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ABSTRACT. This paper addresses the problem of estimating parameters in partial accelerated life tests following the 

Ailamujia distribution under Type-I censoring, employing both the maximum likelihood approach and the least 

squares method. The assessment of estimation methods involves a comprehensive simulation study, complemented 

by the analysis of a real dataset for illustrative purposes. The findings reveal the least square estimation method 

outperforms maximum likelihood estimation, considering biases and mean square errors.  

 

1.  Introduction 

Partial accelerated life tests (PALTs) are crucial methods employed to collect sufficient failure 

data for test items in a more time-efficient manner. In fact, PALT involves running some test items 

under normal usage conditions while subjecting others to accelerated conditions. This approach 

is a reasonable way to estimate the acceleration factor. 

Stress can be applied using various methods, including constant-stress and step-stress 

approaches. In constant-stress PALT (CSPALT), a set of test items is subjected to testing either 

under normal usage conditions or at accelerated conditions, continuing until either a failure 

occurs or the test is stopped. In other words, each item experiences a consistent stress level until 
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the test is halted. On the other hand, in step-stress PALT (SSPALT), a group of test items initially 

undergo testing under normal usage conditions. If no failures occur within a specified timeframe, 

they are then subjected to accelerated conditions until a predetermined number of failures 

transpire or a pre-set time limit is reached. See Nelson [1]. 

Attia et al. [2] examined the use of the maximum likelihood method to estimate the acceleration 

factor and Weibull distribution parameters in SSPALT when dealing with Type-I censoring. 

Abdel-Ghani [3] explored both maximum likelihood and Bayesian methods for estimating 

Weibull distribution parameters and the acceleration factor in both SSPALT and CSPALT, 

considering both Type-I and Type-II censored data. Abdel-Ghaly et al. [4] and Abdel-Ghaly et al. 

[5] conducted research on both estimation and optimal design issues related to the Pareto 

distribution in SSPALT, considering both Type-I and Type-II censoring. Additionally, Abdel-

Ghani [6] focused on the estimation problem of log-logistic distribution parameters in the context 

of SSPALT. Ismail [7] calculated MLEs for the acceleration factor and Weibull distribution 

parameters, utilizing adaptive Type-II progressively hybrid censoring (AT-II PHC) data. Ismail 

[8] applied both likelihood and Bayesian methods to estimate the parameter of the Pareto 

distribution with Type-I censoring data in the context of a step-stress life test model. Recently, 

Fawzy and Athar [9] estimated the parameters of the Ailamujia distribution within a PALT 

framework, focusing on Progressive Type-II Censored Data. 

1.1 Tampered Random Variable Model 

Goel [10] introduced this model and an associated application.  We shall denote the lifespan of an 

item tested under standard conditions using the random variable 𝑇. If the item doesn't fail by a 

certain time 𝜏, it's subjected to higher stress until it fails. Degroot and Goel [11] have assumed this 

stress switch multiplies the remaining lifespan of the item by an unknown factor 𝛽−1 > 0. 𝛽 is 

typically constant because we use only one higher stress level, and it usually shortens the life of 

the item. 

In describing the model for this PALT, we use the variable 𝑋 to represent the total lifespan of a 

test item, specified as: 

𝑋 = {
𝑇,                                    if      𝑇 ≤ 𝜏

𝜏 + 𝛽−1(𝑇 − 𝜏), if     𝑇 > 𝜏
 .                                            (1.1) 
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Switching to the higher stress level is a form of tampering with the ordinary life test, so 𝑋 is 

termed a tampered random variable (TRV), 𝜏  is referred to as the tampering point, and 𝛽  is 

known as the tampering coefficient.  

1.2 Type-I Censored Samples 

When terminating a life-testing experiment at a predetermined time 𝜏 and censoring the lifetimes 

of units exceeding 𝜏, the resulting observed failure data constitute a Type-I censored sample. 

While having control over the experiment duration is advantageous, setting it in advance may 

lead to a drawback: the potential for very few or even no failures occurring before time 𝜏 . 

Additionally, another challenge of this censoring type is the randomness in the number of 

failures, which contributes to the complexity of maximum likelihood estimation (MLE) for 

parameters. 

For additional information regarding Type-I censoring and the related inferential issues, one can 

consult references such as Lawless [12], Cohen and Whitten [13], and Cohen [14]. 

1.3 The Ailamujia Distribution 

The Ailamujia distribution, introduced by Lv et al. [15], is a novel model designed for various 

engineering applications. It is a univariate lifetime distribution that relies on a single parameter, 

denoted as 𝛼, where 𝛼 is greater than zero.  

Multiple authors have worked on the Ailamujia distribution. Pan et al. [16] examined this 

distribution, focusing on interval estimation and hypothesis testing, particularly in cases with 

small sample sizes. Long [17] employed Bayesian methods to estimate the parameters of the 

Ailamujia Distribution under Type-II censoring, utilizing three different priors derived from 

missing data. Li [18] evaluated the minimax estimation of the Ailamujia model's parameter, using 

three distinct loss functions and a non-informative prior. Furthermore, Rather et al. [19] presented 

a size-biased version of the Ailamujia distribution and employed it to analyze data in engineering 

and medical science. Aijaz et al. [20] introduced the inverse analogue of the Ailamujia 

distribution, providing its statistical properties and applications. 

