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Abstract. In the present work, a new improved Voronoi algorithm is proposed for calculating the Voronoi neighborhood

of a perfect form in many variables, and using this algorithm, all non-equivalent adjacent perfect forms in five variables

are calculated.

Introduction

Let A =
∥∥∥aµν

∥∥∥ be a real square matrix of order n, i.e. µ = 1, 2, ..., n; ν = 1, 2, ..., n and det A > 0.

In the space Rn we consider a set of points

Λ
(
A|x(0)

)
=

{
x : x = Aβ+ x(0)

}
, (0.1)

where x(0) is any fixed vector, and β runs through the set Bn of integer valued n- dimensional

column-vectors. A set Λ
(
A|x(0)

)
is called n- dimensional lattice in Rn.

Studying vectors x = (x1, x2, ..., xn)
∗
∈ Λ of the lattice, it is usually more convenient to work not

with the length, but with the square of the length or the norm of vectors.

The norm of vector is denoted as

N (x) = x · x = (x, x) =
n∑

i=1

x2
i
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Suppose Λ is a lattice in n-dimensional space Rn having a basis a1, ..., an (vectors a1, ..., an are

columns a1 = (a11, a21, ..., an1)
∗ , a2 = (a12, a22, ..., an2)

∗ , ..., an = (a1n, a2n, ..., ann)
∗ generating the

matrix A).

General lattice vector x = (x1, x2, ..., xn)
∗
∈ Λ can be written as

x = Aβ =


a11β1 + a12β2 + ... + a1nβn

a21β1 + a22β2 + ... + a2nβn

.......................................

an1β1 + an2β2 + ... + annβn

 .

On the other side using denotations of the work [10] general vector x can be written in the form

x = a1β1 + a2β2 + ... + anβn.

The norm of this vector is

N (x) = N (a1β1 + a2β2 + ... + anβn)

=
n∑

j=1

n∑
i=1

β jβi

(
a j, ai

)
= β∗A∗Aβ = β∗Bβ = r2

A (β) ,

where B = A∗A is the Gramm matrix of the lattice Λ.

The function r2
A (β) considered as a function of n integer valued vectors β1, β2, ..., βn is a quadratic

form associated with the lattice. Thus, the study of lattices is equivalent to the study of quadratic

forms in n integer-valued arguments.

The arithmetic properties of such forms have been the subject of numerous studies. The quan-

tities that will be of interest to us include various lattice functionals that are invariant under

orthogonal space transformations. Furthermore, functionals are obviously functions of the qua-

dratic form r2
A (β).

The matrix A we present in the form A = hH, where hn = det A; det H = 1. Then r2
A (β) =

h2r2
H (β). Therefore, it is sufficient to study the function rH (β) of a matrix H with unit determinant.

The theory of cubature formulas is related to the problem of finding the minimum of the Epstein

zeta function

ζ (H/2m) =
∑
β,0

1
r2m

H (β)
(0.2)

as a function of the matrix Hfor a given integer m > n
2 . For large m in series (0.2) all terms, except

for those, where rH (β) has smallest value, become negligible. In this case, the problem of finding

the smallest value of ζ (H/2m) approximately reduces to finding such matrices H for which the

quantity 1
min
β,0

rH(β)
is minimal, i.e. the quantity max

H
min
β,0

rA (β) is attained, which is we denote as

r0. The Lattices H for which this maximum is reached are called lattices on the densest packing of

balls in Rn. Densest packings, as we have already mentioned, can be obtained in a regular way,

because of a finite number of actions. The algorithm for finding them was given by Voronoi. It

is known [17] that for the matrix H, realizing the minimum of the function ζ (H/2m), the matrix

H−1∗ gives optimal lattice of cubature formulas.
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The classical Voronoi problem of finding perfect forms, closely related to Hermite’s well-known

problem of finding the arithmetic minimum of positive quadratic forms, are interesting and non-

trivial problems in geometric number theory that have been studied by many mathematicians.

They also appeared in the works of S.L. Sobolev in connection with the construction of lattice

optimal cubature formulas [17].

The present work is devoted to the development of an algorithm and finding all adjacent perfect

forms in five variables.

The technique presented in the work allows us to study the classical Voronoi problems, its results

and calculation methods can be used to further search for new perfect forms in many variables.

Perfect forms are calculated in the works of [1–9]

In recent years, several papers on the theory of perfect forms have been published. Let us note

the works [10–16], in which problems of the theory of perfect forms were considered.

Many mathematicians have studied the construction of lattice optimal cubature and quadrature

formulas [18–28].

Let a positive-definite quadratic form

f ≡ f (x) ≡ f (x1, ..., xn) =
∑

1≤ i, j ≤n

ai j xi x j (0.3)

in n variables x1, ..., xn with real coefficients ai j = ai jand with determinant det f = det (ai j) > 0 be

given and m = m( f ) which is the arithmetic minimum of the form f is attained at 2s integer points

± mk = ± (m1k, ...,mnk) , k = 1, ..., s, , (0.4)

called representations of the minimum m of the form f . We sometimes call points (0.4) the minimal

vectors of the form f , and the matrix

M( f ) =


m11 m21 . . .mn1

m12 m22 . . .mn2

. . . . . . . . . . . .

m1s m2s . . .mns


minimal matrix of the form f .

A positive-definite quadratic form is called a perfect form f (see [1]) if it is completely given by

the value of its arithmetic minimum and its minimum representations (0.4), i.e. if the system of

equations ∑
ai jmikm jk = m k = 1, ..., s

has a unique solution with respect to unknowns ai j.

Two positive-definite quadratic forms f1 (x) and f2 (y) are called integrally equivalent (equiv-

alent f1 � f2 ) if there exists an integer unimodular substitution xi =
∑n

i=1 ui jyi (x = Uy) ,

of variables that transforms the form f1 (x) into f2 (x) , i.e. f1 (Uy) = f2 (y) , or the same that

f1U = f2.
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In the case f1 = f2 = f the substitution U is called automorphism of the form f , i.e. fU = f.
It is known [1] that the number of nonequivalent perfect forms in n variables for a given n is

finite. This implies the problem: for a given n, find all non-equivalent perfect forms. Perfect forms

in n ≤ 5 variables are known from the classical work of Voronoi [1]. Perfect forms in six variables

were found by Barnes [2].

1. Voronoi’s algorithm

According to Voronoi’s theory [1], each perfect form of the form (0.3) is placed in the cor-

responding area - a dimensional infinite pyramid with a finite number of (N − 1)− dimensional

faces and with a vertex at the beginning coordinates (perfect gonohedron [4–6]) is the set of all

non-negative quadratic forms represented as∑
1≤i, j≤n

ai jxix j =
∑

1≤k≤s

ρkλ
2
k (x1, ..., xn) , (1.1)

where K̄N
− is the closure of the cone KN, ρk ≥ 0,

λk = λk(x) = λk (x1, ..., xn) = m1kx1 + ... + mnkxn, k = 1, ..., s.

