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Abstract. This manuscript is devoted to ensure the existence of a solution to nonlinear fractional integral equations
with three variables under a measure of noncompactness. In order to accomplish our main goal, we develop a new
fixed point theorem that generalizes Darbo’s fixed point theorem by utilizing a measure of noncompactness and a new
contraction operator. A related tripled FP theorem is also obtained. Finally, we use this generalized Darbo’s fixed point
theorem to solve a nonlinear fractional integral equation involving three variables, and an example to demonstrate our

results is presented.

1. INTRODUCTION

The study of derivatives and integrals of any order using the Gamma function is known as
fractional calculus (FC). In applied mathematics and mathematical analysis, a derivative of any
non-integer order, real or complex, is known as a fractional derivative. In a letter to Antoine
de I'Hopital from G.W. Leibniz in the sixteenth century, the first instance is documented [1].
FC was used in one of N. H. Abel’s early studies [2], where the following components can be
taken into consideration: Integration and differentiation (ID) of fractional orders are defined; their

relationship is strictly inverse; the ID of fractional orders can be perceived as part of the same

Received: Jan. 24, 2024.
2020 Mathematics Subject Classification. 47H09, 35K90.
Key words and phrases. FP approach; nonlinear FIE; Darbo’s FPT; existence result.

https://doi.org/10.28924/2291-8639-22-2024-53 © 2024 the author(s).
ISSN: 2291-8639


https://doi.org/10.28924/2291-8639-22-2024-53

2 Int. ]. Anal. Appl. (2024), 22:53

generalized operation; and the ID of ambiguous real orders can be expressed coherently. For more
details about the contributions of fixed point theory in many directions, see [3-11].

The theory and applications of FC have advanced significantly during the course of the nine-
teenth and early twentieth centuries, and innumerable authors have contributed their interpreta-
tions of fractional derivatives and integrals. Numerous areas of mathematics, including porous
media, viscoelasticity, and electrochemistry, utilize the Erdélyi-Kober fractional integrals; for more
information, see [12,13].

Numerous IEs can be solved using fixed point (FP) theory and the measure of noncompactness
(MNC) to address a variety of real-world issues. See, for example, [14-23]. It is crucial to learn
these types of equations because of the significance of integral equations (IEs) of fractional order.

Many scholars [17,21,24,25] have used Darbo’s fixed point theorem (FPT) and its generalizations
thatincorporate the idea of MNC to examine both differential equations and IEs. Several academics
have recently generalized Darbo’s FPT, as seen in [15,21,26], by using various types of operator
contraction. Through the use of weak JS-contractions in Banach spaces (BSs), Isik et al. [27] have
expanded Darbo’s FPT. They have also derived the coupled FP theorem and used it to investigate
the existence of solutions for a set of IEs. Prompted by these works, we generalize Darbo’s FPT
using a new operator that is defined with the aid of a function used in [28] and apply it to a

generalized fractional integral equation (FIE) of three variables to check the resolvability.

2. Basic coNCEPTS

In this section, we provide notations, definitions, and other information to aid in discussion of
our main findings. Let (O, ||.||) be a real BS. From now on, we denote E [, 29|, 9, Con 3, R, N%,
0, xo and pg by the closed ball with center w and radius zp in ©, the closure of a subset J of ©,
the convex hull of a subset J, the set of all positive real numbers, the set of all natural numbers
without zero, the empty set, the class of all non-empty bounded subsets of ®, and the subfamily

of all relatively compact subsets, respectively.

Definition 2.1. [29] A function Y : xe — R is said to be a MINC in © if the assertions below are true:

(i) forall 3 € xo, we get Y (3) = 0, which yields 3 is relatively compact;
(ii) ker (Y) ={8 e xo:Y(3) =0} # 0andker (Y) C po;
(iii) I € 3y implies Y(T) < Y(51);
i) Y(3) =Y (3);
(V) Y(con 3) =Y (3);
(vi) forall p € [0,1], Y (p3 + < p)31) < pY (3) + (1= p)Y (31),
(vii) if 3 € xo, (5) ), Om1 € By, m = 1,2,..., and that limy, e Y(J,,) = 0, then
Joo=N2_ Ty # 0.

Remark 2.1. The kernel of a MNC'Y is denoted by ker (Y) . Further, 3o € ker (Y) and Y (T ) < Y(Iy)
form =1, we get Y(Jo) = 0. Thus, o € ker (Y).
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Theorem 2.1. [30] (Schauder) Let ® be a BS and () C ® be nonempty, bounded, closed, and convex
(NBCC). If the mapping & : Q) — () is compact continuous, then it owns at least one FP.

Darbo’s FPT, which is a generalization of the previous theorem, is stated as follows:
[31] (Darbo theorem) Assume that Y isa MNC and () is a NBCC subsetof aBS®. Let & : O — QO

be a continuous map. Then & possesses a FP in Q) if the inequality below holds:
Y (EZ)<vY (Z), ZcQ, forallve[0,1).
In order to determine Darbo’s FPT extension, the following associated ideas should be remembered:

Definition 2.2. [28] Assume that ® is the set of all functions N : Ry X Ry — Ry such that
(a) for C,0 > 0, max{(,a} < N((,0);
(b) N is nondecreasing and continuous;
(c) for (,0,C,0*>0,8(C+0,C+0%) <N, C)+N(o,0%).

