control method, and the pole-placement technique [31–34] can be used to control a chaotic

behavior of dynamic models. This part utilizes the state feedback process to control the chaos

behavior of system (2.1). System (2.1) can be easily expressed as
ui+1 = uie(R(1−ui)−Bvi−H1)

Sα
α −Xn(un,vn),

vi+1 = vie(eBui−D−H2)
Sα
α ,

(5.1)

where Xn(un, vn) = β1(xn − x∗) + β2 (yn − y∗) is the feedback controlling force and β1, β2 present

feedback gains. The Jacobian matrix of system (5.1) is given by

CJ(PE) =

 A11 − β1 A12 − β2

A21 A22

 ,

where

A11 =

(
1−

R(D + H2)Sα

eBα

)
, A12 = −

(D + H2)Sα

eα
,

A21 =
(ReB−RD−RH2 − eBH1)Sα

αB
, A22 = 1, A13 = −

RSα

α

(
2−

RSu∗

α

)
.

It is worth noting that the characteristic equation of Jacobian matrix CJ(PE) is

γ̄2
− (A11 + A22 − β1)γ̄+ A22(A11 − β1) −A21(A12 − β2) = 0. (5.2)

Let γ̄1 and γ̄2 be the roots of Eq. (5.2). Then, we have

γ̄1 + γ̄2 = A11 + A22 − 1, and γ̄1γ̄2 = A22(A11 − β1) −A21(A12 − β2). (5.3)
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The lines of the marginal stability L1
m, L2

m and L3
m are derived by solving γ̄1γ̄2 = 1, γ̄1 = 1 and

γ̄1 = −1, respectively. These conditions guarantee that |γ̄1,2| = 1. Then, we derive the marginal

stability lines as follows:

L1
m : A22β1 −A21β2 = A22A11 −A12A21 − 1,

L2
m : β1(1−A22) + β2A21 = −1−A22A11 + A21A12 + A11 + A22,

L3
m : β1(1 + A22) − β2A21 = 1 + A22A11 −A21A12 + A11 + A22.

Therefore, L1
m, L2

m, and L3
m in (β1, β2)-plane give a triangular region which leads to |γ̄1,2| < 1.

6. Numerical Simulation

This section is added to present some critically numerical examples to show the theoretical

results we have shown in this paper. The following fixed parameter values and initial conditions

are used in the given figures.

Cases Fixed parameter Initial conditions Bifurcation parameters

Case (1) R = 14.5, B = 15.26, H1 = 1.14, D = 0.45, u0 = 0.1671 and S0 = 0.1239 and

e = 0.6, H2 = 1.08 and α = 0.95 v0 = 0.7167 0 ≤ S ≤ 0.24

Case (2) R = 8.2, B = 6.5, H1 = 1.79, D = 0.75, u0 = 0.6499 and S1 = 0.3713

e = 0.49, H2 = 1.32 and α = 0.95 v0 = 0.1663 0 ≤ S ≤ 0.65

Table 2. Parameter values and initial conditions.

Example 6.1. This example uses the parameter values and initial conditions given in Case (1). Using these
values, system (2.1) has a unique positive equilibrium point PE. Therefore, the Jacobian matrix of system
(2.1) calculated at PE is giving by

MJ(PE) =


0.6492 −0.3692

0.9502 1.0000

 .

Here, the characteristic equation of the previous matrix is shown as follows:

ρ(γ) = γ2
− 1.6492γ+ 1 = 0 ,

whose eigenvalues are

γ1,2 = 0.8246∓ 0.5658i ,

with |γ1,2| = 1. This makes sure that model (2.1) faces a Neimark-Sacker bifurcation at PE as bifurcation
parameter S passes through S0 = 0.1239. The bifurcation behaviors for both prey and predator populations
are presented in Figs 1a and 1b, respectively, while the maximum Lyapunov exponent is depicted in Fig
1c. From the bifurcation plots, it is obvious that the equilibrium point is locally asymptotically stable when
S < 0.1239, and loses its stability when S = S0 = 0.1239. As a result, a closed invariant curve is formed
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around the equilibrium point. When the considered model passes the value S = S0, the point PE becomes
unstable and periodic orbits appear at 0.148 < S < 0.174 (see Figs 2). Figs. 3 and 4 represent some
phase portraits of system (2.1). Other phase portraits are shown in 3a and 3c for the values S = 0.021

and S = 0.121, respectively. In this figures, the equilibrium point PE is stable. At S = 0.1239, a closed
invariant curve establishes around the point PE as can be seen in Fig. 4a. The point PE becomes unstable
at S = 0.12408, as all orbits (with initial conditions inside and outside the closed invariant curve) travel
toward the closed invariant curve (see Fig. 4c). Lastly, chaotic attractors are plotted in Figs. 5a and 5b
when S = 0.19 and S = 0.24, respectively.