In the space EN the domain VN ( f ) is a set of solutions to some system of homogeneous inequal-

ities with unknowns ai j:

Ψk

(
ai j

)
=

∑
1≤i, j≤n

P(k)
i j ai j ≥ 0, k = 1, ..., σ. (1.2)

Then, according to the Voronoi algorithm [5], the perfect forms fk adjacent to the perfect form f
are constructed as follows:

fk(x) = f (x) + rkΨk(x), k = 1, ..., σ., (1.3)

where

rk = min
{x∈Zn/{0}:Ψk(x)<0}

{
f (x) −m
[−Ψk(x)]

}
, (1.4)

Ψk(x) = Ψk (x1, ..., xn) =
∑

1≤i, j≤n

P(k)
i j xix j. (1.5)

Selecting from the set
{
f , f1, ..., fσ

}
those that are not equivalent with respect to the group

G (n; Z)G (n; Z) (the group of integer unimodular permutations of the variables x1, ..., xn), we

obtain a Voronoi neighborhood
{
f , f1, ..., fτ

}
(see [1,2]) of a perfect form f with respect to the group

G (n; Z) or simply a Voronoi neighborhood, which is denoted by VN ( f ; G (n; Z) ) or VN ( f ).
The main difficulties in implementing the Voronoi algorithm are as follows: finding equations

for all (N − 1)-dimensional faces of the domain VN ( f ); selection among all (N − 1)-dimensional

faces non-equivalent with respect to the group G ( f ) of integral automorphisms of the perfect form

f ; finding a number rk and calculating VN ( f ).
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2. Additional algorithms

In this subsection, the goal is to bring together all the available additional algorithms (see

below) of Lemmas 2 and 3 and trace how they work together with the Voronoi algorithm - this is

the improved Voronoi algorithm.

Let Ψ = Ψ
(
ai j

)
=

∑
1≤i, j≤n Pi jai j = 0 be an equation of (N − 1)-dimensional face Ψof the domain

VN ( f ), corresponding to the perfect form f of the form (0.1), and let λ2
1, ...,λ2

t be form-points lying

on the face Ψ; λ2
t+1, ...,λ2

s be form-points lying outside the face Ψ.

Lemma 2.1. The set of forms λ2
1, ...,λ2

t is the set of all form-points lying on the face Ψ if and only if
a) the system of equations

Ψ (mk) =
∑

1≤i, j≤n

Pi jmikm jk = 0 (k = 1, ..., t),

has a rank N − 1;
b) the solution

{
Pi j

}
satisfies the inequality up to a sign

Ψ (mk) =
∑

1≤i, j≤n

Pi jmikm jk > 0 (k = t + 1, ..., s).

Then
Ψ

(
λ2

k

)
= 0 (k = 1, ..., t),

Ψ
(
λ2

k

)
> 0 (k = t + 1, ..., s

 . (2.1)

From (2.1) we have

Ψ (mk) =
∑

1≤i, j≤n

Pi jmikm jk = 0 (k = 1, ..., t), (2.2)

Ψ (mk) =
∑

1≤i, j≤n

Pi jmikm jk > 0 (k = t + 1, ..., s). (2.3)

From equality (1.1), equating the coefficients at the same powers of xix j, we obtain the following

system of equations with unknowns ρ1, ...,

ρs: ∑
1≤k≤s

ρkmikm jk = ai j, i, j = 1, ..., n. (2.4)

In the case s = N the system has a unique solution

ρk = Ψk

(
ai j

)
=

∑
1≤i, j≤n

P(k)
i j ai j ≥ 0 (k = 1, ..., N). (2.5)

N equalities in (2.5) completely determine all (N − 1) -dimensional faces of the domain VN ( f )..
In the case s > N, an arbitrary solution ρk (k = 1, ..., s) to system (2.4) depends on ν = s −N

parameters u1, ..., uν and has the form

ρk = Lk

(
ai j

)
+ Mk(u), (2.6)

where Lk, Mk are linear forms and u = (u1, ..., uν).
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Lemma 2.2. Form-points λ2
t+1, ...,λ2

s do not lie on a face if and only if
a) there is a unique linear relation ∑

t+1≤k≤s

αkMk(u) = 0,

b) all coefficients αk (k = t + 1, ..., s) of this relation are positive.

Lemma 2.3. Let {λ} =
{
λ2

t+1, ...,λ2
s

}
and {λ′} =

{
λ2

t′+1, ...,λ2
s′
}

be sets of form points lying outside of N − 1

dimensional faces Ψ and Ψ′ of the domain VN ( f ), respectively, then {λ} cannot be equivalent to its own
subset {λ′}, in particular, {λ} 1 {λ′}.

Equations of the face Ψ are

Ψ
(
ai j

)
=

∑
t+1≤k≤s

αkLk

(
ai j

)
= 0.

It follows from lemma 2 that set of form-points
{
λ2

k(x)
}

(k = t+ 1, ..., s), lying outside the face

Ψ, or, the same, corresponding set of representations {mk} (k = t + 1, ..., s) of the minimum m of

the form f completely defines the face Ψ of the domain VN ( f ). Such set we briefly call "face".

The goal of the present work is to get all nonequivalent perfect forms of five variables by the

improved Voronoi algorithm developed in works [7–9]. Exactly this algorithm is optimal than

known methods [1–4] in calculations of perfect forms. The application of the improved Voronoi

algorithm leads to the goal faster than the Voronoi algorithm itself, since here the amount of

calculations is sharply reduced.

3. Necessary lemmas for the proof of the theorem

Evidence of the perfect form ϕ5
1. The arithmetic minimum of the perfect form ϕ5

1 is equal to 1.

The representations of the minimum are as follows:

1) (1, 0, 0, 0, 0) , 2) (0, 0, 1, 0, 0) , 3) (0, 0, 0, 1, 0) , 4) (0, 0, 0, 0, 1) ,

5) (0, 1,−1, 0, 0) , 6) (0, 1, 0,−1, 0) , 7) (0, 1, 0, 0,−1) ,

8) (1, 1,−1,−1, 0) , 9) (1, 1,−1, 0,−1) , 10) (1, 1, 0,−1,−1) ,

11) (0, 1, 0, 0, 0) , 12) (1, 1,−1, 0, 0) , 13) (1, 1, 0,−1, 0) ,

14) (1, 1, 0, 0,−1) , 15) (1, 0,−1, 0, 0) , 16) (1, 0, 0,−1, 0) ,

17) (1, 0, 0, 0,−1) , 18) (0, 0, 1,−1, 0) , 19) (0, 0, 1, 0,−1) ,

20) (0, 0, 0, 1,−1)

(3.1)

The set of points (3.1) are representations of the arithmetic minimum of the perfect form ϕ5
1.

Voronoi’s domain VN15
(
ϕ5

1

)
of the perfect form ϕ5

1 (x) consists of a set of quadratic forms

representable in the form:
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∑
1≤i, j≤5 ai jxix j = ρ1x2

1 + ρ2x2
3 + ρ3x2

4 + ρ4x2
5 + ρ5 (x2 − x3)

2

+ρ6 (x2 − x4)
2 + ρ7 (x2 − x5)

2 + ρ8 (x1 + x2 − x3 − x4)
2

+ρ9 (x1 + x2 − x3 − x5)
2 + ρ10 (x1 + x2 − x4 − x5)

2 + ρ11x2
2

+ρ12 (x1 + x2 − x3)
2 + ρ13 (x1 + x2 − x4)

2 + ρ14 (x1 + x2 − x5)
2

+ρ15 (x1 − x3)
2 + ρ16 (x1 − x4)

2 + ρ17 (x1 − x5)
2

+ρ18 (x3 − x4)
2 + ρ19 (x3 − x5)

2 + ρ20 (x4 − x5)
2 .

(3.2)

Hence the proof of the theorem is based on the following lemmas.

Lemma 3.1. Linear forms Mk = Mk (u1, ..., u5) from equality (2.6), corresponding perfect form ϕ5
1, have

the form:
1) Mk = u1 for mk ∈ {10, 12} ; 2) Mk = u2 for mk ∈ {9, 19} ; 3) Mk = u3 for mk ∈ {8, 18} ; 4) Mk = u4

for mk ∈ {7, 17} ; 5) Mk = u5 for mk ∈ {6, 16} ; 6) Mk = −u1 − u2 − u3 − u4 − u5 for mk ∈ {5, 15} ;

7) Mk = u1 + u2 + u3 for mk ∈ {1, 11} ; 8) Mk = u1 + u4 + u5 for mk ∈ {2, 12} ; 9) Mk = −u1 − u2 − u4

for mk ∈ {4, 14} ; 10) Mk = −u1 − u3 − u5 for mk ∈ {3, 13} .