For example, take N((,0) = C+ 0, then N € ®.

Definition 2.3. [26] Assume that ¥ is the set of all functions p : Ry — [1,c0) such that

(1) limy—oe B(Cn) = 1iff limy—eo G = O, for every {C} C Ry,
(ii) the function B is strictly increasing and continuous.

For example, consider B(C) = ¢, then peY.

Definition 2.4. Assume that I1 is the set of all functions 7t : [1,00) — R so that
(1) limyy—o0 (Crn) = 0 iff limyy o0 G = 1, for each {C,,} C [1, 00),
(2) (1) =0;

(3) 7t is continuous.

For example, suppose the following:
e m1(C) =In(Q),
e m(0) =C~Ci,m>1,
o m3(0) =1 -1

Clearly, mt1, mp, 3 € I1.

Definition 2.5. Suppose that A is a completes BS and {(A) is a Banach algebra of all linear continuous
mappings. The mapping Q : [0,00) — €(A) is called a strongly continuous semi-group on A if the assertions
below are true:

(a1) forall Ce A, Q(.)C is continuous on [0, 0);

(a2) foreach C,C* 20, S(0) = I (where I is the identity mapping) and S(C+ C*) = S(C)S(CT*).

Definition 2.6. [29] Let 1 be a non-empty set and P : h x h xh — h be a given mapping. A trio
(C,E,Z) € hxhxh is called a tripled fixed point (TFP) of P if C = P(C,E,Z), E = P(Z,Z, C), and
t-r(Cod).
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3. MAIN RESULTS

We begin this part with the following theorem:

Theorem 3.1. Assume that () is a NBCC subset of a BS © and © : Q) — () is a continuous mapping
satisfying

BINCY (W), o (Y (W) )
BIN(Y (OU), 0 (Y (OU)] < T ey~ BN (Y (W),0 (YW, 6)

foralUcC Q,pe¥, nell, Xe® whereY : xq — Ry is an arbitrary MNC and ¢ : [0, 00) — [0, c0)

is a continuous mapping. Then O owns at least one FP in Q).

Proof. Consider a sequence {Q),,} with Qg = Q and Q11 = con (©Qy), for all m > 0.
Additionally,

00y =00 C Q= Opand O = con (DQ) € Q = Q.
Continuing with the same approach we find that
QD 2M 2220420112+ .

If Y(Q);) =0, for all i € N, then Q); is compact and by Schauder (Theorem 2.1), © has a FP, and the
proofis finished. So, let Y(Q)y,) > 0, for some m € IN. Obviously, the nonnegative sequence {Y (), )}
is bounded below and decreasing, hence it is convergent to s (say), i.e., lim; e Y(Qy) =s>0.
Also, Y(Qi1) =Y (con (9Qy)) =Y (D) . From (3.1), one has

B (Qunt1),0 (Y (i) = B Y (2Qm), 0 (Y (2Qm))))

BIN(Y Q) a (Y(Qm))]
T+ AR (Y (On), 0 (Y ()]~ PIR Y ()0 (X (Qn)))]]-

Letting m — oo, and assume that s > 0 (if possible), we get

BIN(s,0(s))]
ﬁ(N(S,O'(S))) = 1+5[N(S,O(S))] —R[N(S,G(S))]

BIN(s,0(s))]=m[BN(s,0(s))]],

which implies that 7t [8 [N (s,0 (s))]] < 0. Hence, [B [N (s,0 (s))]] = 0, from the definition of r, we
have B[N (s,0 (s))] = 1. Using the definition of B, we conclude that X (s, 0 (s)) = 0, which yields
limy—e0 Y(Qp) = 0. As Oy 2 Oy, thanks to Definition 2.1, Qe = N> _ O is a NBCC subset of
Q) and ), is O—invariant. Thus, from Theorem 2.1, we conclude that © owns at least one FP in
N €O O

IA

Remark 3.1. By employing a novel contraction operator that uses MINC to analyze operators with features
that fall somewhere between those of contraction and compact mappings, we have expanded the scope of
Darbo’s FPT. The primary benefit of this generalization utilizing MINC is the relaxation of the compactness
of the operator’s domain, which is crucial for Shauder’s theorem.
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Corollary 3.1. Suppose that Q) is a NBCC subset of a BS @ and © : (O — Q) is a continuous mapping
verifying

BIY (W) +0 (Y (W)
BIY (OU) +0 (¥ (OU)) < gy ~ B W) +o (Y W),

forallUC Q,Be¥, nell whereY : xq — Ry is an arbitrary MNC and ¢ : [0,00) — [0,00) is a
continuous mapping. Then O owns at least one FP in Q).

