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Abstract. The paper introduces the concept of modules for KU-algebras, named as KU-modules. It presents basic

isomorphism theorems for KU-modules and explores their applications, particularly concerning chains of KU-modules.

Additionally, it defines and examines exact sequences of KU-modules. The paper discusses various properties of chains

of KU-modules and establishes the butterfly lemma in the context of KU-modules.

1. Introduction

KU algebra is a type of logical algebras that was firstly introduced by Prabpayak and Leer-

awat [6]. Homomorphisms and results for them for KU-algebras are given in ( [6], [7]). Next

to the introduction of KU-algebras, numerous authors have extensively explored KU-algebras in

various research directions, such as fuzzy, neutrosophic, and intuitionistic contexts, as well as in

soft and rough senses. For instance, Naveed et al. [9] introduced concepts on cubic KU ideals,

whereas fuzzy ideals within this context was given by Mostafa et al. [10]. Additionally, Mostafa

et al. [11] delved into the study of Interval-valued fuzzy concepts for KU ideals. Moin and Ali

studies and described roughness in a KU algebra [12], while Ali et al. [13] explored the notion of

a pseudo-metric for a KU-algebras. Further, Atanassovs intuitionistic fuzzy binormed KU ideals

within the framework of KU-algebras was given and studied by Senapati and K.P. Shum [14].

More recently, Ali et al. [3] constructed graphs based on the KU ideals.

The notion of BCK-algebras that is an interesting class of logical algebras and that gives general-

ization for set-theoretic differences and proportional calculi was introduced by Imai and Iseki [8]

as an important tools in logical algebras. This concept shares similarities with the development

of Boolean logic based on Boolean algebras. Furthermore, Iseki [5] introduced a superclass of
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BCK-algebras and said that as BCI-algebras that encompasses as a class of BCK-algebras. This

article is mainly distributed in six sections.

Section 1 is introduction part for motivation and interest based on KU algebra. Section 2 focuses on

general concepts associated with KU-algebras. It initiates by discussing the fundamental concepts

of KU-algebras, elucidating their elementary properties. Subsequently, the discussion extends to

the exploration of ideals within a KU algebra along with their associated properties. In Section 3,

we delve into the exploration of KU-modules, presenting various examples and elucidating their

properties. Section 4 is dedicated to the examination of chains of KU-modules. We establish the

minimal and maximal conditions for submodules, introduce the Schreier Refinement Theorem,

and expound upon the Jordan-Holder Theorem within the context of KU-modules. In Section 5,

our focus centers on the study of exact sequences with some of their algebraic properties. Section

6, is investigation of projective and injective KU-modules, outlining their respective properties

and implications.

2. Preliminaries

This section is based on related definitions and notations concerning KU-algebras, KU ideals

and their posets are discussed.

Definition 2.1. [6] The structure (X, ◦, 1) with binary operation ◦ of type (2, 0) is called a KU

algebra if for any a, b, c ∈ X we have:

ku(1) (a ◦ b) ◦ [(b ◦ c) ◦ (a ◦ c)] = 1,

ku(2) a ◦ 1 = 1,

ku(3) 1 ◦ a = a,

ku(4) a ◦ b = b ◦ a = 1⇒ a = b.

If not specified then, we consider (X, ◦, 1), a KU algebra. X will indicate a KU algebra throughout

the text. 1 is a constant element and fixed for X. The condition u ≤ v indicates a partial order ” ≤ ”

in X iff v ◦ u = 1.

Lemma 2.1. [6] The structure (X, ◦, 1) is a KU algebra iff:

ku(5) a ◦ b ≤ (b ◦ c) ◦ (a ◦ c),
ku(6) a ≤ 1,

ku(7) a ≤ b, b ≤ a⇒ a = b,

Lemma 2.2. In the structure (X, ◦, 1), the given identities are valid [10]:

1. c ◦ c = 1,

2. c ◦ (a ◦ c) = 1,

3. a ≤ b imply b ◦ c ≤ a ◦ c,

4. c ◦ (b ◦ a) = b ◦ (c ◦ a), for all a, b, c ∈ X,

5. b ◦ [(b ◦ a) ◦ a = 1.
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Example 2.1. [10] Considering X = {u, v, w, x, y} we observe that X is a KU algebra with single

binary operation ◦ that is given by the following table

◦ u v w x y

u u v w x y

v u u w x y

w u v u x x

x u u w u w

y u u u u u

Definition 2.2. The following is defined for a KU algebra X :

(i) commutativity: (y ◦ x) ◦ x = (x ◦ y) ◦ y, for all x, y ∈ X.