Proof. From equality (3.2) equating coefficients of the same telms xix j in both sides we get the

following system with unknowns ρ1, ...,ρ20:

{1} : a11 = ρ1 + ρ8 + ρ9 + ρ10 + ρ12 + ρ13 + ρ14 + ρ15 + ρ16 + ρ17,

{2} : a22 = ρ5 + ρ6 + ρ7 + ρ8 + ρ9 + ρ10 + ρ11 + ρ12 + ρ13 + ρ14,

{3} : a33 = ρ2 + ρ5 + ρ8 + ρ9 + ρ12 + ρ15 + ρ18 + ρ19,

{4} : a44 = ρ3 + ρ6 + ρ8 + ρ10 + ρ13 + ρ16 + ρ18 + ρ20,

{5} : a55 = ρ4 + ρ7 + ρ9 + ρ10 + ρ14 + ρ17 + ρ19 + ρ20,

{6} : a12 = ρ8 + ρ9 + ρ10 + ρ12 + ρ13 + ρ14,

{7} : a13 = −ρ8 − ρ9 − ρ12 − ρ15, (3.3)

{8} : a13 = −ρ8 − ρ10 − ρ13 − ρ16,

{9} : a15 = −ρ9 − ρ10 − ρ14 − ρ17,

{10} : a23 = −ρ5 − ρ8 − ρ9 − ρ12,

{11} : a24 = −ρ6 − ρ8 − ρ10 − ρ13,

{12} : a25 = −ρ7 − ρ9 − ρ10 − ρ14,

{13} : a34 = ρ8 − ρ18,

{14} : a35 = ρ9 − ρ19,

{15} : a45 = ρ10 − ρ20,

System (3.3) is overdetermined: the number of equations is N = 15, the number of unknowns is

s = 20. This belongs to the case s > N and any solution ρk of system (3.1) depends on 5 parameters

u1, u2, u3, u4, u5. We calculate arbitrary solution of system (3.3).
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Let ρ10 = u1, then form {15} : ρ20 = −a45 + u1. Let ρ9 = u2, then from {14} : ρ19 = −a35 + u2.

Assume ρ8 = u3, then from {13} : ρ18 = −a34 + u3. Let ρ7 = u4, then from {12} : ρ14 = −a25 − u1 −

u2 − u4. Assume ρ6 = u5, then from {11} : ρ14 = −a25 − u1 − u2 − u4.

Let ρ10 = u1, then from {15} : ρ20 = −a45 + u1. Let ρ9 = u2, then from {14} : ρ19 = −a35 + u2.

Assume ρ8 = u3, the from {13} : ρ18 = −a34 + u3. Let ρ7 = u4, then from {12} : ρ14 = −a25 − u1 −

u2 − u4. Let ρ6 = u5, then from {11} : ρ13 = −a24 − u1 − u3 − u5. From {9} : ρ17 = −a15 + a25 + u4;

{8} : ρ16 = −a14 + a24 + u5; {6} : ρ12 = a12 + a25 + u1 + u4 + u5;{7} : ρ15 = −a12 − a13 − a24 − a25 −

u1 − u2 − u3 − u4 − u5;{10} : ρ5 = −a12 − a13 − a23 − a25 − u1 − u2 − u3 − u4 − u5;{7} , {8} , {9} : {16} ·

a13 + a14 + a15 = −2 (ρ8 + ρ9 + ρ10) − ρ12 − ρ13 − ρ14 − ρ15 − ρ16 − ρ17.Now from {2} and {17} : ρ1 =

a11 + a13 + a14 + a15 + u1 + u2 + u3. From {10} , {11} , {12} : {10} , {11} , {12} : {17} · a23 + a24 + a25+ =

−2 (ρ8 + ρ9 + ρ10) − ρ5 − ρ6 − ρ7 − ρ12 − ρ13 − ρ14.hence ρ11 = a22 + a23 + a24 + a25 + u1 + u2 + u3.

From {3} , {7} : a33 + a13 = ρ2 +ρ5−ρ18−ρ19, henceρ2 = a33 + a12 + a13 + a23 + a24 + a25 + a34 + a35 +

u1 + u4 + u5. From {4} , {8} : a44 + a14 = ρ3 + ρ8 + ρ18 + ρ20, hence ρ3 = a44 + a14 + a34 + a45 − u1 −

u3 −u5. From {5} , {9} : a55 + a15 = ρ4 + ρ7 + ρ19 + ρ20, hence ρ4 = a55 + a15 + a35 + a45 −u1 −u2 −u4.

Thus, in the case n = 5and f = ϕ5
1 equality (2.6) takes the form:

ρ1 = a11 + a13 + a14 + a15 + u1 + u2 + u3

ρ2 = a33 + a12 + a13 + a23 + a24 + a25 + a34 + a35 + u1 + u4 + u5

ρ3 = a44 + a14 + a34 + a45 − u1 − u3 − u5

ρ4 = a55 + a15 + a35 + a45 − u1 − u2 − u4.

ρ5 = −a12 − a23 − a24 − a25 − u1 − u2 − u3 − u4 − u5

ρ6 = u5

ρ7 = u4

ρ8 = u3

ρ9 = u2

ρ10 = u1 (3.4)

ρ11 = a22 + a23 + a24 + a25 + u1 + u2 + u3

ρ12 = a22 + a24 + a25 + u1 + u4 + u5

ρ13 = −a24 − u1 − u3 − u5

ρ14 = −a25 − u1 − u2 − u4

ρ15 = −a12 − a13 − a24 − a25 − u1 − u2 − u3 − u4 − u5

ρ16 = −a14 + a24 + u5

ρ17 = −a15 + a25 + u4

ρ18 = −a34 + u3

ρ19 = −a35 + u2
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ρ20 = −a45 + u1.

From (3.4) we have:

u1 : {10, 20} , −u1 − u2 − u3 − u4 − u5 : {5, 15} ,

u2 : {9, 19} , u1 + u2 + u3 : {1, 11} ,

u3 : {8, 18} , u1 + u4 + u5 : {2, 12} , (3.5)

u4 : {7, 17} , −u1 − u2 − u4 : {4, 14} ,

u5 : {6, 16} , −u1 − u3 − u5 : {3, 13} .

Lemma 4 is completely proved. �

According to lemma 1 on 14-dimensional face Ψ of the domain V15 (ϕ5
1) lie at least 14 forms of

the form λ2
k . Since the number of representations of the minimum of the form ϕ5

1 is equal to 20,

then the number of forms λ2
k ,lying outer of the face Ψ at least 1 and no more than 6. Therefore,

all possible linear nontrivial relations, satisfying the condition of lemma 2, in principle, can be

obtained from elements of the set

A = {u1, u2, u3, u4, u5, u1 + u2 + u3, u1 + u4 + u5,

−u1 − u2 − u4,−u1 − u3 − u5,−u1 − u2 − u3 − u4 − u5}

(see lemma 4) as a combination of k (k = 2, 3, 4, 5, 6) , i.e. Ck
10(k = 2, 3, 4, 5, 6). Further, will be

shown how this enumeration can be reduced.

Lemma 3.2. 14-dimensional "faces" of the domain V15
(
ϕ5

1

)
,outside of which lie one point from M

(
ϕ5

1

)
(see (15)) are absent. Such faces really no, since all ρi from (3.5) depend on parameters u j.