Proof. The result follows immediately, if we take N(a,b) = a + b in Theorem 3.1. m]

Corollary 3.2. Let Q) be a NBCC subset of a BS ® and O : () — Q) be a continuous mapping fulfilling

g (Y (U))
p(Y(@U)) < TR () - (B(Y(U))),

forallUCQ),BeY, nell, whereY : xq — Ry is an arbitrary MNC. Then O owns at least one FP in
Q.
Proof. Setting 0 = 0 in Theorem 3.1, we get the proof. m|
Corollary 3.3. Let (2 be a NBCC subset of a BS © and O : () — Q) be a continuous mapping such that

Y (2U) < 1Y (U),

forallUC Q), 1 €0,1), m €Il whereY : xq — Ry is an arbitrary MNC. Then O owns at least one FP
in Q).

Proof. Letting B(s) = ¢°, and nt(s) = s—s7, forall s > 0 and 7 € [0,1) in Theorem 3.1, we have the
result. ]

Remark 3.2. Since Corollary 3.4 can be seen to be Darbo’s FPT, it follows that Theorem 3.1 is a generalization
of Corollary 3.4.

Now, to obtain a generalization of Darbo’s FPT in the tripled variables, we need the following
result.

Theorem 3.2. [32] Let Y1,Y2,..., Y be a MNC in @1, 0o, ..., ®,,, respectively. Further, assume that
Vi RY — Ry is a convex function such that V(q1,q2,...,qm) = 0 iff g = O for all k € IN. Then,
Y(3)=V(Y1(31),Y2(32), ... Y (I1n)) defines a MNC ©1 X O3 X ... X Oy, where O is the natural
projection (NP) of ® into O, fork =1,2,...,m.

Example 3.1. Let Y be a MNC in ©. Describe V(q1,492,93) = g1 + 92 + 43, 91,92, 93 € Ry Then V fulfills
all conditions of Theorem 3.2. Hence, Y''P(3) = Y (31) + Y (J2) + Y (J3) isa MNC in @1 X @, X O3,
where Oy is the NP of © into O, fork =1,2,...,m.
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Theorem 3.3. Let () be a NBCC subset of a BS © and © : QA x QO x Q) — Q) be a continuous map fulfilling

BIN(Y (D (U, Uz, Uz)),0 (Y (D (U, Uz, Us))))]

SBIN (Y (Un) Y (Us) + Y (Us) o (Y () Y (L) +Y (Us)))]

—%ﬂ [BIN(Y (Ur) +Y (U2) +Y (Us),0 (Y (Ur) +Y (Uz) + Y (U3)))]], (3.2)

IA

forall Uy, Uy, Uz € Q), B, 1, N, 0 are as in Theorem 3.1, where Y : xq — Ry is an arbitrary MNC. Then
O owns a TFP in ), provided that

B (q1,q2,93) < B(q1) + P (q2) + B (43) , and 0 (41,92,43) < 0 (q1) + 0 (q2) + 0 (43),
forall q1,92,93 > 0.
Proof. Define the mapping 977 : QO x O xQ —» QO x O xQby
DTFP(u,v,w) = ©u,ow),0 (v,w,u),d (w,u0)).

Clearly, ©TfP is continuous. Let U C Q x Q X Q) be a non-empty set and we have Y/'P(U) =
Y(Uq) + Y(Uz) + Y(U3) is a MNC where Uy, Uy, U3 are NPs of U onto ©.
Now, we have

BIN(YT™ (@ (), o (Y (2 (1))))]

YIEP (D (Up x Uy x Uz) x O (Up x Uz x Uy ) X O (U x Uy X Up)),
a(YTFP (O (U x Uy x Uz) xO (U x Uz x Up) x O (Us X Uy xuz)))

IA

BIN

|

YO (U xUyxUs))+ Y (D (UyxUs x Up)) + Y (D (Us x Uy x Uy)), ]l
c(YO Uy xUaxUs)+ YD (UaxUsxUp))+Y (O (Us x Uy x Uy))))

YO (U xUyxU3))+Y (D (Uax Us x Up)) + Y (D (Us x Uy X Uy)), J]
o (Y (E) (LI1 X Uy X U3))) —I—G(Y (D (UZ X Uz X LIl))) + (GY (D (U3 X U7 X UZ))) ’

IA
=

which implies that

BIN(Y™ (@ (), o (Y (@ (u))))]
BIN{Y (O (U; x Uy x Us)),0 (Y (D (U x Uy x Us))
+R{Y (D (Uax Uz xUy)),0 (Y (D (Uyx Uz x U7))
+ R{Y O (Usx Uy xUp)),0 (Uz x Uy x Up)

IA

)}
)}
(Y (2 )]
= BIN{Y(®O (U1 xUyxU3)),0 (Y (D (Uy x Uy xU3)))}|
FBIN{Y (D (U x Uz xUy)),0 (Y (D (U x Uz x Uy)))}]
+BIN{Y (2 ) )

[N Y( (U3XU]XU2 ,o(Y(D(nguleZ )}]
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Applying (3.2), one has

BN (YT @ (W), 0 (Y (2 (u))))]
SBINIY () + Y (L) + Y (Us), 0 (Y (Un) + Y (L) + Y (Us))]
—3BINIY () Y (L) + Y (Us) 0 (¥ (L) + Y (1) + Y (Us)]]