Example 6.2. We take the parameter values and initial condition of Case (2). For these parametric values
the system (2.1) has a unique positive equilibrium point PE. The Jacobian matrix of system (2.1) evaluated
at PE is giving by:

MJ(PE) =


−1.1886 −1.7349

0.2175 1.0000

 .

whose characteristic equation is

ρ(γ) = γ2 + 0.1886γ− 0.8114 = 0 .

The eigenvalues are given by

γ1 = 1, γ2 = 0.8114 ,

and |γ2| , 1. Furthermore

∆∓0 (S) = 1 > 0,

∆+
1 (S) = 1 +D = 0.1886 > 0,

ρ(−1) = 1 + T + D = 0,

ρ(1) = 1− P + Q = 0.3773 > 0,

that confirms that the system (2.1) experiencing period-doubling bifurcation at positive equilibrium point
PE as bifurcation parameter S passes through S1 = 0.3713. It can be noted from the bifurcation diagrams of
un and vn (shown in Fig. 6a and Fig. 6b, respectively) that the positive equilibrium point PE of system (2.1)

is stable for 0 < S < 0.3713 while this point loses its stability through a period doubling bifurcation when
S ≥ 0.3713. The maximum Lyapunov exponents associated with bifurcation diagrams is drawn in Fig. 6c.
This surely verifies the existence of the chaotic behavior and period orbits in the parametric space. From Fig.
6c we note that some "Maximal LE" values are positive and some of them are negative. Thus, there exists
a stable equilibrium point or stable period orbits in the chaotic region. Moreover, there is a period doubling
cascade in orbits of periods-2, 4, 8, 16 (see Figs. 7b, 7c, 7d).

Example 6.3. In this example, we apply a state feedback control method by choosing the parameter values
R = 14.5, B = 15.26, H1 = 1.14, D = 0.45, e = 0.6, H2 = 1.08, α = 0.95, and S = 0.126 and the initial
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conditions (u0, v0) = (0.167, 0.716). Hence, the corresponding controlled form is given by
ui+1 = uiExp ((14.5(1− ui) − 15.26vi − 1.14) 0.1471− β1(ui − 0.167) − β2 (vi − 0.716)) ,

vi+1 = viExp ((9.15ui − 1.53) 0.1471) .
(6.1)

The Jacobian matrix for system (6.1) is given by

CJ(PE) =

 0.6492− β1 −0.3692− β2

0.9502 1.0000

 ,

Furthermore, the lines of marginal stability L1
m, L2

m, and L3
m are provided by

L1
m : β1 − 0.9502ξ2 = −4.4409× 10−9,

L2
m : 0.9502β2 = −0.3508,

L3
m : 2β1 − 0.9502β2 = 3.6492,

The marginal lines L1
m, L2

m and L3
m specify a triangular region (called the region of stability) in the (β1, β2)-

plane. This region is bounded by these lines of the controlled system (6.1) which are plotted in Fig. 7a.
When β1 = 1.9 and β2 = 1.36, the equilibrium point PE is locally asymptotically stable (see Fig. 8b) for the
controlled system (6.1). However, the point PE becomes unstable in the original system (2.1) (see Figure 9).

(a) Bifurcation diagram for prey pop-

ulation.

(b) Bifurcation diagram for predator

population.
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x
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(c) Maximum Lyapunov exponent.

Figure 1. Graphs (a) and (b) illustrate the Neimark-Sacker bifurcation of system (2.1) while

graph (c) presents the maximum Lyapunov exponent for system (2.1) at the parameter

values and condition of Case (1) in Table 2.
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(a) (b)

Figure 2. Graphs (a) and (b) illustrate the Neimark-Sacker bifurcation of sys-

tem (2.1) at the parameter values and condition of Case (1) in Table 2 and

S ∈ [0.148, 0.174].