Lemma 3.3. 14-dimensional "faces" of the domain V15
(
ϕ5

1

)
, outside of which lie two points from M

(
ϕ5

1

)
are absent.

Proof. The set A of linear forms Mk (u) from lemma 4 we split into subsets

A = {u1, u2, u3, u4, u5, u1 + u2 + u3, u1 + u4 + u5}

A = {−u1 − u2 − u4, −u1 − u3 − u5, −u1 − u2−}

It is easy to see that elements of Ai (i = 1, 2) do not combine in pairs, i.e. α(i)1 u(i)
1 + α(i)2 u(i)

2 , 0 for

u(i)
1 u(i)

2 ∈ Ai, α
(i)
1 > 0. α(i)2 > 0. Thus, there are not linear relations satisfying conditions of lemma

2. �

Lemma 3.4. 14-dimensional "faces" of the domain V15
(
ϕ5

1

)
, outside of which lie three points from M

(
ϕ5

1

)
,

are absent.

Lemma 3.5. 14-dimensional "faces" of the domain V15
(
ϕ5

1

)
, outside of which lie five points from M

(
ϕ5

1

)
,

are absent.

Lemmas 7 and 8 are proved similarly as Lemma 6.
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Lemma 3.6. 14-dimensional "faces" of the domain V15
(
ϕ5

1

)
, which are nonequiva-

lent with respect to Aut
(
ϕ5

1

)
, outside of which lie four points from M

(
ϕ5

1

)
, only

three:(4, 20, 19, 17) , (4, 20, 19, 7) , (4, 10, 9, 7) .

Proof. All possible combinations of four elements from the set A satisfying the condition of Lemma

2 are the following

{2} (−u1 − u2 − u4, u1, u2, u4)

{3} (−u1 − u3 − u5, u1, u3, u5)

{4} (u1 + u2 + u3, u1 + u4 + u5, −u1 − u2 − u4, −u1 − u3 − u5)

{5} (−u1 − u2 − u3 − u5, u1 + u2 + u3, u4, u5)

{6} (−u1 − u2 − u3 − u4 − u5, u1 + u4 + u5, u2, u3)

There is no other fours from A, satisfying the condition of Lemma 2. In the case {2}, in view of

Lemma 4, taking the corresponding sets of points from (2.6), (3.5), firstly we get 16 faces:

{2}: I II III IV

(4,20,19,17) (4,10,19,17) (14,20,19,17) (14,10,19,17)

(4,20,19,7) (4,10,19,7) (14,20,19,7) (14,10,19,7)

(4,20,9,17) (4,10,9,17) (14,20,9,17) (14,10,9,17)

(4,20,9,7) (4,10,9,7) (14,20,9,7) (14,10,9,7)
Similarly, as in {2} we have
{3}: (3,20,18,16) (3,10,18,16) (13,20,18,16) (13,10,18,16)

(3,20,18,6) (3,10,18,6) (13,20,18,6) (13,10,18,6)

(3,20,8,16) (3,10,8,16) (13,20,8,16) (13,10,8,16)

(3,20,8,6) (3,10,8,6) (13,20,8,6) (13,10,8,6)

{4}: V VI VII VIII

(1,2,3,4) (1,12,3,4) (11,2,3,4) (11,12,3,4)

(1,2,3,14) (1,12,3,14) (11,2,3,14) (11,12,3,14)

(1,2,13,4) (1,12,3,4) (11,2,13,4) (11,12,13,4)

(1,2,13,14) (1,12,13,14) (11,2,13,14) (11,12,13,14)

{5}: (5,1,7,6) (5,11,7,6) (15,1,7,6) (15,11,7,6)

(5,1,7,16) (5,11,7,16) (15,1,7,16) (15,11,7,16)

(5,1,17,6) (5,11,17,6) (15,1,17,6) (15, 11,17,6)

(5,1,17,16) (5,11,17,16) (15,1,17,16) (15, 11,17,16)

{6}: (5,2,9,8) (5,12,9 8) (15,2,9,8) (15,12,9,8)

(5,2,9,18) (5,12,9,18) (15,2,9,18) (15,12, 9,18)

(5,2,19,8) (5,12,19,8) (15,2,19 8) (15,12,19,8)

(5,2,19,18) (5,12,19,18) (15,2,19,18) (15,12,19,18)
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Now we apply Aut
(
ϕ5

1

)
to {{2},{3},{4},{5},{6}} with respect to y4 → y5, y5 → y4 : 4 → 3, 20 →

20, 19→ 18, 17→ 16, 9→ 8, 7→ 6, 10→ 10, 13→ 14. Therefore, in total {{2}} ∼ {{3}} . with respect

to y1 → y2, y2 → y1 : : 1, 2 → 5, 3 → 6, 4 → 7, 11 → 11, 12 → 15, 13 → 16, 14 → 17. Thus, in total

{{4}} ∼ {{5}} . With respect to y2 → y3, y3 → y2 : 5 → 5, 1 → 2, 6 → → 8, 7 → 9, 16 → 18, 17 →

19, 15 → 15, 11 → 12. Then, in total {{5}} ∼ {{6}} . Therefore, it suffices to consider {2} and {4} with

respect to yi → yi (i = 1, 2, 3, 4) , y5 → −y5 : 4→ 14, 20→ 10, 19→→ 9, 17→ 7. Therefore, in total

{I} ∼ {IV} , {II} ∼ {III} . with respect to yi → yi (i = 1, 3, 4, 5) , y2 → −y2 : 1→ 11, 2→ 2, 3→ 3, 4→

4, 12 →→ 12, 13 → 13, 14 → 14. Thus, in total {V} ∼ {VII} , {VI} ∼ {VIII} . Therefore, it suffices to

consider from {{2} , {4}} to consider {I, II, V, VI}. Further, with respect to y1 → y5, y2 → y2, y3 → y3,

y4 → y4, y5 → y1 : 1→ 4, 2→ 9, 3→ 10, 4→ 7, 13→ 20, 14→ 17. Thus,
(1,2,13,4)∼(4,20,9,7) (1,2,13,14)∼(4,20,9,17)

(1,2,3,4)∼(4,10,9,7) (1,2,3,14)∼(4,10,9,17)

(1,12,3,9)∼(4,10,19,7) (1,12,3,14)∼(4,10,19,17)

(1,12,13,4)∼(4,20,19,7) (1,12,13,14)∼(4,20,19,17)
i.e. in total {I, II} ∼ {V, VI} . Therefore, it suffices to consider {I, II} . with respect to y1 → −y1, y2 →

y2, y3 → −y3, y4 → y4, y5 → −y5 : 4→ 4, 20→→ 10, 9→ 19, 7→ 17, 19→ 9, 17→ 7. Therefore,
(4,20,19,17)∼(4,10,9,7) (4,20,19,7)∼(4,10,9,17)

(4,20,9,17)∼(4,10,19,7) (4,20,9,7)∼(4,10,19,7)
i.e., in total {I} ∼ {II} . with respect to yi → yi (i = 1, 4, 5) , y2 → y3, y3 → y2 : 4 → 4, 20 →

20, 7 → 9, 9 → 7, 17 → 19, 19 → 17. Therefore, (4, 20, 19, 17)∼(4, 20, 9, 7). Thus, from 80 "faces"

nonequivalent with respect to Aut
(
ϕ5

1

)
, there are only three: (4, 20, 19, 17), (4, 20, 19, 7), (4, 20, 9,

7).