This distribution is characterized by its probability density function (PDF), which is defined as 

follows: 

𝑔(𝑡) = 4𝑡𝛼2𝑒−2𝛼𝑡, 𝑡 ≥ 0, 𝛼 > 0.                      (1.2) 
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The corresponding cumulative distribution function (CDF) is formulated as 

𝐺(𝑡) = 1 − (1 + 2𝛼𝑡)𝑒−2𝛼𝑡, 𝑡 ≥ 0, 𝛼 > 0.    (1.3) 

The reliability function (RF) for a random variable 𝑇 is represented as 𝑅(𝑡), and it can be derived 

as follows: 

𝑅(𝑡) = 1 − 𝐺(𝑡), 

by employing Eq. (1.3), we obtain 

𝑅(𝑡) = (1 + 2𝛼𝑡)𝑒−2𝛼𝑡,     𝑡 ≥ 0, 𝛼 > 0.                (1.4) 

The hazard rate function (HRF), indicated as ℎ(𝑡), for a random variable 𝑇 can be determined as 

follows: 

 ℎ(𝑡) =
𝑔(𝑡)

R(t)
 ,  

utilizing Eq.s (1.2) and (1.4), we get 

ℎ(𝑡) =
4𝑡𝛼2

1 + 2𝛼𝑡
 ,            𝑡 ≥ 0, 𝛼 > 0.                  (1.5) 

A distribution RF indicates the probability of surviving beyond a given time point, which 

consistently decreases as time progresses. Additionally, the HRF in a distribution represents the 

instantaneous failure rate at a specific time point. 

The Ailamujia distribution displays a right-skewed and bell-shaped PDF, accompanied by an 

increasing HRF. This distribution is a flexible probability distribution used for modeling repair 

time and ensuring the distribution delay time. See Jan et al. [21]. 

Utilizing the R programming language, The PDF, CDF, RF and HRF plots have been created using 

various values of the parameter 𝛼, as depicted in Fig. 1, Fig. 2, Fig. 3 and Fig. 4, respectively.  
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Fig. 1: PDF Plot of the Ailamujia distribution considering different values of 𝛼. 

 

 

Fig. 2: CDF Plot of the Ailamujia distribution considering different values of 𝛼. 
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Fig. 3: RF Plot of the Ailamujia distribution considering different values of 𝛼. 

 

 

Fig. 4: HRF Plot of the Ailamujia distribution considering different values of 𝛼. 
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In this paper, we explore a TRV model within the framework of Type-I censoring, with a specific 

emphasis on Ailamujia's lifetimes. Section 2 provides a comprehensive overview of the model we 

are investigating. Moving on to Section 3, we derive the MLEs for the unknown parameters and 

assess confidence intervals (CIs) using the Fisher information matrix. In Section 4, we employ the 

least squares (LS) technique to obtain estimates for the model parameters. Section 5 presents a 

simulation study that compares various estimation methods and a real data set is analyzed for 

illustration. Lastly, the paper concludes in Section 6. 

2.  Model Description 

We assume the failure time data is derived from a TRV model. We are examining a SSPALT model 

with stress levels 𝑆1 and 𝑆2, and incorporating Type-I censoring. Moreover, we presume that the 

lifetime distribution at stress levels 𝑆1 and 𝑆2 follows an Ailamujia distribution. Initially, we place 

𝑛 identical units onto a life test, and each of these units is subjected to an initial stress level, 𝑆₁. 

The experiment continues until a fixed time, 𝜏₁. At 𝜏₁, the stress level is switched to 𝑆₂, and the 

experiment carries on until another predetermined time, 𝜏₂. Any lifetimes of units that exceed 𝜏₂ 

are considered censored data. 

We introduce two random variables: 𝑁₁, which represents the number of units that fail before 𝜏₁ 

under normal operating conditions, and 𝑁₂ , which represents the number of units that fail 

between 𝜏₁  and 𝜏₂  under accelerated usage conditions. If 𝑁₁  equals 𝑛 , it means that the 

experiment ends. Otherwise, it is extended until 𝜏₂ is reached. 

The data that has been observed follows the pattern of: 

{𝑡1:𝑛 < ⋯ < 𝑡𝑁1:𝑛 < 𝜏1 ≤ 𝑡𝑁1+1:𝑛 < ⋯ < 𝑡𝑁1+𝑁2:𝑛 ≤ 𝜏2}.        (2.1) 

Our model is based on the following fundamental assumptions :  

1) The test relies on SSPALT and involves only two stress levels: 𝑆1 for normal operating 

conditions and 𝑆2 for accelerated conditions, with the condition that 𝑆1 is less than 𝑆2. 

2) The failures of the test items at both stress levels 𝑆1  and 𝑆2  follow the Ailamujia 

distribution. 

3) The lifetime of the examined item in SSPALT adheres to a TRV model. 
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4) During normal operating conditions, all 𝑛 units undergo testing. However, if any unit 

does not fail by the specified time 𝜏1, it is then subjected to accelerated conditions for 

further testing. 

