International Journal of Analysis and Applications

On Cesaro-Hypercyclic Operators

Mohammed El Berrag*

Hassan First University of Settat, Faculty of Sciences and Techniques, Laboratory MISI, 26000, Settat, Morocco

*Corresponding author: mohammed.elberrag@uhp.ac.ma

Abstract. In this paper we characterize some properties of the Cesàro-Hypercyclic and mixing operators. At the same time, we also give a Cesàro-Hypercyclicity criterion and offer an example of this criterion.

1. Introduction

Let \mathcal{H} be a separable infinite dimensional Hilbert space over the scalar field \mathbb{C} . As usual, \mathbb{N} is the set of all non-negative integers, \mathbb{Z} is the set of all integers, and $B(\mathcal{H})$ is the space of all bounded linear operators on \mathcal{H} . A bounded linear operator $T:\mathcal{H}\to\mathcal{H}$ is called hypercyclic if there is some vector $x\in\mathcal{H}$ such that $Orb(T,x)=\{T^nx:n\in\mathbb{N}\}$ is dense in \mathcal{H} , where such a vector x is said hypercyclic for T.

The first example of hypercyclic operator was given by Rolewicz in [12]. He proved that if B is a backward shift on the Banach space l^p , then λB is hypercyclic if and only if $|\lambda| > 1$.

Let $\{e_n\}_{n\geq 0}$ be the canonical basis of $l^2(\mathbb{N})$. If $\{w_n\}_{n\in \geq 1}$ is a bounded sequence in $\mathbb{C}\setminus\{0\}$, then the unilateral backward weighted shift $T: l^2(\mathbb{N}) \longrightarrow l^2(\mathbb{N})$ is defined by $Te_n = w_n e_{n-1}, n \geq 1, Te_0 = 0$, and let $\{e_n\}_{n\in \mathbb{Z}}$ be the canonical basis of $l^2(\mathbb{Z})$. If $\{w_n\}_{n\in \mathbb{Z}}$ is a bounded sequence in $\mathbb{C}\setminus\{0\}$, then the bilateral weighted shift $T: l^2(\mathbb{Z}) \longrightarrow l^2(\mathbb{Z})$ is defined by $Te_n = w_n e_{n-1}$.

The definition and the properties of supercyclicity operators were introduced by Hilden and Wallen [10]. They proved that all unilateral backward weighted shifts on a Hilbert space are supercyclic.

A bounded linear operator $T \in B(\mathcal{H})$ is called supercyclic if there is some vector $x \in \mathcal{H}$ such that the projective orbit $\mathbb{C}.Orb(T,x) = \{\lambda T^n x : \lambda \in \mathbb{C}, n \in \mathbb{N}\}$ is dense in X. Such a vector x is said supercyclic for T. Refer to ([1], [9], [4], [15]) for more informations about hypercyclicity and

Received: Feb. 7, 2024.

2020 Mathematics Subject Classification. 47A16, 47A25.

Key words and phrases. hypercyclic; Cesàro-hypercyclic; Cesàro-mixing; Cesàro-hypercyclicity criterion.

ISSN: 2291-8639

supercyclicity.

A nice criterion namely Hypercyclicity Criterion, was developed independently by Kitai [8] and, Gethner and Shapiro [7]. The Hypercyclicity Criterion has been widely used to show that many different types of operators are hypercyclic. For instance hypercyclic operators arise in the classes of composition operators [3], adjoints of multiplication operators [7], cohyponormal operators [6], and weighted shifts [13].

For the following theorem, see ([1], [9]).

Theorem 1.1. (Hypercyclicity Criterion). Suppose that $T \in B(\mathcal{H})$. If there exist two dense subsets X_0 and Y_0 in \mathcal{H} and an increasing sequence n_i of positive integer such that:

- (1) $T^{n_j}x \rightarrow 0$ for each $x \in X_0$, and
- (2) there exist mappings $S_{n_j}: Y_0 \longrightarrow \mathcal{H}$ such that $S_{n_j}y \to 0$, and $T^{n_j}S_{n_j}y \to y$ for each $y \in Y_0$, then T is hypercyclic.

In [13] and [14], Salas characterized the bilateral weighted shifts that are hypercyclic and those that are supercyclic in terms of their weight sequence. In [5], N. Feldman gave a characterization of the invertible bilateral weighted shifts that are hypercyclic or supercyclic. For the following theorem, see [5, Theorem 4.1].