Lemma 9 is completely proved. �

Lemma 3.7. 14-dimensional "faces" of the domain V15
(
ϕ5

1

)
nonequivalnet with respect to Aut

(
ϕ5

1

)
, outside

of which lie six points from M
(
ϕ5

1

)
, are only six: (5, 20, 19, 18, 17, 16), (5, 20, 19, 18, 17, 6), (5, 20, 19, 8,

17, 16), (5, 20, 19, 8, 17, 6), (5, 20, 19).

Proof. All possible combinations of six elements of the set A satisfying the condition of Lemma 2

are the following:

{1} (−u1 − u2 − u3 − u4 − u5, u1, u2, u3, u4, u5)

{7} (−u1 − u2 − u4,−u1 − u3 − u5, u1 + u2 + u3, u1, u4, u5)

{8} (−u1 − u2 − u4,−u1 − u3 − u5, u1 + u4 + u5, u1, u2, u3)

{9} (−u1 − u2 − u3 − u4 − u5,−u1 − u3 − u5, u1 + u2 + u3, u1 + u4

+u5, u3, u5)

{10} (−u1 − u2 − u3 − u4 − u5,−u1 − u2 − u4, u1 + u2 + u3, u1 + u4

+u5, u2, u4).

There are no other sixes from A that satisfy the condition of Lemma 2.

In the case {1}, in view of Lemma 4, taking the corresponding sets of points from (3.4), we initially
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obtain 64 faces:

{1}: I1 II1

1.1 I1
1 (5, 20, 19, 18, 17, 16) I17

1 (5, 20, 9, 18, 17, 16)

1.2 I2
1 (5, 20, 19, 18, 17, 6) I18

1 (5, 20, 9, 18, 17, 6)

1.3 I3
1 (5, 20, 19, 18, 7, 16) I19

1 (5, 20, 9, 18, 7, 16)

1.4 I4
1 (5, 20, 19, 18, 7, 6) I20

1 (5, 20, 9, 18, 7, 6)

III1 IV1

1.5 I5
1 (5, 20, 19, 8, 17, 16) I21

1 (5, 20, 9, 8, 17, 16)

1.6 I6
1 (5, 20, 19, 8, 17, 6) I22

1 (5, 20, 9, 8, 17, 6)

1.7 I7
1 (5, 20, 19, 8, 7, 16) I23

1 (5, 20, 9, 8, 7, 16)

1.8 I8
1 (5, 20, 19, 8, 7, 6) I24

1 (5, 20, 9, 8, 7, 6)

V1 VI1

1.9 I9
1 (5, 10, 19, 18, 17, 16) I25

1 (5, 10, 9, 18, 17, 16)

1.10 I10
1 (5, 10, 19, 18, 17, 6) I26

1 (5, 10, 9, 18, 17, 6)

1.11 I11
1 (5, 10, 19, 18, 7, 16) I27

1 (5, 10, 9, 18, 7, 16)

1.12 I12
1 (5, 10, 19, 18, 7, 6) I28

1 (5, 10, 9, 18, 7, 6)

VII1 VIII1

1.13 I13
1 (5, 10, 19, 8, 17, 16) I29

1 (5, 10, 9, 8, 17, 16)

1.14 I14
1 (5, 10, 19, 8, 17, 6) I30

1 (5, 10, 9, 8, 17, 6)

1.15 I15
1 (5, 10, 19, 8, 7, 16) I31

1 (5, 10, 9, 8, 7, 16)

1.16 I16
1 (5, 10, 19, 8, 7, 6) I32

1 (5, 10, 9, 8, 7, 6)
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{1*}: here replacing 5 to 15 we get more 32 sets of points. We denote them{
I∗1, II∗1, III∗1, IV∗1, V∗1, VI∗1, VII∗1, VIII∗1

}
. There are 64 "faces" in total. Similarly as in{1} we have

{7}: I7 V7

I1
7 (4, 3, 1, 20, 17, 16) I17

7 (4, 13, 1, 20, 17, 16)

I2
7 (4, 3, 1, 20, 17, 6) I18

7 (4, 13, 1, 20, 17, 6)

I3
7 (4, 3, 1, 20, 7, 16) I19

7 (4, 13, 1, 20, 7, 16)

I4
7 (4, 3, 1, 20, 7, 6) I20

7 (4, 13, 1, 20, 7, 6)

II7 VI7

I5
7 (4, 3, 1, 10, 17, 16) I17

7 (4, 13, 1, 10, 17, 16)

I6
7 (4, 3, 1, 10, 17, 6) I22

7 (4, 13, 1, 10, 17, 6)

I7
7 (4, 3, 1, 10, 7, 16) I23

7 (4, 13, 1, 10, 7, 16)

I8
7 (4, 3, 1, 10, 7, 6) I24

7 (4, 13, 1, 10, 7, 6)

III7 VII7

I9
7 (4, 3, 11, 20, 17, 16) I25

7 (4, 13, 11, 20, 17, 16)

I10
7 (4, 3, 11, 20, 17, 6) I26

7 (4, 13, 11, 20, 17, 6)

I11
7 (4, 3, 11, 20, 7, 16) I27

7 (4, 13, 11, 20, 7, 16)

I12
7 (4, 3, 11, 20, 7, 6) I28

7 (4, 13, 11, 20, 7, 6)

IV7 VIII7

I13
7 (4, 3, 11, 10, 17, 16) I29

7 (4, 13, 11, 10, 17, 16)

I14
7 (4, 3, 11, 10, 17, 6) I30

7 (4, 13, 11, 10, 17, 6)

I15
7 (4, 3, 11, 10, 7, 16) I31

7 (4, 13, 11, 10, 7, 16)

I15
7 (4, 3, 11, 10, 7, 16) I32

7 (4, 13, 11, 10, 7, 6)

IV7 VIII7

I13
7 (4, 3, 11, 10, 17, 16) I29

7 (4, 13, 11, 10, 17, 16)

I14
7 (4, 3, 11, 10, 17, 6) I30

7 (4, 13, 11, 10, 17, 6)

I15
7 (4, 3, 11, 10, 7, 16) I31

7 (4, 13, 11, 10, 7, 16)

I15
7 (4, 3, 11, 10, 7, 16) I32

7 (4, 13, 11, 10, 7, 6)

{7*}: here replacing 4 by 14 we obtain more 32 sets of "faces". We denote them as
{
I∗7, II∗7, ..., VIII∗7

}
.

There are 64 "faces" in total.
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{8}: I8 V8

I1
8 (4, 3, 2, 20, 19, 18) I17

8 (4, 13, 2, 20, 19, 18)

I2
8 (4, 3, 2, 20, 19, 8) I18

8 (4, 13, 2, 20, 19, 8)

I3
8 (4, 3, 2, 20, 9, 18) I19

8 (4, 13, 2, 20, 9, 18)

I4
8 (4, 3, 2, 20, 9, 8) I20

8 (4, 13, 2, 20, 9, 8)

II8 VI8

I5
8 (4, 3, 2, 10, 19, 18) I17

7 (4, 13, 1, 10, 17, 16)

I6
8 (4, 3, 2, 10, 19, 8) I22

7 (4, 13, 1, 10, 17, 6)

I7
8 (4, 3, 2, 10, 9, 18) I23

7 (4, 13, 1, 10, 7, 16)

I8
8 (4, 3, 2, 10, 9, 8) I24

7 (4, 13, 1, 10, 7, 6)

III8 VII8

I9
8 (4, 3, 12, 20, 19, 18) I25

8 (4, 13, 12, 20, 19, 18)

I10
8 (4, 3, 12, 20, 19, 8) I26

8 (4, 13, 12, 20, 19, 8)

I11
8 (4, 3, 12, 20, 9, 18) I27

8 (4, 13, 12, 20, 9, 18)