Through the utilization of Eq. (1.1) to describe the model for SSPALT, the total lifespan, denoted 

as 𝑋, of an item to be: 

𝑋 = {
𝑇,                                     if     0 < 𝑇 < 𝜏1

𝜏1 + 𝛽−1(𝑇 − 𝜏1), if    𝜏1 ≤ 𝑇 < 𝜏2
.                           (2.2) 

Assuming 𝑋 = 𝜏1 +
1

𝛽
(𝑇 − 𝜏1), once we solve for 𝑇, we arrive at the expression 𝑇 = 𝜏1 + 𝛽(𝑡 − 𝜏1). 

Subsequently, we can represent the PDF and the CDF for 𝑋 as follows: 

𝑔(𝑡) = {
𝑔1(𝑡) = 4𝛼2𝑡𝑒−2𝛼𝑡, 0 < 𝑡 < 𝜏1

𝑔2(𝑡) = 4𝛼2𝛽(𝜏1 + 𝛽(𝑡 − 𝜏1))𝑒−2𝛼(𝜏1+𝛽(𝑡−𝜏1)), 𝜏1 ≤ 𝑡 < 𝜏2 
,                 (2.3) 

𝐺(𝑡) = {
𝐺1(𝑡) = 1 − (1 + 2𝛼𝑡)𝑒−2𝛼𝑡, 0 < 𝑡 < 𝜏1

𝐺2(𝑡) = 1 − (1 + 2𝛼(𝜏1 + 𝛽(𝑡 − 𝜏1))) 𝑒−2𝛼(𝜏1+𝛽(𝑡−𝜏1)), 𝜏1 ≤ 𝑡 < 𝜏2
.  (2.4) 

3.  Maximum Likelihood Estimation 

Given the Type-I censored data described in (2.1), we can derive the likelihood function and 

subsequently determine the MLEs for the unknown parameters 𝛼 and 𝛽. The likelihood function 

for the censored data in (2.1) can be expressed as follows: 

𝐿(𝛼, 𝛽 ∣ 𝑡) =
𝑛!

(𝑛 − 𝑁)!
{∏ 𝑔(𝑡𝑖:𝑛){1 − 𝐺(𝜏2)}𝑛−𝑁

𝑁

𝑖=1

}, 

0 < 𝑡1:𝑛 <. . < 𝑡𝑁:𝑛 < 𝜏2,                                          (3.1) 

see Arnold et al. [22]. In this context, 𝑁  represents the sum of 𝑁1  and 𝑁2 , while 𝑡 =

(𝑡1:𝑛, … , 𝑡𝑁1:𝑛, 𝑡𝑁1+1:𝑛, … , 𝑡𝑁:𝑛) stands for the collection of recorded Type-I censored data. 

Clearly, the MLE for 𝛼 is not attainable when 𝑁₁ equals 0, and the MLE for 𝛽 is undefined when 

𝑁₁ equals 𝑛. MLEs for both 𝛼 and 𝛽 are only viable when 𝑁₁ is equal to or greater than 1, and 𝑁₂ 

is equal to or greater than 1. 

When the condition 1 ≤ 𝑁1 ≤ 𝑁 − 1 is satisfied, the likelihood function in Eq. (3.1) transforms to 
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𝐿(𝛼, 𝛽 ∣ 𝑡) =
𝑛!

(𝑛 − 𝑁)!
{∏ 𝑔1(𝑡𝑖:𝑛)

𝑁1

𝑖=1

} { ∏ 𝑔2(𝑡𝑖:𝑛)

𝑁

𝑖=𝑁1+1

} × {1 − 𝐺2(𝜏2)}𝑛−𝑁 , 

  0 < t1:n < ⋯ < tN1:n < τ1 ≤ tN1+1:n < ⋯ < tN:n < 𝜏2,       (3.2) 

which can be written as: 

𝐿(𝛼, 𝛽 ∣ 𝑡) ∝ ∏{4𝛼2𝑡𝑖:𝑛𝑒−2𝛼𝑡𝑖:𝑛}

𝑁1

𝑖=1

× ∏ {4𝛼2𝛽(𝜏1 + 𝛽(𝑡𝑖:𝑛 − 𝜏1))𝑒−2𝛼(𝜏1+𝛽(𝑡𝑖:𝑛−𝜏1))}

𝑁

𝑖=𝑁1+1

 

                               × [(1 + 2𝛼(𝜏1 + 𝛽(𝜏2 − 𝜏1))) 𝑒−2𝛼(𝜏1+𝛽(𝜏2−𝜏1))]
𝑛−𝑁

. 