(ii) Implicativity: (x ◦ y) ◦ x = x, for all x, y ∈ X.

(iii) Boundedness: if there exists an element 1 ∈ X so that for each x ∈ X, x ≤ 1.

Definition 2.3. [6] A KU ideal is a non-void subset A of X that satisfies:

1. 1 ∈ A,

2. u ◦ (v ◦w) ∈ A, v ∈ A⇒ u ◦w ∈ A, for all u, v, w ∈ X.

Definition 2.4. Maximal ideal in X is a KU ideal IM of X so that proper ideal IM of X is not a proper subset
of any proper ideal of X. Such maximal ideal in KU algebra is called maximal KU ideal.

Definition 2.5. For |X| ≥ 2, in a bounded KU algebra X, there is at least one maximal ideal.

Definition 2.6. A proper commutative ideal of a bounded KU algebra is called maximal commutative ideal
containing IM.

Definition 2.7. Any implicative KU algebra (that is proper commutative) ideal of a bounded KU algebra is
called maximal commutative ideal containing IM.

Example 2.2. [12] Let X = {1, b, c, u, v, w} in which ◦ is defined by the following table:

◦ 1 b c u v w

1 1 b c u v w

b 1 1 c c v w

c 1 1 1 b v w

u 1 1 1 1 v w

v 1 1 1 b 1 w

w 1 1 b 1 1 1

We see that (X, ◦, 1) is a KU algebra. Further we can show that A = {1, b} is a KU ideal and

B = {1, b, c, u, v} is KU ideal of X.

The following conditions for a non-void set with a single binary operation construct a KU

algebra.



4 Int. J. Anal. Appl. (2024), 22:57

Proposition 2.1. (X, ◦, 1) is a KU algebra iff:
i. (b ◦ c) ◦ ((c ◦ a) ◦ (b ◦ a)) = 1 for all a, b, c ∈ X;

ii. (b ◦ 1) ◦ a = a for all a, b ∈ X;

iii. For all a, b, c ∈ X such that a ◦ b = 1, b ◦ a = 1⇒ a = b.

Proof. Considering direct part and saying (X, ◦, 1) is a KU algebra, we see that i. follows from

ku(1). Further, ii. follows from fourth condition of a KU algebra. iii. is directly followed from

ku(2) and ku(3) as (b ◦ 1) ◦ a = 1 ◦ a = a.

Considering indirect part, if (X, ◦, 1) satisfies all three conditions above, then ku(1) and ku(4) holds

true from i. and ii.. Now, replace b by a, a by 1 and c by 1 in i. and use ii. we find that,

(a ◦ 1) ◦ [(1 ◦ 1) ◦ (a ◦ 1)] = 1 ⇒ (1 ◦ 1) ◦ (a ◦ 1) = 1 ⇒ a ◦ 1 = 1 that proves ku(2). Further, using

a ◦ 1 = 1 in ii. we have, 1 ◦ a = a for every a ∈ X. Hence this proves that (X, ◦, 1) is a KU algebra.

�

Definition 2.8. A prime ideal P of X where X is a KU algebra is defined as, if (b ∗ a) ∗ a ∈ P ⇒ a ∈ P or
b ∈ P.

Definition 2.9. A KU algebra X is called a bounded KUalgebra if for an e ∈ X that exists in X so that x ≤ e
for any x ∈ X. The element e is called unit of X. In a bounded KU algebra, we write x ∗ e for N(X).

Theorem 2.1. If X is a bounded KU algebra having greatest element 1, then for any x, y ∈ X :

1. N1 = 0 and N0 = 1.

2. Ny ∗Nx ≤ x ∗ y.

3. y ≤ x⇒ Nx ≤ Ny.

Theorem 2.2. For a bounded KU algebra X, it is commutative iff x∧ y = (y ∗ x) ∗ x, xvy = N(Nx∧Ny).

We have the following theorem that we shall use later on:

Theorem 2.3. We have given assertions that hold true:
i. If X is implicative, then it is commutative.
ii. If X is commutative, then it forms a lattice with x∨ y = N(Nx ∨Ny) and x∧ y = (x ∗ y) ∗ y.

iii. Bounded implicative KU algebra and Boolean algebra are equivalent.

Lemma 2.3. If X is a commutative KU algebra, then (X,≤) is a lower KU-semilattice. If X is bounded and
commutative, then (X,≤) is a KU-lattice.

Lemma 2.4. If I is an ideal of a KU algebra X, we get I1 ∨ I2 ∈ I, for any I1, I2 ∈ I.