Theorem 1.2. Suppose that $T: l^2(\mathbb{Z}) \longrightarrow l^2(\mathbb{Z})$ is a bilateral weighted shift with weight sequence $(w_n)_{n \in \mathbb{Z}}$ and either $w_n \geq m > 0$ for all n < 0 or $w_n \leq m$ for all n > 0. Then:

- (1) T is hypercyclic if and only if there exists a sequence of integers $n_k \to \infty$ such that $\lim_{k\to\infty} \prod_{j=1}^{n_k} w_j = 0$ and $\lim_{k\to\infty} \prod_{j=1}^{n_k} \frac{1}{w_{-j}} = 0$.
- (2) T is supercyclic if and only if there exists a sequence of integers $n_k \to \infty$ such that $\lim_{k\to\infty} (\prod_{j=1}^{n_k} w_j) (\prod_{j=1}^{n_k} \frac{1}{w_{-j}}) = 0.$

Let $\mathcal{M}_n(T)$ denote the arithmetic mean of the powers of $T \in \mathcal{B}(\mathcal{H})$, that is

$$\mathcal{M}_n(T) = \frac{I + T + T^2 + \dots + T^{n-1}}{n}, n \in \mathbb{N}^*.$$

If the arithmetic means of the orbit of x are dense in \mathcal{H} then the operator T is said to be Cesàro-hypercyclic. In [11], Fernando León-Saavedra proved that an operator is Cesàro-hypercyclic if and only if there exists a vector $x \in \mathcal{H}$ such that the orbit $\{n^{-1}T^nx\}_{n\geq 1}$ is dense in \mathcal{H} and characterized the bilateral weighted shifts that are Cesàro-hypercyclic.

For the following proposition, see [11, Proposition 3.4].

Proposition 1.1. Let $T: l^2(\mathbb{Z}) \longrightarrow l^2(\mathbb{Z})$ be a bilateral weighted shift with weight sequence $(w_n)_{n \in \mathbb{Z}}$. Then T is Cesàro-hypercyclic if and only if there exists an increasing sequence n_k of positive integers such that for any integer q,

$$\lim_{k\to\infty}\prod_{i=1}^{n_k}\frac{w_{i+q}}{n_k}=\infty$$
 and $\lim_{k\to\infty}\prod_{i=0}^{n_k-1}\frac{w_{q-i}}{n_k}=0$.

In this paper we will characterize some properties of the Cesàro-Hypercyclic and mixing operators. Furthermore, we give a Cesàro-Hypercyclicity criterion and offer an example of this criterion.

2. Main results

Suppose $\{n^{-1}T^n : n \ge 1\}$ is a sequence of bounded linear operators on \mathcal{H}

Definition 2.1. An operator $T \in B(\mathcal{H})$ is Cesàro-hypercyclic if and only if there exists a vector $x \in \mathcal{H}$ such that the orbit $\{n^{-1}T^nx\}_{n\geq 1}$ is dense in \mathcal{H}

The following example gives an operator which is Cesàro-hypercyclic but not hypercyclic.

Example 2.1. [11] Let T the bilateral backward shift with the weight sequence

$$w_n = \begin{cases} 1 & \text{if } n \le 0, \\ 2 & \text{if } n \ge 1. \end{cases}$$

Then T is not hypercyclic, but it is Cesàro-hypercyclic.

Now, we will give an example of a hypercyclic and supercyclic operator which is not Cesàro-hypercyclic.

Example 2.2. Let T the bilateral backward shift with the weight sequence

$$w_n = \begin{cases} 2 & \text{if } n < 0, \\ \frac{1}{2} & \text{if } n \ge 0. \end{cases}$$

Then T is not Cesàro-hypercyclic, but it is hypercyclic and supercyclic.

Definition 2.2. We say that $T \in B(\mathcal{H})$ is Cesàro-topologically transitive if for every nonempty open subsets U and V of \mathcal{H} there exists $n \geq 1$ such that $(n^{-1}T^n)(U) \cap V \neq \emptyset$.

Definition 2.3. We say that $T \in B(\mathcal{H})$ is Cesàro-mixing if for every nonempty open subsets U and V of \mathcal{H} there exists $m \ge 1$ such that $(n^{-1}T^n)(U) \cap V \ne \emptyset$, $\forall n \ge m$.

The set of Cesàro-hypercyclic vectors for T is denoted by CH(T).

Theorem 2.1. *Let T be a cesàro-hypercyclic operator. Then*

$$CH(T) = \bigcap_{k \ge 1} \bigcup_{n \ge 1} (n^{-1}T^n)^{-1}(B_k),$$

where $(B_k)_{k\geq 1}$ is a countable open basis for \mathcal{H} .

Proof. Let $(B_k)_{k\geq 1}$ is a countable open basis for \mathcal{H} . We have $x\in CH(T)$ if and only if $\{n^{-1}T^nx:n\geq 1\}$ is dense in \mathcal{H} if and only if for each $k\geq 1$, there exist $n\geq 1$ such that $n^{-1}T^nx\in B_k$ if and only if $x\in\bigcap_{k\geq 1}\bigcup_{n\geq 1}(n^{-1}T^n)(B_k)$.