The likelihood function can be simplified as demonstrated below  

𝐿(𝛼, 𝛽 ∣ 𝑡) ∝ 𝛼2𝑁𝛽𝑁2 ∏ 𝑡𝑖:𝑛

𝑁1

𝑖=1

∏ [𝜏1 + 𝛽(𝑡𝑖:𝑛 − 𝜏1)]

𝑁

𝑖=𝑁1+1

 

                     ×  𝑒−2𝛼 ∑ 𝑡𝑖:𝑛
𝑁1
𝑖=1 −2𝛼 ∑ [𝜏1+𝛽(𝑡𝑖:𝑛−𝜏1)]𝑁

𝑖=𝑛1+1 −2𝛼[𝜏1+𝛽(𝜏2−𝜏1)](𝑛−𝑁)    

                   × [1 + 2𝛼(𝜏1 + 𝛽(𝜏2 − 𝜏1))]𝑛−𝑁 .                                                                                  (3.3) 

The expression for the log-likelihood function can be represented as follows: 

𝑙(𝛼, 𝛽 ∣ 𝑡) ∝ 2𝑁𝑙𝑜𝑔𝛼 + 𝑁2𝑙𝑜𝑔𝛽 + ∑ 𝑙𝑜𝑔𝑡𝑖:𝑛

𝑁1

𝑖=1

+ ∑ 𝑙𝑜𝑔 (𝜏1 + 𝛽(𝑡𝑖:𝑛 − 𝜏1))

𝑁

𝑖=𝑁1+1

 

                   −2𝛼 [∑ 𝑡𝑖:𝑛 +

𝑁1

𝑖=1

∑  (𝜏1 + 𝛽(𝑡𝑖:𝑛 − 𝜏1)

𝑁

𝑖=𝑁1+1

+ (𝑛 − 𝑁)(𝜏1 + 𝛽(𝜏2 − 𝜏1))] 

+(𝑛 − 𝑁)𝑙𝑜𝑔 (1 + 2𝛼(𝜏1 + 𝛽(𝜏2 − 𝜏1))).                                                                                (3.4) 

By taking the derivatives of the log-likelihood function with respect to 𝛼 and 𝛽 as given in Eq. 

(3.4), we derive the subsequent set of likelihood equations. Solving these equations is necessary 

to determine the MLEs for the parameters 𝛼 and 𝛽 . 

𝜕𝑙( 𝛼, 𝛽 ∣∣ 𝑡 )

𝜕𝛼
=

2𝑁

𝛼
− 2 [∑ 𝑡𝑖:𝑛

𝑁1

𝑖=1

+ ∑  (𝜏1 + 𝛽(𝑡𝑖:𝑛 − 𝜏1)

𝑁

𝑖=𝑁1+1

) + (𝑛 − 𝑁)(𝜏1 + 𝛽(𝜏2 − 𝜏1))] 
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+
2(𝑛 − 𝑁)(𝜏1 + 𝛽(𝜏2 − 𝜏1))

1 + 2𝛼(𝜏1 + 𝛽(𝜏2 − 𝜏1))
= 0.                                                                                    (3.5) 

𝜕𝑙( 𝛼, 𝛽 ∣∣ 𝑡 )

𝜕𝛽
=

𝑁2

𝛽
+ ∑

𝑡𝑖:𝑛 − 𝜏1 

𝜏1 + 𝛽(𝑡𝑖:𝑛 − 𝜏1)

𝑁

𝑖=𝑁1+1

+
2𝛼(𝑛 − 𝑁)(𝜏2 − 𝜏1)

1 + 2𝛼(𝜏1 + 𝛽(𝜏2 − 𝜏1))
 

−2𝛼 [ ∑ (𝑡𝑖:𝑛 − 𝜏1) + (𝑛 − 𝑁)(𝜏2 − 𝜏1)

𝑁

𝑖=𝑁1+1

] = 0.                                                         (3.6) 

The process of estimation, involving Eq.s (3.5) and (3.6), cannot be solved analytically. As a result, 

these equations can be solved simultaneously using a numerical approach like the Newton-

Raphson method or other similar techniques. 

Theorem 3.1 If we have observed Ailamujia's lifetimes to failure under the SSPALT model with 

Type-I censoring, then the MLEs for the parameters α and β both exist and are unique. 

Proof: First, we prove that MLE(𝛼) = �̂� exists uniquely.  By employing Eq. (3.5), we obtain 

2𝑁

𝛼
+

2(𝑛 − 𝑁)(𝜏1 + 𝛽(𝜏2 − 𝜏1))

1 + 2𝛼(𝜏1 + 𝛽(𝜏2 − 𝜏1))

= 2 [∑ 𝑡𝑖:𝑛

𝑁1

𝑖=1

+ ∑  (𝜏1 + 𝛽(𝑡𝑖:𝑛 − 𝜏1)

𝑁

𝑖=𝑁1+1

) + (𝑛 − 𝑁)(𝜏1 + 𝛽(𝜏2 − 𝜏1))], 

or equivalently 

𝐻(𝛼) = 𝐴, 

where 𝐻(𝛼) =
𝑑

𝛼
+

𝑒

1+𝛼𝑓
 , such that 𝑑 = 2𝑁, 𝑒 = 2(𝑛 − 𝑁)(𝜏1 + 𝛽(𝜏2 − 𝜏1)) and 𝑓 =

2(𝜏1 + 𝛽(𝜏2 − 𝜏1)). 

Also,  𝐴 = 2[∑ 𝑡𝑖:𝑛
𝑁1
𝑖=1 + ∑  (𝜏1 + 𝛽(𝑡𝑖:𝑛 − 𝜏1)𝑁

𝑖=𝑁1+1 ) + (𝑛 − 𝑁)(𝜏1 + 𝛽(𝜏2 − 𝜏1))], it's worth noting 

that 𝐴 is a positive constant. Moreover, it can be inferred that: 

lim
𝛼→0+

𝐻(𝛼) = ∞, 

lim
𝛼→∞

𝐻(𝛼) = 0. 
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See Amleh and Raqab [23]. The diagram below illustrates the coupling behaviour of 𝐻(𝛼), where 

it intersects with 𝑦 = 𝐴 at a single point. 