Theorem 2.4. If (X, ∗,∧,∨, 0, 1) is a bounded implicative KU algebra, then we have, for all u, v ∈ X :

i. NNu = u.

ii. Nu ∨Nv = N(u∧ v) and Nu ∧Nv = N(u∨ v).
iii. Nu ∗Nv = v∧ u.

iv. u∧Nu = 0.
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v. u∨Nu = 1.

vi. (v ∗ u) ∗ u = Nv ∗ u = Nv ∧ u = v ∗ u.

vii. NNu = u.

3. KU-Modules

In this section we connect KU algebra with module theory concepts defining KU-modules and

studying properties for them.

Definition 3.1. For a KU algebra (X, ∗, 0), an abelian group A under usual addition and a mapping
X ×A→ A defined by (x, m)→ x×m such that
A1. (x∧ y)m = x(ym)

A2. x(A1 + A2) = xA1 + xA2

A3. 0m = 0 for all x, y ∈ X and A1, A2 ∈ A where x∧ y = (x ∗ y) ∗ y. is called a left KU-module. In a
similar fashion right KU-module is defined. In case X is bounded then for some m ∈ A, 1m = m, A is called
a unitary KU-module.

Definition 3.2. Consider A1 and A2 are KU-modules. A homomorphism is a mapping f : A1 → A2 for
any A1, A2 ∈ A1 satisfying the conditions:
(i) f (A1 + A2) = f (A1) + f (A2).

(ii) f (xA1) = x f (A1)∀x ∈ X.

Ker( f ) = {x ∈ a1 : f (x) = 0} is kernel for f and Im( f ) = { f (A1) ∈ a2 : A1 ∈ A1} is image for f .

Ker{ f } is a submodule of A1 and Im{ f } is a submodule of A2. Also f is monomorphism iff Ker{ f }
is 0. Now we have the following isomorphism theorem:

Definition 3.3. Let A1 and A2 are KU-modules and f : A1 → A2 be an epimorphism. If B is a submodule
of A2 and A′ = f−1(B) then A′1/A′ is isomorphic to A′2/B. Moreover, if B = {0}, then A′1/ Ker{ f } ≥ A′2.

Let A be a KU-module and A1, A2, A3 are submodules of A then A1 + A2/A3 is isomorphic to

A1/A2 ∩A2. Next if A3 ⊂ A2 ⊂ A1, then A2/A3 is submodule of A3/A1, we have (A1/A3)/(A2/A3)

is isomorphic to A1/A2.

4. Chains of KU-Modules

Based on the concept of chains, connections and relationship between KU ideals and module

theory will be established.

Theorem 4.1. Ideals of a bounded implicative KU algebra X is a submodule.

Proof. We define x1 + x2 = {(x1 ∗ x2) ∧ (x2 ∗ x1)} in a bounded implicative KU algebra I. By ideal

property of KU-algebras we have x2 ∗ x1 ∈ I and x1 ∗ x2 ∈ I. Further in a bounded implicative KU

algebra KU ideals are lattice ideals. Hence x1 + x2 ∈ I. Further, x1 + 0 = 0 + x1 = x1 for all x1 ∈ I.
That means 0 is the identity element in addition. Furthermore, x1 ∈ I, 0 ∈ I ⇒ x1 + x1 = 0. That
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is x1 is inverse of x1. That shows (I,+) is a subgroup of bounded implicative KU algebra. Next

x1 ∈ X, x2 ∈ I then x1 ∧ x2 = x1x2 ∈ I. This means I is a submodule of X. �

Definition 4.1. Let A is a KU-module. A will satisfy minimal(maximal) conditions for submodules if each
non-void collections of submodules of A contains a maximal(resp. minimal) member of A.

Definition 4.2. Let A be KU-module of a commutative KU algebra. Then A will satisfy the descending
chain condition of submodules if for any chain of submodules, e.g. A1 ⊇ A2 ⊇ . . . . . . ⊇ . . . . . .An ⊇ . . . . . . is
terminated in the sense that Ak = Ak + 1 for some k ≥ 0. Ascending chain condition is defined in a similar
fashion.

Definition 4.3. Let A is a module of a commutative KU algebra. Then we say that A will satisfy
maximal(minimal) conditions for submodules if every non-empty collections of submodules contains a
maximal(minimal) member.

Proposition 4.1. If A is a KU-module then following are equivalent:
(a) A satisfies the minimal(maximal) condition for submodules.
(b) Ascending (descending) chain condition are satisfied by A for its submodules.

Proof. (a)⇒ (b). Let A satisfies the maximal condition for submodules of a KU-module.

Further let A1 ⊆ A2 ⊆ A3 ⊆ . . . . . . be given chain of submodules of A. Next, A = {Ai|i ∈ I} where

Ai repeats in the sequence. According to our assumption A has maximal element, say Aµ then

Am = Aµ for all m ≥ µ. For a minimal condition similar fashion will work.