I12
8 (4, 3, 12, 20, 9, 8) I28

8 (4, 13, 12, 20, 9, 8)

IV8 VIII8

I13
8 (4, 3, 12, 10, 19, 18) I29

8 (4, 13, 12, 10, 19, 18)

I14
8 (4, 3, 12, 10, 19, 8) I30

8 (4, 13, 12, 10, 19, 8)

I15
8 (4, 3, 12, 10, 9, 18) I31

8 (4, 13, 12, 10, 9, 18)

I16
8 (4, 3, 12, 10, 9, 8) I32

8 (4, 13, 12, 10, 9, 8)

{8*}: here replacing 4 by 14 we get more 32 faces. We denote them by
{
I∗8, II∗8, ..., VIII∗8

}
.
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{9}: I9 V9

I1
9 (5, 3, 1, 2, 18, 16) I17

9 (5, 13, 1, 2, 18, 16)

I2
9 (5, 3, 1, 2, 18, 6) I18

9 (5, 13, 1, 2, 18, 6)

I3
9 (5, 3, 1, 2, 8, 16) I19

9 (5, 13, 1, 2, 8, 16)

I4
9 (5, 3, 1, 2, 8, 6) I20

9 (5, 13, 1, 2, 8, 16)

II9 VI9

I5
9 (5, 3, 1, 12, 18, 16) I21

9 (5, 13, 1, 12, 18, 16)

I6
9 (5, 3, 1, 12, 18, 6) I22

9 (5, 13, 1, 12, 18, 6)

I7
9 (5, 3, 1, 12, 8, 16) I23

9 (5, 13, 1, 12, 8, 16)

I8
9 (5, 3, 1, 12, 8, 6) I24

9 (5, 13, 1, 12, 8, 16)

III9 VII9

I9
9 (5, 3, 11, 2, 18, 16) I25

9 (5, 13, 11, 2, 18, 16)

I10
9 (5, 3, 11, 2, 18, 6) I26

9 (5, 13, 11, 2, 18, 6)

I11
9 (5, 3, 11, 2, 8, 16) I27

9 (5, 13, 11, 2, 8, 16)

I12
9 (5, 3, 11, 2, 8, 6) I28

9 (5, 13, 11, 2, 8, 16)

IV9 VIII9

I13
9 (5, 3, 11, 12, 18, 16) I29

9 (5, 13, 11, 12, 18, 16)

I14
9 (5, 3, 11, 12, 18, 6) I30

9 (5, 13, 11, 12, 18, 6)

I15
9 (5, 3, 11, 12, 8, 16) I31

9 (5, 13, 11, 12, 8, 16)

I16
9 (5, 3, 11, 12, 8, 6) I32

9 (5, 13, 11, 12, 8, 16)

{9*}: here replacing 5 by 15 we obtain more 32 sets of faces. We denote them as
{
I∗9, II∗9, ..., VIII∗9

}
.

{10}: I10 V10

I1
10 (5, 4, 1, 2, 19, 17) I17

10 (5, 14, 1, 2, 19, 17)

I2
10 (5, 4, 1, 2, 19, 7) I18

10 (5, 14, 1, 2, 19, 7)

I3
10 (5, 4, 1, 2, 9, 17) I19

10 (54, 1, 2, 9, 17)

I4
10 (5, 4, 1, 2, 9, 7) I20

10 (5, 14, 1, 2, 9, 17)
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II10 VI10

I5
10 (5, 4, 1, 12, 19, 17) I21

10 (5, 14, 1, 12, 19, 17)

I6
10 (5, 4, 1, 12, 19, 7) I22

10 (5, 14, 1, 12, 19, 7)

I7
10 (5, 4, 1, 12, 9, 17) I23

10 (5, 14, 1, 12, 9, 17)

I8
10 (5, 4, 1, 12, 9, 7) I24

10 (5, 14, 1, 12, 9, 17)

III10 VII10

I9
10 (5, 4, 11, 12, 19, 17) I25

10 (5, 14, 11, 12, 19, 17)

I10
10 (5, 4, 11, 12, 19, 7) I26

10 (5, 14, 11, 12, 19, 7)

I11
10 (5, 4, 11, 12, 9, 17) I27

10 (5, 14, 11, 12, 9, 17)

I12
10 (5, 4, 11, 2, 9, 7) I28

10 (5, 14, 11, 2, 9, 17)

IV10 VIII10

I13
10 (5, 4, 11, 12, 19, 17) I29

10 (5, 14, 11, 12, 19, 17)

I14
10 (5, 4, 11, 12, 19, 7) I30

10 (5, 14, 11, 12, 19, 7)

I15
10 (5, 4, 11, 12, 9, 17) I31

10 (5, 14, 11, 12, 9, 17)

I16
10 (5, 4, 11, 12, 9, 7) I32

10 (5, 14, 11, 12, 9, 17)

{10*}: here we replace 5 by 15 we get more 32 sets of faces. We denote them as
{
I∗10, II∗10, ..., VIII∗10

}
.

Now we apply Autϕ5
1k {1, 7,−10, 1∗, 7∗}.

With respect to y4 → y5, y5 → y4 we have 5→ 5, 1→ 1, 2→ 2, 4→ 3, 19→ 18, 17→ 16, 7→

6, 9 → 8, 12 → 12, 11 → 11, 14 → 13. Therefore I10 → I9, II10 → II9, III10 → III9, IV10 →

IV9, V10 → V9, VI10 → VI9, VII10 → VII9, VIII10 → VIII9. Hence it follows {10} ∼ {9} .

With respect to yi → yi (i = 1, 2, 4, 5) , y3 → −y3 : 5 → 15, 3 → 3, 1 → 1, 2 → 12,

18 → 8, 16 → 6, 11 → 11, 13 → 13. Therefore IV9 → III∗9, V9 → VI∗9, VI9 → V∗9, VII9 →

VIII∗9, VIII9 → VII∗9. Thus, {9} ∼ {9∗} .

Further, with respect to yi → yi (i = 1, 2, 4, 5) , y3 → −y3 : 4 → 4, 19 → 9, 17 → 7, 14 → 14.

Therefore I10 → II∗10, II9 → I∗10,

III10 → IV∗10, IV10 → III∗10, V10 → VI∗10, VI10 → V∗10, VII10 → VIII∗10, VIII10 → VII∗10. Hence

{10} ∼ {10∗} . From {9, 9∗, 10, 10∗} only remain 9.

With respect to yi → yi (i = 1, 2, 3, 4) , y5 → −y5 we have: 4→ 4, 3→ 3, 1→ 1, 10→ 10, 17→

7, 16 → 16, 6 → 6, 11 → 11, 13 → 13, 2 → 2, 19 → 9, 18 → 18, 8 → 8,12 → 12. Therefore

I7 → II∗7, II7 → I∗7, III7 → IV∗7, IV7 → III∗7, V7 → VI∗7, VI7 → V∗7, VII7 → VIII∗7, VIII7 → VII∗7.

Hence {7} ∼ {7∗} .

I8 → II∗8, II8 → I∗8, III8 → IV∗8, IV8 → III∗8, V8 → VI∗8, VI8 →

V∗8, VII8 → VIII∗8,

VIII8 → VII∗8.Whence {8} ∼ {8∗} .

With regards y2 → y3, y3 → y2 : 4 → 4, 3 → 3, 1 → 2, 20 → 20, 17 → 19, 16 → 18, 11 →

12, 12→ 11, 10→ 10, 6→ 8, 8→ 6, 7→ 9, 13→ 13.
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Therefore I7 → I8, II2 → II8, III7 → III8, IV7 → IV8, VI7 → VI8, VII7 → VII8, VIII7 → VIII8.

