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GENERALIZATION OF INTEGRAL INEQUALITIES FOR

PRODUCT OF CONVEX FUNCTIONS

M. A. LATIF

Abstract. In this paper, generalizations of some inequalities for product of

convex functions are given.

1. Introduction

A function f : [a, b] → R, with [a, b] ⊂ R, is said to be convex if whenever, x,
y ∈ [a, b] and t ∈ [0, 1] the following inequality holds:

f (tx+ (1− t) y) ≤ tf (x) + (1− t) f (y) .

This definition has its origin in Jensen’s result from [1] and has opened up a very
useful and multi-disciplinary domain of mathematics, namely, convex analysis. A
largely applied inequality for convex functions, due to its geometrical significance, is
the Hermite-Hadamard’s inequality which has generated a wide range of directions
for extensions and rich mathematical literature.

Hermite-Hadamrd’s inequality is stated as follows:
A convex function satisfies:

(1.1) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

2
.

In a recent paper, Pachpatte [2] established the following inequalities for product
of convex functions which can be derived from Hermite-Hadamard’s inequality:

Theorem 1. [2] Let f and g be real valued, nonnegative and convex functions on
[a, b]. Then

(1.2)
3

2
· 1

(b− a)
2

∫ b

a

∫ b

a

∫ 1

0

f (tx+ (1− t) y) g (tx+ (1− t) y) dtdxdy

≤ 1

b− a

∫ b

a

f (x) g (x) dx+
1

8

[
M (a, b) +N (a, b)

(b− a)
2

]
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and

(1.3)
3

b− a

∫ b

a

∫ 1

0

f

(
tx+ (1− t) a+ b

2

)
g

(
tx+ (1− t) a+ b

2

)
dtdx

≤ 1

b− a

∫ b

a

f (x) g (x) dx+
1

4
· 1 + b− a

b− a
[M (a, b) +N (a, b)] ,

where

M (a, b) = f (a) g (a) + f (b) g (b)

N (a, b) = f (a) g (b) + f (b) g (a) .

The inequalities (1.2) and (1.3) are valid when the length of the interval [a, b]
does not exceed 1. The inequality (1.2) is sharp for linear functions defined on
[0, 1], while the inequality (1.3) does not have the same property.

In [3], Cristescu improved these inequalities by eliminating the condition b−a ≤ 1
and derived the inequalities which are sharp for the whole class of linear functions
defined on [0, 1]. The main result from [3] is the following:

Theorem 2. [3] Let f and g be real valued, nonnegative and convex functions on
[a, b]. Then

(1.4)
3

2
· 1

(b− a)
2

∫ b

a

∫ b

a

∫ 1

0

f (tx+ (1− t) y) g (tx+ (1− t) y) dtdxdy

≤ 1

b− a

∫ b

a

f (x) g (x) dx+
1

8
[M (a, b) +N (a, b)]

and

(1.5)
3

b− a

∫ b

a

∫ 1

0

f

(
tx+ (1− t) a+ b

2

)
g

(
tx+ (1− t) a+ b

2

)
dtdx

≤ 1

b− a

∫ b

a

f (x) g (x) dx+
1

2
[M (a, b) +N (a, b)] ,

where M (a, b) and N (a, b) are defined in Theorem 1.

The main aim of this paper is to generalize the inequalities (1.4) and (1.5).

2. Main Results

Let I be an interval of R and let f : I → R be a convex functions on I, h :
[a, b] → R be continuous function such that h ([a, b]) ⊂ I and p : [a, b] → R be a
positive integrable function a, b ∈ R with a < b. Then the Jenesen’s inequality

f

(∫ b

a
p (x)h (x) dx∫ b

a
p (x) dx

)
≤
∫ b

a
p (x) f (h (x)) dx∫ b

a
p (x) dx

holds.
Assume that f and p are as above. Let us denote

P =

∫ b

a

p(x)dx, h̄ =
1

P

∫ b

a

p(x)h(x)dx.
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The following is the Hermite-Hdamard type inequality in this case:

(2.1) f
(
h̄
)
≤ 1

P

∫ b

a

f (h(x))p(x)dx ≤ f (h(a)) + f (h(b))

2
.

We now state the following lemma which is very useful in this section:

Lemma 1. Let [a, b] ⊂ R and f : [a, b] → R be a function and h : [a, b] → R be a
continuous function such that h ([a, b]) ⊂ [a, b]. Then the following statements are
equivalent

(1) function f is convex on [a, b]
(2) For every x, y ∈ [a, b], the function γ : [0, 1]→ R defined by

γ (t) = f (th (x) + (1− t)h (y))

is convex on [0, 1] for any positive real number λ.

Proof. It is a direct consequence of the convexity of the function f . �

Now we state and prove the main result of this section which will generalize the
Theorem 2.

Theorem 3. Let f and g be real valued, nonnegative and convex functions on [a, b].
Let h : [a, b]→ R be continuous function such that h ([a, b]) ⊂ [a, b]and p : [a, b]→ R
be a positive integrable function. Then

(2.2)

3

2P 2

∫ b

a

∫ b

a

∫ 1

0

p (x) p (y) f (th (x) + (1− t)h (y)) g (th (x) + (1− t)h (y)) dtdxdy

≤ 1

P

∫ b

a

f (h (x)) g (h (x)) p (x) dx+
1

8

[
M

′
(a, b) +N

′
(a, b)

]
,

where

M
′
(a, b) = f(h(a))g(h(a)) + f(h(b))g(h(b))

and

N
′
(a, b) = f(h(a))g(h(b)) + f(h(b))g(h(a)).