(b) ⇒ (a). We consider A satisfies the ascending chain condition for submodules of KU-module.

Let Ω be a non void set of submodules of M. We claim that Ω must contain a maximal member.

Let us assume that Ω has no maximal element. Let A1 ∈ Ω then since A1 is not maximal in Ω,

we can find A2 ∈ Ω such that A1 ⊂ A2. But A2 is not maximal in Ω. Consequently; there exists

A3 ∈ Ω, for which A2 ⊂ A3 and so on. In this way a strictly increasing sequence of submodules

A1 ⊆ A2 ⊆ A3 ⊆ . . . . . . is generated, contrary to our hypothesis about (b). For a descending chain

condition similar fashion will work.

�

The following theorem can be established on the lines of the proof of Proposition 2.4. Butterfly

Lemma that can be considered as another isomorphism theorem.

Theorem 4.2. Let N, N′, K and K′ are submodules of a KU-module so that N′ ⊂ N and K′ ⊂ K. Then
[N′ + (N ∩K)]/[N′ + N ∩K′] � [K′ + (K ∩N)]/[(K′ + (K ∩N′))].

Proof. Let A1 = N′ + (N ∩K′), A2 = N ∩K. Then A1 + A2 = N′ + N ∩K. Now, we have A1 ∩A2 =

[N′ + (N ∩ K′)] ∩ (N ∩ K) = N′ ∩ K + N ∩ K′. By Isomorphism theorem, we have A1 + A2/A1 �

A2/A1 ∩ A2[N′ + N ∩ K]/N′ + (N ∩ K′) � [N ∩ K]/[N ∩ K′ + (N′ ∩ K)]. By the symmetry of the

above expression, it shows that [K′ + (K ∩N)]/[K′ + (K ∩N′)] � [K ∩N]/[N ∩K′ + (N′ ∩K)]. �
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For a given module M, the chain of submodules. length of a chain and its refinement is defined

in a a similar way. By simple module, we mean a module, which has no non-trivial submodules.

A simple module is the module that has no non-trivial submodules.

Schreir Refinement Theorem in terms of KU-module

Theorem 4.3. Any two chains of KU-modules say
N = A0 ⊂ A1 ⊂ ·· ⊂ At = M. and N = A′0 ⊂ A′1 ⊂ ·· ⊂ A′s = M can be easily refined so that the output
chains have the same length and a factor module At+1/At of the first chain is isomorphic to some factor
module M′i+1/M′j of the second chain.

Definition 4.4. Let A be a non-zero KU-module, then a finite descending chain of submodules of A starting
with A and ending with (0) is called a KU-composition series. i.e. M = A0 ⊃ A1 ⊃ ·· ⊃ Am = (0) in such
a way that their successive quotient Ai/Ai+1 are simple for all i, 0 < i < m − 1. Here A is called length of
the series.

Jordan-Holder Theorem in case of KU-module
In a non-zero KU-module any two composition series are equivalent if they have the same length

and same simple quotients up to the order and isomorphisms. Then we have

(i.) m = n and

(ii.) for each i, 0 < i < m− 1, there exists j = j(i) for 0 ≤ j ≤ n− 1 such that Ai/Ai+1 � N j/N j+1.

5. Exact Sequences in KU-Module

Homology of KU-modules through exact sequences is mentioned in this section. Some homo-

logical properties are studied.

Definition 5.1. Let f1 : A1 → A2 and f2 : A2 → A3 be homomorphism of KU-modules. Then A1
f1
−→

A2
f2
−→ A3 is called exact sequence if Im( f1) =Ker f2. It is called semi exact sequence if Im( f1) ⊃ Ker( f2).

We can extend this concept up to An exact KU-modules.

Remark 5.1. (i.) If f1 is one-one at A1 then 0→ A1
f1
−→ A2 is exact sequence.

(ii.) If f1 is onto at A2 then A1
f1
−→ A2 → 0 is exact sequence.

Theorem 5.1. In the homology of a KU-module with an exact sequence A1
f1
−→ A2

f2
−→ A3

f3
−→ A4, then the

below conditions are equivalent:
(i.) f1 is an epimorphism.
(ii.) f2 is the trivial homomorphism.
(iii.) f3 is monomorphism.

Theorem 5.2. Let f1 : A1 → A2 and g : A2 → A3 be two homomorphism of KU-module. Then it is trivial
if and only if Im( f1) ⊆ Ker( f2).

Proof. We first prove direct part.