+%‘5 [N {Y (Uz) +Y (Ug) +Y (Ul) ,0 (Y (UQ) +Y (Ug,) +Y (U1)>}]

S BINTY (Un) Y (Us) + Y (U)o (Y (L) + Y (Us) + Y (L))}

FEBINIY (Us) + Y (U) +Y (U)o (Y (Us) + Y (U) + Y (1))

IA

—gﬂ [BIN{Y (Us) +Y (Ur) + Y (Uz),0 (Y (Us) +Y (Ur) +Y (U2))}]]
= BIR{Y(Uh) +Y(U2) +Y (Us),0 (Y (U1) + Y (U2) +Y (Us))}]

—r [BN{Y (U1) +Y (U2) +Y (Uz),0 (Y (Ur) +Y (Uz) + Y (Us))}]]
BS54 )]

According to Theorem 3.1, the mapping O possesses at least one FP in O x QO x Q, i.e., © owns
at least one TFP. m]

Corollary 3.4. Let () be a NBCC subset of a BS © and © : QX Q x Q) — Q) be a continuous mapping
such that

BIN(Y (2 (U, Uz, Uz)), 0 (Y (D (U, Uz, Us))))]

< %{ﬁ (Y (L) + Y (W) + Y (Us), 0 (Y (Uy) + Y (Us) + Y (Us)])F,

forall Uy, Up, Uz € O, B, , N, 0 are as in Theorem 3.1 and t € [0,1), where Y : xq — Ry is an arbitrary
MNC. Then © owns a TFP in Q, provided that

B(71,92,93) < B (q1) + B (q2) + B (q3), and 0 (q1,92,93) < 0 (q1) +0(q2) +0(q3),

forall q1,92,93 > 0.

Proof. Putting nt(s) =s—s", foralls > 0and 7 € [0, 1) in Theorem 3.3, we get the result. m]

4. A FRACTIONAL INTEGRAL EQUATION OF THREE VARIABLES

In 1993, Samko et al. [33] introduced the following FIE:

I‘Ci,mz(%) _— ) f;% (m(:)l(—szgzi)l‘@d& ®@>0, —o<c<d< oo, 4.1)
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where z(s) is a continuous function and m(x) is a monotone function having a continuous deriv-

ative. Similar to Equation (4.1), in this part, we try to solve the following FIE:

’

m’ (s)k’(r)I (u)z(s,r,u)
—m(s))' ™ (k(3) = k(r))' ™ (1G0) - I(u))

12 26 %) = dudrds,

1-@

(4.2)
which is finite, where —c0 < ¢ < d < oo, I'(.) is the Euler’s Gamma function, x, %, % € [c,d],
z(%, %, %) is a continuous function on [c,d] X [c,d] X [c,d] and m,k,| are monotone functions of
order @.
We will now determine whether or not the operator (4.2) is a strongly continuous semi-group
(SCS) on I = C([¢,d] x [¢,d] x [c,d],R). The continuity of the operator (4.2) is trivial. For
z1(%, %, %),22(%, %, %),z3(%, %, %) € Jand (3, (o, 5 € R, we get

I?+mkl(Clzl(% P —I—C,zzz(% X, %) + Cazz(x, %, %))

%’ (s)K (r )pm%xw+@m %, %) + Gaza (%, %, %)
)= m(s))!™® (k(3) ~ k(r)™ (1) ~ 1)) "
m’ (s)k (1)1 (u )zlw %, %)
()7 (k(3) ~ k(r)"~ (< %)~ 1(u)) "

dudrds

mffj O W2 ER
5))' 7 (k(3) = k(r)) "~ () (u))
O (o) <> < %) i
- -
(60! (kG0 = k()™ (130) = 1(w))
= C]I(ﬂ’m,k,lzl(%, x, ;t\) + CQIEDJr’m’k,lZQ( ) + C3Ic+ mklz3( X, %)
This proves that the operator (4.2) is linear operator.
Further, for z1 (%, x, %), z2(%, %, %), 23(%, %, %) > 0, one can write
I, mkl[ 106, %, %) + 22(%, %, %) —I—z;;(%,?i,';?)]
£ [12 210630012, (%R [I9, 23063, 50)],
and IZ. . (0) =0 # I. As a result, we draw the conclusion that the operator (4.2) is not a SCS on
4.

Assume that ® = C (J x J X ]) is the space of all real continuous functions on | = [0, 1]. Clearly,
the pair (0, ||.||) is a BS under the norm

||| = sup{|x(s, t,u)| :s,tbue], n e @}.
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Consider J (# 0) is a fixed bounded subset of @. Also, consider 7 (x, €) refers to the modulus of
continuity of x, that is,

" (%,€) = sup |% (1,92, 93) — (01, 02, 93)| D91, P2, 93,01,02,03 €1,
' lp1 -0l <e |p2—| <€ |ps—os|<e

where # € © and € > 0. In addition, let

7(3,e) =sup{T(x%,€):xe T},
and
-IO (S) = hrr(}-l (5,6) .
€—
It can be demonstrated that the function Ty is a MNC in the space ©, similar to [34]. This section
examines the solvability of the following generalized fractional order IE:

Z(p,0.p) (4.3)

’

_ e m(OKO!()qlp 0p.c96,2(c,3,0))
) R((P’Q’p swen [1 ) () - (@) (K(e) ~ KON () T )

where @ € (0,1), p,0,p€10,5],S > 0.
To reach our desired goal here we need the hypotheses below:
(H;) The function R : J> x R x R — R is continuous and there are By, B, > 0 with B; € [0,1) so
that

IR (@,0,0,P1,P2) =R (0, 0,0,P1, Pa)| < Br [Py = 1| + By [P> — P

where ¢,0,p €], P],Pz,ﬁl,FQ eRand > =] xJx].
(H,) The functions m,k,[: ] — R are C! nondecreasing. Further, m’, k', 1 > 0.
(Hz) The function g : J® xR — R is continuous, where J® = J3 x J°.
(H4) We assume that

Q= SuP{|q(q0,g,p,c;,9,9,3(C,S,G))| 1@,0p,69,0¢€], 3€C(]><]><])],

and

7

R =sup{[R (¢,0,p,0,0)|: ¢, 0,p € J}.
In addition, assume that there is z so that

B9 (1(5) ~1(0))° (K(S) - KO)" (m(S) - m(0))° + R = 2.

Also, we consider &, = {x € O : ||x]| < zo}

31Z0 +

Theorem 4.1. In the light of the hypotheses (H;)-(Hy), Equation (4.3) has at least one solution in ©.

Proof. For 3 € ©, describe the operator Q on © as
Q) (@ 0p)

_ e m (O ) (<)(p 0p.c8,0,3(c,9,0)
) R((P'Q’p 2000 [}, oo™ g K - )
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for all @, g, p € J. We split the proof into the following steps:

(1) Show that Q is well defined. Let ¢, g, p € ] be a fixed and {¢,}, {04} and {p,} be sequences
in | so that, ¢, — ¢, 0, = pand p, — p asn — oco. Choose ¢, > ¢, 0, > pand p, > p,

(without loss of generality). Then, we get

|(Q3) (Pn, On,s pn) (Q3) (¢, 0, p)l
< Bi|3(pw owpn) -3 (@0, p)l

O)K () (c)q(@n, 00, pn, <, 9,6,2(c, 9,6))
+Bzf f f ) m(0))'™ (k(ou) = k(9))'7 (I(pn) = 1(c ))1_‘°dedsdg
fff K () (c)alp.0,p,¢,9,0,3(c,3,0)) d0d9de] .

m(0))'° (k(o) —k(9))™ (I(p) = 1(c))"™°
Now,
O)K ()1 ()q(@n, 0n, pn,c,9,0,3 (¢, 8,0)) 10494
m@)1 (k(on) = k(8))' ™ (I(pu) = 1(c))'™®
fff Sllg)q((PQPCSGJ(cS@))l 0d9dc
(k(g) —k(8))' ™ (I(p) = 1(c))"™°
K () (€)q(@n, 0n,pn, ¢, 9,6, (c, 9,0)) d0d3de
—m(0))'™ (k(on) = k()™ (I(pu) = 1(c))"™°
fff k’Sl)(GD QnPan9:<C96))l 40d3de
—m(8)) " (k(on) =k(8)) ™ (Ipn) = 1(c)) ™
G)k(Sl <)q(@n, 0n, pn,¢,9,0,3(c,9,0)) _0a3dc
m(qn) —m(G)1 (k(gn) = k(9))' ™ (I(pu) = 1(c))'™°
fff O)k' (9) 1( q(@n, on pnc,9,6,3(c, 9,0)) J0d3de
—m(6))'™° (k(0) = k(9))'™ (l(pa) = 1(c))"™°
6)k’8 )4(Pns 0, Pn 6, 9,6,2(c,9,0)) _10a9dc
- m(0)) 1 k(@) k(9))' ™ (I(pu) = 1(c)) '™
fff G)k’(x9 c) (@@pc9193(68,6))1 d0d3de
m(0))' ™ (k(e) = k(9))'™ (I(p) = 1(c)) '™
= T' 4TI+ TY,
where

—m(6 > ® (k(o )—k(@))l “’<l<pn> —l( )

ﬂf f ‘9 )q((Pn On, PnCSQJ(CSQ)) deSd
m(0))' ™ (k(on) —k(8))™° (1(pu) —1(c))" ™

d0dSdc
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)k’ (9) ©n, Ons Pns 6, 9,0,3(c, 9,0

Pn I'(
f ff m((?))1 (k(en) =k(9))'™ (U(pn) = 1(c)) "™

O)K (3)I'(c)q(@n, o, pn <, 9,6,3(c, 3,0)) —d0dddc
)

fff rﬂ(@))1 (k(on) =K(9))' ™ (1pa) = 1(c)) ™"

<>wu<>mwu> m(0))®
1(0))°] (k(en) = k(0))® (m(pn) = m(p))°.