 

Fig. 5: The plot of  𝐻(𝛼) = 𝐴 shows a single intersection point. 

Therefore, MLE(𝛼) = �̂� exists uniquely.  

Now, we prove that MLE(𝐵) = �̂� exists uniquely. By utilizing Eq. (3.6) and following the identical 

procedure as before, we find that: 

𝑁2

𝛽
+ ∑

𝑡𝑖:𝑛 − 𝜏1 

𝜏1 + 𝛽(𝑡𝑖:𝑛 − 𝜏1)

𝑁

𝑖=𝑁1+1

+
2𝛼(𝑛 − 𝑁)(𝜏2 − 𝜏1)

1 + 2𝛼(𝜏1 + 𝛽(𝜏2 − 𝜏1))

= 2𝛼 [ ∑ (𝑡𝑖:𝑛 − 𝜏1) + (𝑛 − 𝑁)(𝜏2 − 𝜏1)

𝑁

𝑖=𝑁1+1

], 

or equivalently 

𝐾(𝛽) = 𝐶, 

 

where 𝐾(𝛽) is defined as 𝐾(𝛽) =
𝑁2

𝛽
+ ∑

𝑡𝑖:𝑛−𝜏1 

𝜏1+𝛽(𝑡𝑖:𝑛−𝜏1)
𝑁
𝑖=𝑁1+1 +

2𝛼(𝑛−𝑁)(𝜏2−𝜏1)

1+2𝛼(𝜏1+𝛽(𝜏2−𝜏1))
 , and 𝐶 is given by:  

𝐶 = 2𝛼 [ ∑ (𝑡𝑖:𝑛 − 𝜏1) + (𝑛 − 𝑁)(𝜏2 − 𝜏1)

𝑁

𝑖=𝑁1+1

], 

it is clear that 𝐶 is a positive constant. Furthermore, it can be concluded that: 

𝑯(𝜶) 

𝒚 = 𝑨 
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lim
𝛽→0+

𝐾(𝛽) = ∞, 

lim
𝛽→∞

𝐻(𝛽) = 0. 

The diagram below illustrates the coupling behaviour of 𝐾(𝛽), where it intersects with 𝑦 = 𝐶 at a 

single point. 

 

Fig. 6: The plot of  𝐾(𝛽) = 𝐶 shows a single intersection point. 

Therefore, MLE(𝛽) = �̂� exists uniquely. 

The desired conclusion is obtained by combining the results on 𝛼 and 𝛽.∎ 

The quantile function for the Ailamujia distribution is important to generate data that will be 

used in simulation. In fact, it cannot be obtained in closed form. However, it can handled by 

taking the inverse of the function 𝐺(𝑡) defined in Eq. (1.3). To proceed, we use the following well-

known theorem in mathematical statistics. 

Theorem 3.2 Probability Integral Transform. 

1. If a random variable 𝑋 is continuous with CDF 𝐹(𝑥), then the random variable 𝑌 =  𝐹(𝑋) 

follows a uniform distribution over [0, 1], i.e., 𝑌 ~ 𝑈(0, 1). 

2. Conversely, if 𝑌 follows a uniform distribution over [0, 1], i.e., 𝑌 ~ 𝑈(0, 1), then the random 

variable 𝑋 =  𝐹−1(𝑌) has a CDF 𝐹(𝑥). 

𝒚 = 𝑪 

𝑲(𝜷) 
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The algorithm for generating the data and calculating the MLEs for the parameters 𝛼 and 𝛽 is 

carried out using the subsequent procedure. 

First step: Create a set of randomly chosen values with a total of 𝑛 elements, following a Uniform 

distribution 𝑈(0,1).  Then, derive the order statistics from these values: 

𝑈1:𝑛  <  𝑈2:𝑛  <  ⋯  <  𝑈𝑛:𝑛, 

Second step: Determine the random variable 𝑁1 for which 

𝑈𝑁1
<  𝑃(𝑇 ≤  𝜏1) =  𝐺1(𝜏1) ≤  𝑈N1+1:n, 

where 𝑇 symbolizes the time of failure, leading to the following : 

𝑈𝑁1
<  1 − (1 + 2𝛼𝜏1)𝑒−2𝛼𝜏1 ≤  𝑈𝑁1+1:𝑛, 

Third step: Create the required censored sample by solving the following two equations using 

the order statistics 𝑈i:n . 

1 + 2𝛼𝑡𝑖 = (1 − 𝑈i:n )𝑒2𝛼𝑡𝑖 , 𝑖 = 1,2, … , 𝑁1                         (3.7) 

1 + 2𝛼[𝜏1 + 𝛽(𝑡𝑖 − 𝜏1)] = (1 − 𝑈i:n )𝑒2𝛼[𝜏1+𝛽(𝑡𝑖−𝜏1)], 𝑖 = 𝑁1 + 1, … , 𝑁      (3.8) 

Fourth step: Calculate the MLEs for 𝛼 and 𝛽 using Eq.s (3.5) and (3.6), relying on the censored 

data 𝑡1:𝑛, 𝑡2:𝑛, … , 𝑡𝑁1:𝑛, 𝑡𝑁1+1:𝑛, … , 𝑡𝑁:𝑛, as described in Eq.s (3.7) and (3.8). For more details, see 

Alkhalfan [24], Amleh and Raqab [25] and Amleh [26]. 