Let f3 is trivial homomorphism and let A2 be any element in Im( f1). We have that there exists
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an element A1 ∈ A1 such that f1(A1) = A2 and hence f2(A2) = f2( f1(A1)) = f3(A1) = 0. Thus

A2 ∈ Ker(h2). This proves that Im( f1) ⊃ Ker( f2).
Now we consider indirect part.

Consider lm( f1) ⊂ Ker( f2) and let A1 be any element of Al. Then we have f3(A1) = f2( f1(A1)).

Since f1(A1) ∈ Im( f1) ⊃ Ker( f2). Then we have f2( f1(A1)) = 0⇒ that f3(A1) = 0 for all A1 ∈ A1.

This proves that f3 is a trivial homomorphism. �

Lemma 5.1. Considering A1, A2, A3 be KU-modules and let f3 : A1 → A2 be an epimorphism, and
let f2 : A1 → A3 be a homomorphism. If Ker( f3) ⊆ Ker( f2), then there is a unique homomorphism
f1 : A2 → A3 satisfying f1 ∗ f2 = f3.

Proof. Let A2 ∈ A2. Since f3 is an epimorphism hence A1 ∈ A1 and A2 ∈ f3(A1). We have the

following mapping equations:

A1
f3
−→ A2

f1
−→ A3 and A1

f2
−→ A3 . . . (5.1)

A1
f1
−→ A2

f3
−→ A3 and A2

f2
−→ A3 . . . (5.2)

A1
f1
−→ A2

f2
−→ A3 −→ 0 and A2

f3
−→ A4 and A3

f4
−→ A4 . . . (5.3)

A4
f4
−→ A1

f1
−→ A2

f2
−→ A3 and 0 −→ A1 and A4

f2
−→ A1 . . . (5.4)

A1
α
−→ A1

f1
−→ A2

f2
−→ A3 and A1

f1
−→ A2

f2
−→ A3

γ
−→ A3 and A2

β
−→ A2 . . . (5.5)

A1
α
−→ A1

f1
−→ A2

f2
−→ A3 and A1

f1
−→ A2

f2
−→ A3

γ
−→ A3 and A2

β
−→ A′2 . . . (5.6)

Define f1 : A2 → A3 by f1(A2) = f2(A1), where A2 = f3(A1).

Next, f1o f3 = f2. Let f1 : A2 → A3 so that f1 f3 = f ′1 f3. Then, f1 = f ′1 . Hence f1 is unique. �

Proposition 5.1. Let A1, A2.A3 be KU-modules and let f2 : A1 → A3 is a homomorphism and f3 : A2 → A3

is a monomorphism with lm( f2) ⊂ lm( f3). Then there is a homomorphism f1 : A1 → A2 that is unique and
satisfy f2 = f3 ◦ f1 i.e. equation (2) commutes.

Proof. For every A1 ∈ A1, f2(A1) ∈ A3 and hence f2(A1) ∈ Im f2. Since Im( f2) ⊆ Im( f3) and f3 is a

monomorphism, therefore there exists a unique A2 ∈ A2 so that f3(A2) = f2(A1). Therefore, there

is a function f1 : A1 → A2, A1 → A2 so that f2 = f1 ◦ f3. Hence f3 is a unique homomorphism so

that f2 = f1 ◦ f3. �

Theorem 5.3. In a KU-module with f1 and f2 as exact homomorphism with Equation (5.6), and f1o f3 = 0,

we have a unique homomorphism f4 : A3 → A4 so that f2 ◦ f4 = f3.
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Proof. Since f1 ◦ f3 = 0. we get that Ker ( f2) =Im( f1) ⊂ Ker( f3). By using Proposition 5.5, there is

a unique homomorphism f4 : A4 → A1 satisfying k ◦ f1 = f3. �

Theorem 5.4. Considering the Equation 4 of homomorphism of KU-module, f1 and f2 are exact homomor-
phisms and f3 ◦ f2 = 0, then there is a unique homomorphism f4 : A4 → A1 that satisfy f4 ◦ f1 = f3.

Proof. f3 ◦ f2 = 0, so we have lm( f3) ⊂ Ker( f2) =Im f . By Proposition 5.5, there is a unique

homomorphism f4 : A4 → A1 satisfying k ◦ f1 = f3. �

Theorem 5.5. Consider A1, A2, A3 and A′1, A′2, A′3 be KU-modules over X, in Equation (5.6) given homo-
morphism commutes and are exact. Next if α,γ and f ′ are monomorphism, then β is also monomorphism.

Proof. We see that all homomorphisms commutes, hence f ′α = β f and g′β = γg and it is exact.