IA

Q
S (e
+ 2 [(1ga) - 19))" = Ulpn) -

@3

Since m, I, k are continuous, ¢, — ¢ and p, — p as n — oo, then TT — Qasn — 0. Also

O)K (9)1 { (€)9(®n, 0n, P, cf@e ,2(,9,6)) —d0dddc
P (k(on) =k(9)) ™ (I(pn) = 1(c))

T = -m(6)) n) —
f‘”ff 9)k3 ()q(@n, 01, P, c,9,6,3(c,9,0)) J0d3de
~m(0)) (k(0) —K(9)™ (I(pw) ~ 1(0)
() ()] (c)
< 0 40494
ﬁff () —m(0))~ (Klaw) ~k(3)) = (Upw) 1))
' (O () (c)
+Q d0dsd
ﬁff () —m(8)) (k(0) — k()™ (pm) 1)
<@)¢Wwwm»wamw
Q|+ (mlpn) ~m(0))° (k(an) — k(2)® (U(pa) ~1(0))°
& |+ (mgn) - m(0))° (ko) —k(0))° ((pw) ~1(0))°
23 (m(gw) —m(@))° (k(on) — k(2))® (L(pw) ~1(p))°

Since m, I, k are continuous, ¢, — ¢, 0, = pand p, = pasn — oo, thenT) — 0asn — oo

Again
™o 0)k (9)I = (c)q(pn, QnIPan{‘iQ 3(@86))1 _16asdc
) m(0)) " (k(o) —k(8)) ™ (I(pa) = I(c))
fff m' (0)K () (c)q ((PQPCSI‘Z:(CS@)) _10d9dc
(m(p) =m(6))'7° (k(o) = k()™ (I(p) = 1(c))" ™
) -

) (<) |9(@ns 0n pnr €, 9,0,3(c,9,0)) —q(9,0,p,5,9,0,3(c,9,0))]

f ffpm (0)K' (9
(m(p) —m(0))'™ (k(g) —k(8))™ (I(pa) = 1(c))' ™

Since ¢, = @, g — 0, pn — p asn — oo and ¢ is continuous, we have T} — 0 asn — oo
Thus, 3 (@, 0, p) € © implies Q3 € O. Hence, Q is well defined.
Zy and Q : By — By is well defined. Let &,y = {3 € © : ||3|| < 2o}

(2) Prove that Q (&,)) € &
Then for all ¢, 0, p € | and for 3 € 5,,, we get

IA
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IA

IN

IA

IA

®)

<

<

e =

(4)

[(Q3) (¢, 0.p)|

e MmOk ()qle e pe9,0,3(c,9,0))
R(Q'Q’p'w’g'm'fo Jo - e o g e

—R(¢, 0,p,0,0)|+ |R(¢, 0, p,0,0)]

e m (OK ()1 (¢)
neotene 1) ()~ m(O) 2 (k(a) k(&) U T

Bizo -+ 2252 (1(5) = 1(0))° (K(S) ~K(0))° (m(S) = m(0))° + R

Z0.

Hence, Q () C &, thatis Q : E,, = &, is well defined.

Claim that Q is continuous on E,,. Assume that J,L € E;, with ||3 - L|| < €, where € > 0.
For each ¢, g, p € ], we obtain that

(Q2) (¢, 0,p) - (QL) (@, 0,p)

m (0)K (3)I (c)q(p,0,p,<,9,6,3(c,9,6)) d@d&d]
(mp/ (p0p fff mlp) - m(©)° (ko) — k()" ((p) — 1)
(

_ m' (O)k () (c)a(p. 0.p,¢,9,0,L(c,9,0))
R((P’Q’p’w’g’p)’fo L =@ 6o o0 =i >>1—“’d9d‘9dg]

Bi|2(¢,00)~L(g,0p )(
o m' (O)K (9)1' (<) |q(¢,0.0.¢,9,0,3(c,9,0)) —q(p,0,p,¢,9,0,L(c,9,0))|
+B
1f ff m(p) —m(6))'™ (k(g) — k()™ (I(p) = 1(c))'™®
By |I= - Ll + ;qe ((s) - 1(0))‘D (k(S) =k(0))? (m(S) =m(0))”,

d0dddc

where

sup [7(¢,0,p.¢,8,0,3(c,9,0)) —a(p,0,p,¢,9,0,L(c,9,0)|: ¢,0p,¢8,0€],
2 —-L| <€, |3 <z, |L| <20

As g is uniformly continuous on J® X [~zp, zg], then gc — 0 as € — 0. Hence, ||Q3 — QL|| — 0
as € — 0.This proves that Q is continuous on E,,.