Proof. Since both functions f and g are convex, for every two points x, y ∈ [a, b]
and t ∈ [0, 1], the following inequalities are valid

f (th (x) + (1− t)h (y)) ≤ tf (h (x)) + (1− t) f (h (y))

and

g (th (x) + (1− t)h (y)) ≤ tg (h (x)) + (1− t) g (h (y))

Multiplying these inequalities side by side, we obtain

(2.3) f (th (x) + (1− t)h (y)) g (th (x) + (1− t)h (y))

≤ t2f (h (x)) g (h (x)) + (1− t)2 f (h (y)) g (h (y))

+ t (1− t) [f (h (x)) g (h (y)) + f (h (y)) g (h (x))] .

Due to Lemma 1 and known properties of convex functions, both sides of the
inequality (2.3) are integrable. Multiplying both sides of (2.3) by p (x) p (y) and
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integrating both sides of the inequality (2.3) with respect to t over [0, 1], with
respect to x and y over [a, b], we get

(2.4)∫ b

a

∫ b

a

∫ 1

0

p (x) p (y) f (th (x) + (1− t)h (y)) g (th (x) + (1− t)h (y)) dtdxdy

≤ 2

3
P

∫ b

a

f (h (x)) g (h (x)) p(x)dx

+
1

3

(∫ b

a

f (h (x)) p(x)dx

)(∫ b

a

g (h (x)) p(x)dx

)
.

The convexity property of f and g allow us to use right side of the inequality (2.1)
and thus the above inequality (2.4) takes the form:

(2.5)∫ b

a

∫ b

a

∫ 1

0

p (x) p (y) f (th (x) + (1− t)h (y)) g (th (x) + (1− t)h (y)) dtdxdy

≤ 2

3
P

∫ b

a

f (h (x)) g (h (x)) p(x)dx

+
P 2

12
[f (h(a)) + f (h(b))] [g (h(a)) + g (h(b))]

=
2

3
P

∫ b

a

f (h (x)) g (h (x)) p(x)dx

+
P 2

12

[
M

′
(a, b) +N

′
(a, b)

]
.

Multiplying both sides of the inequality (2.5) by 3
2P 2 , we get the desired result.

This completes the proof of the theorem. �

Theorem 4. Let f and g be real valued, nonnegative and convex functions on [a, b].
Let h : [a, b]→ R be continuous function such that h ([a, b]) ⊂ [a, b]and p : [a, b]→ R
be a positive integrable function. Then

(2.6)
3

P

∫ b

a

∫ 1

0

p(x)f
(
th (x) + (1− t) h̄

)
g
(
th (x) + (1− t) h̄

)
≤ 1

P

∫ b

a

f(h(x))g(h(x))p(x)dx+
1

2

[
M

′
(a, b) +N

′
(a, b)

]
,

where

M
′
(a, b) = f(h(a))g(h(a)) + f(h(b))g(h(b))

and

N
′
(a, b) = f(h(a))g(h(b)) + f(h(b))g(h(a)).

Proof. Again by the convexity of the functions f and g, we have

f
(
th (x) + (1− t) h̄

)
≤ tf(h(x)) + (1− t) f

(
h̄
)

and

g
(
th (x) + (1− t) h̄

)
≤ tg(h(x)) + (1− t) g

(
h̄
)
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Multiplying the above two inequalities side by side, we get

(2.7) f
(
th (x) + (1− t) h̄

)
g
(
th (x) + (1− t) h̄

)
≤ t2f(h(x))g(h(x)) + t (1− t)

[
f(h(x))g(h̄) + g(h(x))f(h̄)

]
+ (1− t)2 f(h̄)g(h̄).

Multiplying both sides of (2.7), by similar arguments as in obtaining (2.4) and using
the Jensen’s inequality, we have

(2.8)

∫ b

a

∫ 1

0

p(x)f
(
th (x) + (1− t) h̄

)
g
(
th (x) + (1− t) h̄

)
≤ 1

3

∫ b

a

f(h(x))g(h(x))p(x)dx+
1

6

∫ b

a

[
f(h(x))g(h̄) + g(h(x))f(h̄)

]
p(x)dx

+
1

3

∫ b

a

f(h̄)g(h̄)p(x)dx

≤ 1

3

∫ b

a

f(h(x))g(h(x))p(x)dx+
2

3P

(∫ b

a

f(h(x))p(x)dx

)(∫ b

a

g(h(x))p(x)dx

)
.

An application of the inequality (2.1), gives us

(2.9)

∫ b

a

∫ 1

0

p(x)f
(
th (x) + (1− t) h̄

)
g
(
th (x) + (1− t) h̄

)
≤ 1

3

∫ b

a

f(h(x))g(h(x))p(x)dx+
P

6
[f(h(a)) + f(h(b))] [g(h(a)) + g(h(b))]

=
1

3

∫ b

a

f(h(x))g(h(x))p(x)dx+
P

6

[
M

′
(a, b) +N

′
(a, b)

]
.

Multiplying both sides of (2.9) by 3
P , we get the desired inequality and hence the

proof of the theorem is complete. �

Remark 1. If in Theorem 3 and Theorem 4, p(x) = 1 and h(x) = x, x ∈ [a, b],

then P = b − a, h̄ = a+b
2 , M

′
(a, b) = M(a, b) and N

′
(a, b) = N(a, b). Then the

inequalities (2.2) and (2.6) reduce to the inequalities (1.4) and (1.5) respectively.
This also shows that our results generalize those results proved in Theorem 2.
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