0.1671 0.167102 0.167104 0.167106 0.167108

u
n

0.716698

0.7167

0.716702

0.716704

0.716706

0.716708

0.71671

0.716712

0.716714

v
n

(u
0
,v

0
)

P
E

(a) Phase portrait of model (2.1) when

S = 0.012.
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(b) Time evolution of un and vn when

S = 0.012.
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(c) Phase portrait of model (2.1) when

S = 0.121.
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(d) Time evolution of un and vn when

S = 0.121.

Figure 3. Phase portraits for S = 0.012, 0.121 of system (2.1) and time evolution of

prey and predator at the parameter values and condition of Case (1) in Table 2.
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(a) Phase portrait of model (2.1) when

S = 0.1239.
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(b) Time evolution of un and vn when

S = 0.1239.

(c) Phase portrait of model (2.1) when

S = 0.12408.

(d) Time evolution of un and vn when

S = 0.12408.

Figure 4. Phase portraits for S = 0.1239, 0.12408 of system (2.1) and time evolution

of prey and predator at the parameter values and the conditions of Case (1) in Table

2.

(a) (b)

Figure 5. Phase portraits for S = 0.203, 0.24 of system (2.1) at the parameter values

and the conditions of Case (1) in Table 2.
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(a) Bifurcation diagram for prey pop-

ulation.

(b) Bifurcation diagram for predator

population.
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Figure 6. Graphs (a) and (b) illustrate the period-doubling bifurcation of system

(2.1) while graph (c) presents the maximum Lyapunov exponent for system (2.1) at

the parameter values and the conditions of Case (2) in Table 2.

7. Conclusion

To sum up, this paper has investigated the dynamical behaviors of fractional-order Lotka-

Volterra model with a harvesting effect using stability and bifurcation theory. In particular, we

have obtained the fixed points, local stability, bifurcation and some numerical schemes for system

(1.1). We have found that the considered system has three main equilibrium points in which one of

them is positive. In Lemmas 3.3 and 3.4, we have analysed the stability of the first two equilibrium

points while Lemma 3.5 shows the stability of the positive fixed point. In Theorem 4.1, we have

proved the existence of the Neimark-Sacker bifurcation of system (2.1) which is occurred at the

point PE under certain conditions given in this theorem. For instance, Example 6.1 has used the

values of the parameters given in Case (1) to verify that model (2.1) goes through a Neimark-Sacker

bifurcation at PE as the bifurcation parameter S passes through S0 = 0.1239. This can be clearly seen

in in Figs 1a and 1b. In Fig 1c, we have plotted the maximum Lyapunov exponent. In Figs. 3 and 4,

we have demonstrated some phase portraits of system (2.1) for various values of the parameter S.

It can be observed that the trajectories form a limit cycle when the parameter S increases. Theorem

(4.2) has illustrated that system (2.1) faces a period-doubling bifurcation at the positive equilibrium

point PE when some conditions, given in Theorem (4.2), are satisfied. Moreover, the phase portraits

of system (2.1) and its time evolution are plotted in under the coefficients R = 14.5, B = 15.26,
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H1 = 1.14, D = 0.45, e = 0.6, H2 = 1.08, α = 0.95, and S = 0.126. The used techniques can be

utilized to be applied on other fractional-order models with some effects.
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(a) Phase portrait of model (2.1) when

S = 0.33.

(b) Phase portrait of model (2.1)

whenS = 0.42.

(c) Phase portrait of model (2.1) when

S = 0.456.

(d) Phase portrait of model (2.1) when

S = 0, 4673.

Figure 7. Phase portraits for S = 0.33 (Stability), 0.42 (Period-2), 0.456 (Period-4)

and 0.4673 (Period-8) of the system (2.1) and time evolution of prey at the parameter

values and the conditions of Case (2) in Table 2.
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Figure 8. Triangular stability region bounded by L1
m, L2

m and L3
m of the controlled

system (6.1) and time evolution of prey and predator for (β1, β2) = (1.9, 1.36).
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Figure 9. Phase portraits for R = 14.5, B = 15.26, H1 = 1.14, D = 0.45, e = 0.6,

H2 = 1.08, α = 0.95, and S = 0.126 of system (2.1), and time evolution of prey and

predator for system (2.1).
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