Prove that the contractive condition of Corollary 3.3 holds. Consider V (# 0) € &,,. For an
<elo-¢
and |p - p*| < e. Without loss of generality, take ¢* > ¢, ¢* > pand p* > p. Now,

arbitrary € > 0, set 2 (¢, 0,p) € Vand @, 0,p, ¢*, ¢", p* € ] such that |<p -

(Q2) (9", 0%, p*) = (Q3) (¢, 0, p)|

(p@,,(q)@p)

@ P m' (0K (3) (<)g(¢",dp",c,8,0,3(c,9,0)) 104sd
[f fo f (6))'® (k(g*)—k(8))' = (1(p*)-1(c))" ™ ¢
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<P/ @, p, 2(p,0p),

@ ()a(@0pe 02 S0) 19194 J
[f b K Gt ““(k(g)—k(s»l P(p) e e

(P @ @, 0,0,
[f(P fo fP ' ( l()(@QPCSGJ(QSG))ImdeSdC]

> ® (k(g") k()" (1(p")-1(c))
[ @;@pr (@0 p), ]
B et oo
[ @;@,p, (e 0P,
f ¥ fo f ' = ‘(()k(gp) %))Cls“’il?p(f)l—glf))))l“’ded‘gdg

(PIQIP/ ((Perp)/

" ()a(9.0pe902(c90) 49194 ]
ffofo (m(ep)—m( ‘D(k(g)—k(s))l “(U(p)=1(c))" -

— Ty +T,. (4.4)
Also,
f f f K (I (9)q(p,0,p,¢,9,0,3(c,9,0)) 46494
1-o 1-© 1-® g
0 m(0)) " (k(o) —k(9)) ™ (I(p) = 1(c))
Q
—5 U(S) =10 ))? (k(S) —k(0))? (m(S) —m(0))” = F(say).
where
; [ 0,003 (900",
1 o m (0K (9! (<)q(¢".0" 0" CSQJ(CSG)) 46dSd
K fo f (") -m(0)) (k(g) k() (H(p)—1(c))° ¢
R[ ©,00 3@, 0,0,
@ 0 et (0K () ()q(9,07,p°,,9,0,3(c,8,0)) 160494
bk b (m(@*)=m(0))"~ (k(g*)—k(8)) = (I(p)=1(c)) " ¢
< C(Rye), (4.5)
and
. ( (P/@,p/ (g0, p7), ]
2 = P " m’(0)k ()( ,040°,6,9,0,3(¢,9,0)
I f = (K(g)—k(5) )l 0o
( (p,w, 2(p.0p), }
P Y K (9! ()q(@.0.0.5,9,0,3(c,9,0))
f fo f “D(k(@)—k(s»l °(1(p)-1(c))" = 40d9dc
< B3¢ (P/@/P)— ((P/Q/P)|

v e e "(O)K () L0,0,¢9,0,3(c,93,0
—l—Bzf f f m (O)K (S)L (S)ale”, &', (©90) __ ousac

m(0)) (k(g") = k()" (Up*) =1())"™°
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fff m' (0)k'(9)! )q(wppc\ziﬂ(gse))1_@d8d8dg'
m(p) —m(0))' ™ (k(o) — k()™ (I(p) - 1(c))

(4.6)

Let

CRe) = sup] R@0PTO0)=R(¢"¢p,3,0)|: 900,900 €],
' P |g0—g0*|§€, |Q—Q*|§e, |p—p*|§e, |2] <z, |O] £ zp.

From the uniform continuity of R in J3 X [~zp,z9] X [-F X F], we conclude that
lime—,0 C (R, €) = 0. Again, let

C(q.€)
_ SUP{ (9%, 007, 9,6,3) =4 (9,0,0,6,9,6,3)|: 9,0, p", ", 9,6, 9,0,p,¢,9,0 €], }
o =l <e |o—d<e | -pl<e FI<z0

and
C(me) = sup(m(p)—m(p)|: 9" pe] |p"-¢|<e},
C(ke) = SuP{|k(0*)—k(Q)|?Q*zQ€]r |@*—0|S€]f
ClLe) = supfli(p)~1(p)|:p"p el |o"~p| <e).

On the other hand,

O (9)I'(c)qle, 0", p7¢,9,0,3 (¢, 9,0))
m(0))'™ (k(g") = k(9))' ™ (1(p) = 1(c))™°
fff Slc)q((f)@pc\iel(cse))l d@deg‘

()77 (k(0) =k(8)) ™ (Ip) = 1(c)) ~°

K () (c)qle, 0. p%¢,9,0,3(c,9,0))
m(0))' ™ (k(g") —k(8)) ™ (I(p*) = 1(c)) '™
fff )k(S1 )EI(GOQPC?QJ(CSQ))l 10d9de

@) =m(0)) 7 (k(g") =k(8)) " (l(p*) = 1(c))
m’ (O)K (9 ()alg™ 0", p",¢,9,6,2 (¢, 9,0))

(m(r) =m(0))" ™ (k(g") = k(9))™ (I(p*) = 1(c)) "™
f ff m’(6) k’(S)ll(_) q(e*, 0% p", cS@Zi(cSG))1 J0dde
m((P) m(6))' ™ (k(o) - k(9))'™ (l(p) — (<)) ™°
m’ (0)k' (9)I q(qogpgSQJ(c;SG))
0 (k(0) = k(9)'7° (I(p) = (<)) °
_fo fof m’(0)K fl_mc)v/(qoepcsel(cS@)i _10a9dc

0 (m(p)—m(0)) ™ (k(o) = k()™ (I(p) = 1(c))"™®
= Wi+ W+ W3,

d0dSdc

IA

d0dddc

—d0dddc

—d0dddc
(m(p) —m(6))