Within this section, we establish approximate CIs for the parameters 𝛼 and  𝛽 . This is 

accomplished by leveraging the asymptotic distributions of the MLEs. The asymptotic 

distribution of the MLEs for 𝛼 and 𝛽 can be expressed as follows: 

[(�̂� − 𝛼), (�̂� − 𝛽)] → 𝑁(0, 𝐼−1(𝛼, 𝛽)), 

where 𝐼−1(𝛼, 𝛽)  signifies the variance-covariance matrix for the parameter δ = (𝛼, 𝛽) . This 

approximation can be made using the components of the observed Fisher information matrix 

denoted as 𝐼𝑖𝑗(𝛼, 𝛽), where 𝑖 and 𝑗 take on values of 1 and 2. Specifically, we can use 𝐼𝑖𝑗(�̂�, �̂�) for 

this estimation, where: 

𝐼𝑖𝑗(𝛿) =
𝜕2𝑙(𝛿 ∣ 𝑡)

𝜕𝛿𝑖𝜕𝛿𝑗
⎹ 𝛿=�̂� .                                                   (3.9) 



14 Int. J. Anal. Appl. (2024), 22:55 

 

Hence, the asymptotic Fisher-information matrix 𝐼 can be expressed as follows: 

𝐼 = [
𝐼11 𝐼12

𝐼21 𝐼22
],                                                               (3.10) 

the following equations can be used to represent the elements of the aforementioned matrix 𝐼: 

𝐼11 =
𝜕2𝑙(𝛿 ∣ 𝑡)

𝜕𝛼2
=

−2𝑁

𝛼2
−

4(𝑛 − 𝑁)(𝜏1 + 𝛽(𝜏2 − 𝜏1))
2

(1 + 2𝛼(𝜏1 + 𝛽(𝜏2 − 𝜏1)))
2 .                   (3.11) 

𝐼12 =
𝜕2𝑙( 𝛿 ∣ 𝑡 )

𝜕𝛼𝜕𝛽
= −2 [ ∑ (𝑡𝑖 − 𝜏1)

𝑁

𝑖=𝑁1+1

+ (𝑛 − 𝑁)(𝜏2 − 𝜏1)] 

+
2(𝑛−𝑁)(𝜏2−𝜏1)(1+2𝛼(𝜏1+𝛽(𝜏2−𝜏1)))−4𝛼(𝑛−𝑁)(𝜏2−𝜏1)(𝜏1+𝛽(𝜏2−𝜏1))

(1+2𝛼(𝜏1+𝛽(𝜏2−𝜏1)))
2 .                     (3.12)                                 

𝐼22 =
𝜕2𝑙( 𝛿 ∣ 𝑡 )

𝜕𝛽2
 =

−𝑁2

𝛽2
− ∑

(𝑡𝑖 − 𝜏1)2

(𝜏1 + 𝛽(𝑡𝑖 − 𝜏1))
2

𝑁

𝑖=𝑁1+1

−
4𝛼2(𝑛 − 𝑁)(𝜏2 − 𝜏1)2

(1 + 2𝛼(𝜏1 + 𝛽(𝜏2 − 𝜏1)))
2  .            (3.13) 

You can formulate the two-sided CIs at the approximate confidence level of 100(1 − 𝛾)% for 𝛼 

and 𝛽 in the following manner: 

�̂� ± 𝑧𝛾 2⁄ √𝑉11,                                                (3.14) 

�̂� ± 𝑧𝛾 2⁄ √𝑉22,                                                (3.15) 

where 𝑧𝛾 2⁄  denotes the upper percentile at 100(𝛾/ 2)𝑡ℎ  for the standard normal distribution, 

while 𝑉11 and 𝑉22 signify the elements along the main diagonal of the inverse of matrix 𝐼. See 

Amleh and Raqab [27]. 

4.  Least Square Estimations 

Swain et al. [28] proposed the LS method for parameter estimation in the Beta distribution. 

Utilizing SSPALT, this method is to be applied to derive estimations for the unknown parameter 

and the acceleration factor of the Ailamujia distribution in the presence of Type-I censored data. 

The least squares estimates (LSEs) for the unknown parameters 𝛼 and 𝛽, referred to as �̂�𝐿𝑠 and 

�̂�𝐿𝑠, are acquired by minimizing the subsequent function concerning α and β. 
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𝐿𝑠 = ∑ [𝐺(𝑡𝑖:𝑁1
) −

𝑖

𝑁1 + 1
]

2

+ ∑ [𝐺(𝑡𝑗:𝑁2
) −

𝑗

𝑁2 + 1
]

2

,

𝑁2

𝑗=1

𝑁1

𝑖=1

                  (4.1) 

the Eq. (4.1) can be written as 

𝐿𝑠 = ∑ [
𝑁1 + 1 − 𝑖

𝑁1 + 1
− (1 + 2𝛼𝑡𝑖:𝑁1

)𝑒−2𝛼𝑡𝑖:𝑁1 ]
2

𝑁1

𝑖=1

 

+ ∑ [
𝑁2 + 1 − 𝑗

𝑁2 + 1
− (1 + 2𝛼 (𝜏1 + 𝛽(𝑡𝑗:𝑁2

− 𝜏1))) 𝑒
−2𝛼(𝜏1+𝛽(𝑡𝑗:𝑁2

−𝜏1))
]

2

.