Thus lm( f ) =Ker(g) and lm( f ′) =Ker(g′).
Further let A2 ∈Ker(β). Since they are commutative, we have γg(A2) = g′β(A2) = 0, g(A2) = 0,

because γ is one to one. Therefore, A2 ⊆Kerg =Im f . �

A1
f1
−→ A2

f2
−→ A3

α3
−→ A′3

β3
−→ A3 and A1

α1
−→ A′1

β1
−→ A1

f1
−→ A2

f2
−→ A3 . . . (5.7)

A2
α2
−→ A′2

β2
−→ A2 and A′1

f ′1
−→ A′2

f ′2
−→ A′3. . . . (5.8)

The exactness of the Equation (5.7) and by the fact that the Equation (5.7) and the Equation (5.8)

commutes, f1 is a monomorphism, all these imply that A2 = 0. This proves that kerβ = {0}.

Theorem 5.6. Let A1, A2, A3 and A′1, A′2, A′3 are KU-modules over X, as shown in the Equation (5.6) where
each part commutes and α, β, γ are isomorphism. If the second part of the Equation (5.6) is exact then the
third part, is also exact.

Proof. Given that each part of the Equation (5.6) are commuting so f ′1α = β f1 and f ′2β = γ f2. As

first two parts are exact, therefore lm f ′1 =ker f ′2 . By using these information and the fact that α, β, γ

are isomorphisms, we can deduce that lm f1 = ker f2. This shows that the last part is also exact. �

Theorem 5.7. Let the Equation (5.7) and (5.8) be equations related to KU-modules and homomorphism
with βiαi = Ii, where I′i s denote associated identity correspondence, from i = 1, 2, 3. If the first part of the

Equation (5.8) is exact, then A1
f1
−→ A2

f2
−→ A3 is also exact.

Proof. Since the Equations (5.7) and (5.8) commutes, hence

f ′1α1 = α2 f1 and f ′2α2 = α3 f2

f1β1 = β2 f ′1 and f2β2 = β3 f ′2
(5.9)

As the middle row A1
f ′1
−→ A2

f ′2
−→ A3 is exact, therefore lm f ′1 = ker f ′2 . In order to prove first

part of the Equation (5.7) and last part of the Equation (5.8) are also exact, we have to show that
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lm( f1) = ker( f2). Let Ai ∈ Ai, and consider α3 f2 f1(A1) = f ′2(α2) f1(A1) = f ′2 f ′1α1(A1) because

α2 f1 = f ′1α1 (by Eq. 5.9). Since Ker f ′2 = lm f1, f ′2 f ′1(α1(A1)) = 0, and hence α3 f2 f1(A1) = 0. This

⇒ that α3 f2 f1 = 0 and hence β3α3 f2 f1 = 0. which shows that f2 f1 = 0(β3α3 = I3). This shows

that lm f1 ⊆ Ker f2. For the converse part, consider x ∈ Ker f2, we get then f2(x) = 0 and hence

α3 f2(x) = 0. As f ′2α2 = α3 f2, therefore, α2(x) ∈ ker f ′2 and hence α2(x) ∈ ker f ′2 = Im f ′1 , therefore

α2(x) ∈ Im f ′1 and hence α2(x) = f ′1(m
′

1) for some m′1 ∈ A′1.

0 −→ A′1
α′
−→ A1

β′
−→ A′′1 −→ 0 and 0 −→ A′2

α
−→ A2

β
−→ A′′2 −→ 0 and 0 −→ A′2

α′
−→ A3

β′′
−−→ A′′3 −→ 0

. . . (5.10)

and

0 −→ A′1
f’
−→ A′2

g’
−→ A′3 −→ 0 and 0 −→ A1

f
−→ A2

g
−→ A3 −→ 0 and 0 −→ A′′1

f”
−→ A′′2

g”
−→ A′′3 −→ 0

. . . (5.11)

β2α2(x) = β2 f ′(m′1). As β2α2 = I2. therefore x = β2 f ′(m′1) = f (β1(m′1)) by Eq. 5.9.

This shows that x ∈ lm f Therefore Kerg ⊆ lm f that⇒ Kerg = lm f and hence required sequence is

exact. �

Theorem 5.8. Let A1, A′1, A′′1 , A2, A′2, A′′2 , A3, A′3, A′′3 be KU-modules over X as in the Equation (5.10)
and (5.11). If all three parts of the Equation (5.11) are exact, and if all parts of the Equation (5.10) are
exact, then there exists unique homomorphism α′′ : A′3 → A3 and β′′ : A3 → A′′3 such that the sequence

0 −→ A′3
α′′
−−→ A3

β′′
−−→ A′′3 −→ 0 is semi-exact and the complete diagram commutes.