Hence {7} ∼ {8} . Thus from {7, 7∗, 8, 8∗} remain only 7.

With respect y1 → y2), y2 → y1, y3 → y5), y4 → y4, y5 → y3), we get: 5 → 4, 3 →

6, 1 → 1, 2 → 7, 18 → 20, 16 → 13, 6 → 3, 8 → 10, 12 → 17, 11 → 11,13 → 16. Therefore

I1
9 → I20

7 , I2
9 → I4

7, I3
9 → I24

7 , I4
9 → I8

7, I5
9 → I18

7 , I6
9 → I2

7, I7
9 → I22

7 , I8
9 → I6

7, I9
9 → I28

7 , I10
9 →

I12
7 , I11

9 → I32
7 , I12

9 → I16
7 , I13

9 → I26
7 , I14

9 → I10
7 ,I15

9 → I30
7 , I16

9 → I14
7 , I17

9 → I19
7 , I18

9 → I13
7 , I19

9 →

I23
7 , I20

9 → I7
7, I21

9 → I17
7 ,

I22
9 → I1

7, I23
9 → I21

7 , I24
9 → I5

7, I25
9 → I27

7 , I26
9 → I11

7 , I27
9 → I31

7 ,

I28
9 → I15

7 , I29
9 → I25

7 , I30
9 → I9

7, I31
9 → I29

7 , I32
9 → I13

7 .

Hence, {9} ∼ {7} . Thus from {7, 7∗, 8, 8∗, 9, 9∗, 10, 10∗} remain only 9.

With respect to y1 → y5), y5 → y1 we get: 5 → 5, 3 → 10, 1 → 7, 2 → 9, 18 → 18, 16 →

16, 6 → 6, 8 → 8, 12 → 19, 11 → 17, 13 → 20. Therefore I1
9 → I27

1 , I2
9 → I28

1 , I3
9 → I31

1 , I4
9 →

I32
1 , I5

9 → I14
1 , I6

9 → I12
1 , I7

9 → I15
1 , I8

9 → I16
1 , I9

9 → I25
1 , I10

9 → I26
1 , I11

9 → I29
1 , I12

9 → I30
1 , I13

9 →

I9
1, I14

9 → I10
1 , I15

9 → I13
1 , I16

9 → I14
1 ,

I17
9 → I19

1 , I18
9 → I20

1 , I19
9 → I23

1 , I20
9 → I24

1 , I21
9 → I3

1, I22
9 → I4

1, I23
9 → I7

1, I24
9 → I8

1,I25
9 → I17

1 , I26
9 →

I18
1 , I27

9 → I21
1 , I28

9 → I22
1 , I29

9 → I1
1,

I30
9 → I30

1 , I31
9 → I5

1, I32
9 → I6

1. Hence, {9} ∼ {1} .

Further, with respect to yi → yi (i = 1, 2, 4, 5) , y3 → −y3 : 5 → 15, 20 → 20, 10 → 10, 19 →

9, 18→ 8, 17→ 17, 7→ 7, 16→ 16, 6→ 6. Therefore I1 → IV∗1, II1 → III∗7, III1 → II∗1, IV1 →

I∗1, V1 → VIII∗1, VI1 → VII∗1, VII1 → VI∗1, VIII1 → V∗1.Hence, {1} ∼ {1∗} .

Thus, from {1, 1∗, 7, 7∗, 8, 8∗, 9, 9∗, 10, 10∗}only remain {1} .

Now we apply Autϕ5
1 k {1} . With respect to y4 → −y4, y5 → −y5 we have: 5 → 15, 20 →

20, 19 → 9, 18 → 8, 17 → 17, 10 → 10, 16 → 6, 6 → 6. Therefore {I1} ∼ {IV1} , {II1} ∼

{III1} , {V1} ∼ {VIII1} , {VI1} ∼ {VII1} . From {1} remain {I1, III1, V1, VII1} .

With respecty2 → −y5, y5 → −y2 we have: 5 → 19, 20 → 6, 18 → 18, 10 → 16, 17 → 17, 8 →

8. Therefore 1.6 ∼ 1.8, 1.3 ∼ 1.9, 1.1 ∼ 1.12, 1.9 ∼ 1.11, 1.13 ∼ 1.15, 1.7 ∼ 1.14, 1.7 ∼ 1.14, 1.5 ∼

1.16.

Hence, from {I1, III1, V1, VII1}

remain {1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.9, 1.13}

=
{
I1
1, I2

1, I3
1, I4

1, I5
1, I6

1, I7
1, I9

1, I1
13

}
.

With respect to y4 → y5, y5 → y4 we have: 5 → 5, 20 → 20, 19 → 18, 17 → 16, 6 → 7.

Therefore 1.2 ∼ 1.3.

With respect to y4 → −y4, yi → yi (i = 1, 2, 3, 5) we have: 5 → 5, 20 → 100, 19 → 19, 18 →

8, 17→ 17, 16→ 6. Therefore 1.9 ∼ 1.5, 1.2 ∼ 1.13.

Hence, definitively remain {1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7} .

Thus, from 5 · 26 = 320 "faces" nonequivalent with respect to Autϕ5
1, are 6 : (1.1) :

(5, 20, 19, 18, 17, 16) , (1.2) : (5, 20, 19, 18, 17, 6) , I4
1 = (1.4) : (5, 20, 19, 18, 7, 6) , (1.5) :
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(5, 20, 19, 8, 17, 16) ,

(1.6) : (5, 20, 19, 8, 17, 6) , (1.7) : (5, 20, 19, 8, 7, 16) .

We note that with respect to y1 → y2, y2 → y1, y3 → −y5, y4 → −y4, y5 → −y3 we have:

5→ 14, 20→ 18, 19→ 19, 18→ 20, 7→ 12, 6→ 13. Therefore

I4
1 =: (5, 20, 19, 18, 7, 6) ∼

(
I∗8
)

26 : (14, 13, 12, 20, 19, 18) .

Lemma 10 is completely proved. �

The main result of the paper is a detailed proof of the following proposition.

Theorem 3.1. The Voronoi neighborhood of the perfect form

ϕ5
1 = ϕ5

1 (x) = ϕ5
1 (x1, ..., x5)

= x2
1 + ... + x2

5 + x1x3 + x1x4 + x1x5 + x2x3 + ... + x4x5

consists of only three perfect forms:

ϕ5
0 = ϕ5

0 (x) = ϕ5
0 (x1, ..., x5)

= x2
1 + ... + x2

5 + x1x2 + ... + x1x5 + x2x3 + ... + x4x5,

ϕ5
1 = ϕ5

1 (x) = ϕ5
1 (x1, ..., x5) = ϕ5

0 − x1x2,

ϕ5
2 = ϕ5

2 (x) = ϕ5
2 (x1, ..., x5) = ϕ5

0 −
1
2
(x1x2 + x3x4 + x3x5 + x4x5) .

Proof. According Lemmas 9, 10 and equality (3.5) by direct calculations we get equations 14-

dimentional faces of the domain V15
(
ϕ5

1

)
in the space R15 of coefficients of the quadratic forms.

We write them successively:

1) (4, 20, 19, 7) :

a55 + a15 + a35 + a45 − u1 − u2 − u4 − a45 + u1 − a35 + u2 − a15 + a25 + u4

= a55 + a25 = 0

The corresponding conjugate perfect form has the form:

2
{
ϕ5

1

}
1
= 2

∣∣∣ϕ5
1 + x2

5 + x2x5 = x2
1 + x2

2 + x2
3 + x2

4 + 2x2
5 + x1x4

+x1x5 + x2x3 + x2x4 + 2x2x5 + x3x4 + x3x5 + x4x5.