𝑁2

𝑗=1

                              (4.2) 

The LSEs can be achieved by solving the following two equations simultaneously. 

𝜕𝐿𝑠

𝜕𝛼
= ∑ 8𝛼𝑡2𝑒−2𝛼𝑡𝑖:𝑁1 [

𝑁1 + 1 − 𝑖

𝑁1 + 1
− (1 + 2𝛼𝑡𝑖:𝑁1

)𝑒−2𝛼𝑡𝑖:𝑁1 ]

𝑁1

𝑖=1

 

        + ∑ 8𝛼 (𝜏1 + 𝛽(𝑡𝑗:𝑁2
− 𝜏1))

2
𝑒

−2𝛼(𝜏1+𝛽(𝑡𝑗:𝑁2−𝜏1))

𝑁2

𝑗=1

 

   [
𝑁2 + 1 − 𝑗

𝑁2 + 1
− (1 + 2𝛼 (𝜏1 + 𝛽(𝑡𝑗:𝑁2

− 𝜏1))) 𝑒
−2𝛼(𝜏1+𝛽(𝑡𝑗:𝑁2

−𝜏1))
] = 0,                                  (4.3) 

𝜕𝐿𝑠

𝜕𝛽
= ∑ 8𝛼2(𝑡𝑗:𝑁2

− 𝜏1) (𝜏1 + 𝛽(𝑡𝑗:𝑁2
− 𝜏1)) 𝑒

−2𝛼(𝜏1+𝛽(𝑡𝑗:𝑁2−𝜏1))

𝑁2

𝑗=1

 

 [
𝑁2 + 1 − 𝑗

𝑁2 + 1
− (1 + 2𝛼 (𝜏1 + 𝛽(𝑡𝑗:𝑁2

− 𝜏1))) 𝑒
−2𝛼(𝜏1+𝛽(𝑡𝑗:𝑁2−𝜏1))

] = 0.                              (4.4) 

Eq.s (4.3) and (4.4) cannot be obtained in closed forms. Therefore, we should resort to numerical 

methods to find their solutions. 

5.  Simulation Study and Data Analysis 

In this section, a comprehensive simulation study is utilized to evaluate the efficiency of the 

estimation techniques presented in the previous sections. Furthermore, a genuine dataset is 

employed to showcase the precision and practicality of the various estimation methods 

introduced in this paper. 
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5.1 Simulation Study 

Because there were no prior estimation outcomes related to the discussed methods employing 

Type-I censoring, we conducted a Monte Carlo simulation to investigate their characteristics and 

compare the performance of the two estimators. 

We performed a simulation study to calculate the model parameters using the maximum 

likelihood method, as well as the LS method, and determine their associated bias and mean 

square errors (MSEs). The bias and MSE of an estimator 𝜃  of the parameter 𝜃 are defined as 

follows, respectively 

𝐵𝑖𝑎𝑠(𝜃) =
1

𝑀
∑(𝜃𝑘 − 𝜃)

𝑀

𝐾=1

, 

𝑀𝑆𝐸(𝜃) =
1

𝑀
∑(𝜃𝑘 − 𝜃)

2
𝑀

𝐾=1

. 

Moreover, we obtain the approximate CIs by using Eq.s (3.14) and (3.15). 

Type-I censored samples were created following the procedure outlined in Section 3, with 

specified sample sizes, censoring schemes, and parameter values. A comparative study is 

conducted based on the following schemes: 

Scheme 1: 𝛼 = 0.4, 𝛽 = 1.5, 𝜏1 = 2 and 𝜏2 = 5. 

Scheme 2: 𝛼 = 1.7, 𝛽 = 0.3, 𝜏1 = 0.5 and 𝜏2 = 3. 

We create Type-I censored samples from the Ailamujia model, employing these two schemes and 

repeating the process 𝑀 = 1000 times in the simulation. Using these samples, we calculate MLEs 

and LSEs for the model's parameters. We perform these calculations using R software and present 

the results in Table 1. Additionally, Table 2 provides information for 95% CIs. 

The following observations can be deduced from the values presented in the tables: 

1) As the sample size, 𝑛, increases, the MSEs of both estimates follow a decreasing trend.  

2) LSEs generally exhibit smaller biases and MSEs compared to those obtained through 

MLEs in most cases. As a result, the LSE method excels over the MLE method. 

3) Regarding interval estimation, the true parameter values reside within all the examined 

CIs, and these intervals become narrower as the sample size, 𝑛, increases. 
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Table 1: MLE and LSE with their associated bias and MSE. 