Proof. Since all parts of the Equation (5.11) are exact, we have lm( f ′1) = ker( f ′2), lm( f1) = ker f2,

lm( f ′′1 ) = ker( f ′′2 ) (2) Also all parts of the Equation (5.10) are exact, we have lmα′ = kerβ′ and

lmα = kerβ (3) Since both Equations commutes, we have α f ′1 = f1α′, f1β = f ′′1 β
′ (4) We intend

to show that lm(α′′) ⊂ ker(β′′). Observe that in this diagram α′,α and f ′1 , f1, f ′′1 are one to one.

Similarly f ′2 , f2, f2” and β′, β are onto. Now we have f2α f ′1 = f2 f1α′ = 0 α′ = 0(lm f = ker f2).
First we prove the existence of α′′ and β′′. Define a mapping α′′ : A′3 → A3 by α′′(m′3) = A3

where f2α(m′2) = A3 and f ′2(m
′

2) = (m′3) ( f ′2 is an epimorphism). Then α′′ is well-defined and

indeed homomorphism. Moreover, f2α(m′2) = α′′ f ′2(m
′

2) and hence f2α = α′′ f ′2 . Now we prove

the uniqueness of α′′.

Since α′′ f ′2 = f2α, suppose there exists another homomorphism such that α0 : A′3 → A3 such that

f2α = α0 f ′2 . We will show that α0 = α′′.

Let m′3 ∈ A3. Then as f ′2 is onto, we have m′3 = f ′2(m
′

2) for some m′2 ∈ A2. Thus, αo(m′3) = αo f ′2(m
′

2).

Similarly α′′(m′3) = α′′ f ′2(m
′

2). Since f2α = αo f ′2 , f2α = α′′ f ′2 and f2α(m′2) = α′′ f ′2(m
′

2) f2α(m′2) =
α0 f ′2(m

′

2)which⇒ thatα0(m′3) = α′′(m′3) for all m′3 ∈ A3. Thusα0 = α′′. This proves the uniqueness

of α′′.

Define β′′ : A3 → A′′3 by β′′(A3) = m′′3 , where f ′′2 β(A2) = m′′3 and f2(A2) = A3. Then β′′ is well-

defined and indeed homomorphism. Moreover, f ′′2 β(A2) = β′′ f2(A2) (by(3)) therefore, f ′′2 β = β′′ f2.

The uniqueness of β′′ can be established on the lines similar to α′′.

Now for semi-exactness, let m′3 ∈ ker(α′′), since f ′2 is surjective, we see that there exists m′2 ∈M′2 such
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that f ′2(m
′

2) = m′3. Thus, by definition of α′, 0 = α′′(m′3) = α′′ f ′2(m
′

2) = f2α(m′2). This shows that

α(m′2) ∈ ker( f2) = lm( f1) (by the sequence). Therefore α(m′2) = f1(A1) for some A1 ∈ A1. By the

exactness of middle row βα(m′2) = 0. Since 0 = βα(m′2) = β f (A1) = f ′′1 β
′(A1) (by (3)). Therefore,

β′(A1) ∈ ker( f ′′1 ) = {0} and hence A1 ∈ ker(β′) = lm(α′) (by the exactness of the sequence) which

⇒ that A1 = α′(m′1) for some m′1 ∈ A′1. Therefore, we have α(m′2) = f1(A1) = f1α′(m′1) = α f ′1(m
′

1).

Since α is a monomorphism, m′2 = f ′1(m
′

1), it follows that m′3 = f ′2(m
′

2) = f ′2 f ′1(m
′

1) = 0 (lm f ′ =
ker f ′2) and so ker(α′′) = {0} i.e. α′′ is monomorphism.

Next, since β′′ f2 = f ′′2 β and since f ′′2 , β are each surjective, so β′′ f2 is surjective, which indeed⇒

that β′′ is surjective. Finally, we have β′′α′′ f ′2 = f ′′2 βα = f ′′2 0 = 0(kerβ = lma). Since f ′2 is surjective,

then indeed f ′2(A
′

2) = A′3 and β′′α′′ f ′2(A
′

2) = β′′α′′(A′3) = 0. This mean that β′′α′′ is zero mapping,

therefore β′′α′′ = 0. This shows that lm(α′′) ⊆ ker(β′′). �

6. Projective and Injective KU-Modules

In this section, we discuss Projective KU-modules and Injective KU-modules. We find that these

modules are dual to each other.

Definition 6.1. A KU-module Q is called projective if for given any Equations (6.1) to (6.8) in which the
first part of the Equation is exact, there exists an X-homomorphism f3 : Q→ M1 such that f3g1 = f1 i.e.,
the Equations commutes.