We calculate

det
{
2
{
ϕ5

1

}
1

}
:=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 0 1 1 1

0 2 1 1 2

1 1 2 1 1

1 1 1 2 1

1 2 1 1 4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 4

Therefore, det
{
ϕ5

1

}
1
= 1

23 .Thus det
{
ϕ5

1

}
1
coincides with detϕ5

1.
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2) (4, 20, 19, 7) :

a55 + a15 + a35 + a45 − u1 − u2 − u4 − a45 + u1 − a35 + u2 − a15 + a15

+u4 = a55 + a15 = 0.

The corresponding conjugate perfect form has the view:

2
{
ϕ5

1

}∗
1
= 2

∣∣∣ϕ5
1 + x2

5 + x1x5 = x2
1 + x2

2 + x2
3 + x2

4 + 2x2
5+

+x1x4 + x1x5 + x2x3 + x2x4 + 2x2x5 + x3x4 + x3x5 + x4x5.

This form is equivalent the form
{
ϕ5

1

}
1

. Indeed, the substitution of the variables x1 → x2, x2 → x1

transforms
{
ϕ5

1

}
1

into
{
ϕ5

1

}∗
1

.

3) (4, 20, 9, 7) :

a55 + a15 + a35 + a45 − u1 − u2 − u4 − a45 + u1 + u2 + u4

= a55 + a15 + a35 = 0.

The corresponding conjugate form has the view:

2
{
ϕ5

1

}
2
= 2

∣∣∣ϕ5
1 + x2

5 + x1x5 + x3x5 = x2
1 + x2

2 + x2
3 + x2

4 + 2x2
5+

+x1x3 + x1x4 + 2x1x5 + x2x3 + x2x4 + x2x5 + x3x4 + 2x3x5 + x4x5.

Here det
{
2
{
ϕ5

1

}
2

}
:= 4

Hence, det
{
ϕ5

1

}
2
= 1

23 . Thus det
{
ϕ5

1

}
2

coincides with det ϕ5
1.

4) (5, 20, 19, 18, 17, 16) :

−a12 − a14 − a15 − a23 − a34 − a35 − a45 = 0.

The corresponding conjugate form has the view:{
ϕ5

1

}
3
= 2

∣∣∣ϕ5
1 − x1x2 − x1x5 − x2x3 − x3x4 − x3x5 − x4x5

= x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − x1x2 + x1x3 + x2x4 + x2x5.

With respect to transformation x1 → x2, x2 → x1, x3 → x5, x4 → x4, x5 → x3 we have:
{
ϕ5

1

}
3
∼{

ϕ5
1

}∗
3

.

6) (5, 20, 19, 8, 17, 16) :

−a12 − a15 − a23 − a35 − a45 = 0.

The corresponding conjugate perfect form has the form:{
ϕ5

1

}
4
= ϕ5

1 − x1x2 − x1x4 − x1x5 − x2x3 − x3x5 − x4x5 =

x2
1 + x2

2 + x2
3 + x2

4 + x2
5−x1x2 + x1x3 + x2x4 + x2x5 + x3x4.

Here det
{
2
{
ϕ5

1

}
4

}
:= 4

Hence, det
{
ϕ5

1

}
4
= 4, det

{
ϕ5

1

}
4
= 22

25 = 1
23 . Thus det

{
ϕ5

1

}
4

coincides with det ϕ5
1.

7) (5, 20, 19, 8, 17, 6) :

−a12 − a15 − a23 − a24 − a35 − a45 = 0.
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The corresponding conjugate perfect form has the view:{
ϕ5

1

}
1
= ϕ5

1 − x1x2 − x1x5 − x2x3 − x3x5 − x4x5 = x2
1 + x2

2 + x2
3 + x2

4

+x2
5 − x1x2 + x1x3 + x1x4 + x2x5 + x3x4.

Here det
{
2
{
ϕ5

0

}
1

}
:= 6

Hence, det
{
ϕ5

0

}
1
= 3

24 .Thus det
{
ϕ5

0

}
1
= det

{
ϕ5

0

}
.

8) (5, 20, 19, 8, 7, 16) :

−a12 − a14 − a23 − a25 − a35 − a45 = 0.

The corresponding conjugate perfect form has the form:{
ϕ5

1

}
5
= ϕ5

1 − x1x2 − x1x4 − x2x3 − x2x5 − x3x5 − x4x5 = x2
1 + x2

2

+x2
3 + x2

4 + x2
5 − x1x2 + x1x3 + x1x5 + x2x4 + x3x4.

Here det
{
2
{
ϕ5

1

}
5

}
:= 4

Hence, det
{
ϕ5

1

}
5
= 1

23 .Thus det
{
ϕ5

1

}
5
= det

{
ϕ5

1

}
.

9) (14, 13, 12, 20, 19, 18) :

−a12 − a34 − a35 − a45 = 0.

The corresponding conjugate perfect form has the form:{
ϕ5

2

}
= ϕ5

1 +
1
2
{x1x2 − x3x4 − x3x5 − x4x5} .

Here det
{
4
{
ϕ5

2

}}
:= 162.

Hence, det
{
ϕ5

2

}
5
= 34

29 .

To calculate completely VN
(
ϕ5

1

)
it remains for us to show that{

ϕ5
1

}
1
∼ ϕ5

1,
{
ϕ5

1

}
2
∼ ϕ5

1,
{
ϕ5

1

}
3
∼ ϕ5

1,
{
ϕ5

1

}
4
∼ ϕ5

1,
{
ϕ5

0

}
1
∼ ϕ5

0{
ϕ5

1

}
5
∼ ϕ5

1.

Indeed, the substitution E∗0 of variables x1 → x1 → x2, x2 → x2 + x5, xi → xi (i = 3, 4, 5)

transforms the form ϕ5
0 into

{
ϕ5

0

}
1

. Hence ϕ5
0 ∼

{
ϕ5

0

}∗
1

.

Similarly, ϕ5
1E∗i =

{
ϕ5

0

}
i
(i = 1, 2, 3, 4, 5) . Here

E∗5 =



1 0 1 0 1

0 0 1 0 0

0 − 1 − 1 − 1 0

0 0 0 1 0

0 0 0 0 − 1


, E∗4 =



1 0 0 0 0

0 0 − 1 0 0

0 − 1 − 1 − 1 0

1 0 0 − 1 0

0 0 − 1 0 1


,
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E∗1 =



1 0 0 1 0

0 0 0 1 − 1

0 1 1 0 1

0 − 1 0 − 1 − 1

0 0 0 0 1


, E∗2 =



1 0 0 1 0

0 0 0 1 − 1

0 1 1 0 1

0 − 1 0 − 1 0

0 0 0 0 1


,

E∗3 =



1 0 1 0 1

0 0 0 0 1

0 − 1 0 − 1 − 1

0 0 − 1 0 0

0 0 0 1 − 1


.

The transformation E∗i (i = 0, ..., 5) were calculated with the help Lemma 3.

The theorem is completely proved. �

Conclusion

The classical Voronoi problem of finding perfect forms, closely related to Hermite’s well-

known problem of finding the arithmetic minimum of positive quadratic forms, are interesting and

non-trivial problems in geometric number theory that have been studied by many mathematicians.

They also appeared in the works of S.L. Sobolev in connection with the construction of lattice

optimal cubature formulas.

The present work is devoted to the development of an algorithm and finding all adjacent perfect

forms in five variables.

The technique presented in the work allows us to study the classical Voronoi problems in a

complex, its results and calculation methods can be used to further search for new perfect forms

in many variables.
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