15

Int. J. Anal. Appl. (2024), 22:53

where

~— —  ~—

— ~— ~—

3Q(C (m,e)C (k,e)C(le)}®

\

@\n/\l/\l/@@ T
QOOL( —~ O
/u\kkk @kk
oo | S
% —~ o~
— * *
(wY} S~ % *
*Q Q/k.\ *QQOL
o R = Zx <
= e — =
3 8B >~ TR g
~—~ ~ 2 1 —
\l/\l/)@l\./\l/)
S22 o s0
(@.W\(m\m $ s
s
S 70§ T
_HI/,\»I/* _\n/\l/
Q. —~ % *
% s S
’ S T
S
[ (=Rt J
o o
! % %

30(C (m,€) C (k,€) C (I, )}

\4

and

m' (0K (9)I'(c)q(¢*, 0", p*¢,9,6,3(c,9,0))

(m(g) —m(6))"™ (k(g) =k(9))"™ (l(p) = 1(c))" ™"

d0dSdc

A
A

C(g, e
>3

W3

m' (0)k' (8)I'(c)a(@, 0,p.¢,9,0,3(c,3,0))

(m(p) =m(6))"™ (k(g) =k(9))"™ (l(p) = 1(c))" "

) ((m(p) =m(0))"= (k(e) =k(0)' ™ (1(p) = 1(0)) )

C(g,€){C(m,e)C(k,e)C(L€)}®
3

d0dSdc
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Applying the above results in (4.6), we have

T, < Bi|3(¢"0"p") ~ (@ 0 p)|+ Ba(W1+ Wz + Ws)
= Bl'i(V €)
(6Q{ (m,€)C (ke)C(l,e)}‘”+C(v/,e){C(m,e)C(kle)C(l,e)}‘”).

+B> >

(4.7)

From (4.5) and (4.7) in (4.4), we have

T(QV,e) < C(R,e)+B17(V,e)
(6Q{ (m,€) C(k,e)C(Le)}®+Clq,¢€) {C(m,e)C(k,e)C(l,e)}‘D).

+B> >

Since R, m, k and [ are continuous, 7(QV,e) — 0 as € — 0. Therefore, all requirements of
Corollary 3.3 are satisfied. Thus, the mappings Q owns at least one FPin V C &, C O,

which is a solution to Problem (4.3).

To support our problem, we introduce the following example:

Example 4.1. Consider the following FIE:

pop (1+3(p,0p))
L+ qpop

P 0 P 22 (c,3,0)
I : : : d0dddc,  (4.8)
fo fofo (p—¢c)* (0=9)3 (p—0)3 (1+23(c,9,0))

forall o, 0,p,¢,9,0 € [0,1]. Problem (4.8) is another form of (4.3) with

(p0p) =

:3

m(0) = 0, k(d) =239, l<g) Q((P;Q;P/C/S 0,3(c,9,0)) = 1 +:3/

3
pop (1+ >+p
1+ pop

:fwf@fp 2 (c,9,0) d0d9dc.
0 Jo Jo (9—c)F(0-9)7 (p—-0)F (1+(c,9,0))

Now, for ¢, 0,p € [0,1] and Py, Py, P, Py € R

® = %andR((p,Q,p,DP)

where

(PQP
+

R (9,0,p,P1,P2) =R (9,00, P1, Po)| < |P1 Pi|+|P— Pyl

Hence, B1 = % and By = 1. The functions m,k,1 : | — R, are C1 nondecreasing. Further, m’, k', I >0.
The functions R and q are continuous and Q =1, R = 1. In addition, for zg = 9, the inequality

Bizo + Z—Q (1(5) = 1(0))° (k(S) = k(0))” (m(S) = m(0))” + R

z 27 2
= 2+30-0fa-0a-0f+

wINy

<2z
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is true. Hence, the hypotheses (Hy)-(Hy) are fulfilled. According to Theorem 4.1, the problem (4.8) has at
least on solution in C ([0,1] x [0,1] x [0,1]).
As a special case, for all ¢, o, p € [0,1] and Z is a constant function, the exact solutions to Problem (4.8)
are given by
Ap0p) = (Pglpf = 333@%0?%-
pop 1+3

5. CoNCLUSION

It is known that we used contractive type conditions and their generalizations to establish
several FP results and we applied them to develop some results of theoretical and word problems
involving mathematical models describing integral and differential equations arising in fractional
analysis. Working on the existence and uniqueness of variant forms of solutions to those equations
becomes an intersecting and attractive field of research. MNC appeared in different applications
in FP theory and in particular are useful in differential and integral equations. In our paper, we
extended Darbo’s FP theorem and we applied our findings to guarantee the existence of solutions

of FIEs involving three variables.

6. ABBREVIATIONS

e MNC measure of noncompactness.
e FIE fractional integral equation

e [E integral equation.

e FP fixed point.

e FPT tixed point theorem.

o FC fractional calculus.

e ID integration and differentiation.
e BS Banach space.

o TFP tripled fixed point.

e NBCC nonempty, bounded, closed, and convex.

e NP natural projection.

e SCS strongly continuous semi-group.
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