The following proposition follows from the above definition.

Proposition 6.1. Consider the Equation (6.2) has M1, M2, M3 KU-modules and Q is projective, M1
g1
−→

M2
g2
−→M3 is exact and g2 f1 = 0. Then there exists a KU-homomorphism f3 : Q→M1 such that f3g1 = f1.

Corollary 6.1. Let the Equation (6.3) shows commutativity in which M1, M2, M3 and Q, R, S are KU-
modules and Q is projective, f6 f5 = 0 and M1

g1
−→ M2

g2
−→ M3 is exact. Consequently, there exists an

KU-homomorphism f3 : Q→M1 for which the Equations commutes.

Proof. Since the Equation commutes, g2h1 = h2 f2. Now consider the Equation (6.4). From the

Equation, we have g2h1 f5 = (h2 f6) f5 = h2( f6 f5) = 0 ( f6 f5 = 0).

Q
f1
−→M1

g1
−→M2

g2
−→ 0 and Q

f1
−→M2. . . . (6.1)

Q
f3
−→M1

g1
−→M2

g2
−→M3 and Q

f1
−→M2. . . . (6.2)

Q
f3
−→M1

g1
−→M2

g2
−→M3 and Q

f1
−→ R

f2
−→ S

h2
−→M3and T

h1
−→M2 . . . (6.3)

Q
f3
−→M1

g1
−→M2

g2
−→M3 and Q

h1 f1
−−−→M2. . . . (6.4)

0 −→M1
f1
−→M2

f3
−→ Q and M1

f2
−→ Q.

γ
−→ A3 and A2

β
−→ A2. . . . (6.5)
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M1
f1
−→M2

g1
−→M3

f3
−→ Q and M2

g2
−→ Q. . . . (6.6)

M1
f1
−→M2

f2
−→M3

f3
−→ Q and M1

h1
−→ L

g1
−→M

g2
−→ Qand M2

h2
−→M. . . . (6.7)

M1
f1
−→M2

f2
−→M3

f3
−→ R and M2

g2h2
−−−→ R. . . . (6.8)

Therefore g2h1 f1 = 0. Since Q is projective and g2h1 f1 = 0, therefore by proposition 4.2, there

exists a homomorphism f3 : Q → M1 such that f3g1 = h1 f1. Consequently, all the squares are

commutative. �

Definition 6.2. A KU-module R is said to be injective if for an Equation say (6.5) with 0
f1
−→M1 −→M3 is

an exact sequence there exists homomorphism f3 : M2 → R such that f1 f3 = f2.

By using the injectivity and certain natural homomorphism, we establish the following proposition.

Proposition 6.2. Consider Equation (6.6) in which M1, M2, M3 are KU-modules and R is injective module,

M1
f1
−→ M2

g1
−→ M3 is exact and g2 f1 = 0. Then there exists a homomorphism f3 : M3 → R such that

g1 f3 = g2.

Corollary 6.2. Consider the Equation (6.7) is commutative where R is an injective module, g2g1 = 0 and

M1
f1
−→ M2

f2
−→ M3 is an exact sequence. Then there exists a KU-homomorphism f3 : M3 → R for which

the diagram, commutes.

Proof. Since the Equation commutes, hence g1h1 = h2 f1. Now consider the Equation (6.8). By

this equation, we get that g2h2 f1 = g2(h2 f1) = g2(g1h1) = (g2g1)h1. Since g2g1 = 0 therefore

g2h2 f1 = 0. Also R is injective and g2h2 f1 = 0, therefore by proposition 4.5, therefore there exists

a homomorphism f3 : M3 → R such that f3 f2 = g2h2. Consequently, all parts of the Equations are

commutative. �

As an open Problem with this study we can say Theorem 4.1 provides a minor relationship of

ideal theory of KU algebra and its Modules. It can be consider as ideal-theory of KU-algebras

and its module theory. In special case we can say bounded implicative KU-algebras. It would

be interesting to check and provide some general relationship between ideal theory and module

theory of KU-algebras or other newly defined logical algebras.

7. Conclusion

In this article a discussion based on the Chains of KU-modules of KU-algebras are given.

Basic isomorphism theorems for KU-modules, projective and injective modules are provided

and explored with some of theirs applications. Schreir Refinement Theorem and Jordan-Holder

Theorem in terms of KU-module is also studied. Additionally, it defines and examines exact

sequences of KU-modules. Various properties of chains of KU-modules are established and the
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butterfly lemma in the context of KU-modules are given. As a future scope on this article, some

further classical properties can be extended for a KU-module with chain conditions.
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