Scheme 1: 𝛼 = 0.4, 𝛽 = 1.5, 𝜏1 = 2 and 𝜏2 = 5. 

n  MLE LSE 

 

60 

Estimate Bias MSE Estimate Bias MSE 

𝛼 0.3769 -0.0230 0.0039 0.4189 0.0189 0.0021 

𝛽 1.7738 0.2738 0.1937 1.5673 0.0673 0.0071 

 

90 

𝛼 0.3751 -0.0248 0.0029 0.4166 0.0166 0.0015 

𝛽 1.7343 0.2343 0.1575 1.5595 0.0595 0.0065 

 

120 

𝛼 0.3782 -0.0217 0.0016 0.4211 0.0211 0.0012 

𝛽 1.7414 0.2414 0.1049 1.5596 0.0596 0.0063 

Scheme 2: 𝛼 = 1.7, 𝛽 = 0.3, 𝜏1 = 0.5 and 𝜏2 = 3. 

n  MLE LSE 

 

60 

Estimate Bias MSE Estimate Bias MSE 

𝛼 1.5853 -0.1146 0.0867 1.7691 0.0691 0.0622 

𝛽 0.3604 0.0604 0.0126 0.4349 0.1349 0.0264 

 

90 

𝛼 1.5810 -0.1189 0.0516 1.7688 0.0688 0.0348 

𝛽 0.3571 0.0571 0.0067 0.4204 0.1204 0.0231 

 

120 

𝛼 1.5889 -0.1110 0.0353 1.7911 0.0911 0.0285 

𝛽 0.3458 0.0457 0.0054 0.4228 0.1228 0.0217 

 
Table 2: 95% CIs of the censored lifetimes. 

Scheme 1: 𝛼 = 0.4, 𝛽 = 1.5, 𝜏1 = 2 and 𝜏2 = 5. 

n  95%  CIs 

 

60 

𝛼 (0.2403,  0.5114) 

𝛽 ( 0.9775,  2.5666) 

 

90 

𝛼 ( 0.2731,  0.4805) 

𝛽 (1.1326 ,  2.3579) 

 

120 

𝛼 ( 0.2903,  0.4629) 

𝛽 ( 1.2299, 2.2516) 
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5.2 Data Analysis 

In this subsection, we analyze a real data set supplied by Murthy et al. [29] to demonstrate the 

performance of the various methods introduced in this chapter, grounded in the times between 

breakdowns for a repairable system. In fact, Kamal et al. [30] have previously utilized this 

particular data set. We utilize SSPALT to analyze the provided data, specifying 𝜏1 as 1.2 and 𝜏2 

as 2.5. Subsequently, we determine the total count of failures, with 𝑁 being 20 out of a total of 𝑛, 

which comprises 25 observations. Consequently, the failure data, derived from the AT-II PHC 

actual data provided in Table 3 under both normal and stress conditions, is presented as follows: 

Table 3:  The AT-II PHC data set that was generated. 

Normal Condition 0.11   0.30    0.40    0.45   0.59   0.63   0.70    

0.71     0.74    0.94   1.17 

Stress Condition 1.23    1.24     1.43     1.49    1.82    1.86    

1.97    2.23    2.37 

 
To demonstrate the accuracy of our model, specifically the Ailamujia TRV model, we have 

graphed the actual cdf of lifetimes in Fig. 7, along with the cdf derived from the MLEs. In 

particular, the Kolmogorov-Smirnov test has been employed to assess the goodness-of-fit of the 

data to the Ailamujia TRV model. The test statistic, indicating the distance between the fitted and 

experimental distribution functions, is 0.1226, and the associated p-value is close to 1. 

Consequently, utilizing the Ailamujia distribution in the TRV model is deemed appropriate and 

justified for fitting this dataset.  

Scheme 2: 𝛼 = 1.7, 𝛽 = 0.3, 𝜏1 = 0.5 and 𝜏2 = 3. 

n  95%  CIs 

 

60 

𝛼 (1.1070,  2.0582) 

𝛽 ( 0.1817, 0.5214) 

 

90 

𝛼 (1.1953, 1.9459) 

𝛽 ( 0.2250, 0.4892) 

 

120 

𝛼 (1.2468, 1.9010) 

𝛽 ( 0.2360, 0.4657) 
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Fig. 7: The empirical CDF (dots); and the estimated CDF of Ailamujia TRV model based on MLE 

(solid line). 

Based on the AT-II PHC data provided in Table 3, we have conducted parameter estimations for 

the Ailamujia distribution within the framework of the SSPALT model. The results are presented 

in Table 4 below: 

Table 4: MLE and LSE using the SSPALT for the AT-II PHC data. 

 MLE LSE 

𝛼 0.4042 0.3156 

𝛽 2.2871 2.7791 

 
It is noticeable that the MLEs and LSEs are close to each other. 
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6.  Conclusions 

This paper involves the estimation of Ailamujia distribution parameters within the context of 

PALT with Type-I censored data. Both maximum likelihood and LS methods are applied, and a 

Monte Carlo simulation study is conducted to compare the various estimation methods, taking 

into consideration biases and MSEs. In conclusion, it is noted that the performance of the LSE 

method surpasses that of the MLE method. 

It is important to note that although the study primarily addresses Type-I censoring, the 

techniques discussed can also be adapted for other censoring schemes such as Type-II, hybrid or 

progressive censoring. 
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