Corollary 2.1. *If* T *is cesàro-topologically transitive operator, then* CH(T) *is a dense set in* \mathcal{H} .

Proof. For every non-empty open U of \mathcal{H} and for all $k \geq 1$, there exist $n \geq 1$ such that the set $\left(n^{-1}T^n\right)^{-1}(U) \cap B_k$ is nonempty and open. Hence the set

$$A_k = \bigcup_n \left(n^{-1} T^n \right)^{-1} (B_k)$$

is nonempty and open. Furthermore, $U \cap A_k \neq \emptyset$ for all $k \geq 1$. Thus each A_k is dense in \mathcal{H} and so by the Baire category theorem and theorem $2.1 \ CH(T)$ is also dense in \mathcal{H} .

Theorem 2.2. (Cesàro-Hypercyclicity Criterion). Suppose that $T \in B(\mathcal{H})$. If there exist two dense subsets M_0 and M_1 in \mathcal{H} and an increasing sequence (n_i) of positive integer such that:

- (1) $\frac{T^{n_j}}{n_i}x \rightarrow 0$ for each $x \in M_0$, and
- (2) there exist mappings $S_{n_j}: M_1 \longrightarrow \mathcal{H}$ such that $S_{n_j}y \to 0$, and $\frac{T^{n_j}}{n_j}S_{n_j}y \to y$ for each $y \in M_1$, then T is Cesàro-hypercyclic.

Proof. Let U and V be non-empty open subsets of \mathcal{H} . By topologically transitive, it is enough to prove that there exist $n \ge 1$ such that

$$(n_k^{-1}T^{n_k})^{-1}(U)\cap V$$
 is non-empty.

Since M_0 and M_1 are dense in \mathcal{H} , there exist $x \in M_0 \cap V$, $y \in M_1 \cap U$. And since U and V are nonempty open subsets, there exists $\varepsilon > 0$ such that $B(x, \varepsilon) \subseteq V$ and $B(y, \varepsilon) \subseteq U$. By assumption, there exist (n_k) such that

$$||n_{\nu}^{-1}T^{n_k}x|| \leq \frac{\varepsilon}{2}, ||S_{n_k}y|| \leq \frac{\varepsilon}{2} \text{ and } ||n_{\nu}^{-1}T^{n_k}S_{n_k}y - y|| \leq \frac{\varepsilon}{2}.$$

Define $u = x + S_{n_k}y$. We know that $u \in \mathcal{H}$ and $u \in V$, since $||u - x|| = ||S_{n_k}y|| \le \frac{\varepsilon}{2}$. Since

$$||n_k^{-1}T^{n_k}u - y|| = ||n_k^{-1}T^{n_k}x|| + ||n_k^{-1}T^{n_k}y - y|| < \varepsilon,$$

we have that $n_k^{-1}T^{n_k}u \in U$. Then $(n_k^{-1}T^{n_k})^{-1}(U) \cap V \neq \emptyset$ and T is cesàro-hypercyclic.

Suppose $T: l^2(\mathbb{N}) \longrightarrow l^2(\mathbb{N})$ be a unilateral weighted shift given by $Te_n = w_n e_{n-1}$, $n \ge 1$, $Te_0 = 0$. Let $\{e_n\}_{n\ge 0}$ be the canonical basis of $l^2(\mathbb{N})$. Define the sequence of linear mappings S_k as $S_k e_j = n_k \Big(\prod_{i=1}^{n_k} w_{i+j}\Big)^{-1} e_{j+n_k}$.

Example 2.3. Taking $n_j = n \ge 1$ and suppose $\lim_{n\to\infty} \prod_{i=1}^n \frac{w_{j+i}}{n} = \infty$ and $\lim_{n\to\infty} \prod_{i=0}^{n-1} \frac{w_{j-i}}{n} = 0$. Let $M_0 = M_1 = span\{e_j : j \in \mathbb{N}\}$ and $S_n = S^n$, where S_n is the right inverse of $n^{-1}T^n$. So we get

$$\frac{T^n}{n}e_j = \prod_{i=0}^{n-1} \frac{w_{j-i}}{n}e_{j-n} \to 0 \text{ for all } j \in \mathbb{N}.$$

Furthermore, we have

$$S_n e_j = S^n e_j = \frac{n}{\prod_{i=1}^n w_{i+i}} \to 0,$$

and

$$\|\frac{T^n}{n}S_n e_j - e_j\| = \|\frac{T^n}{n} \cdot \frac{n}{\prod_{i=1}^n w_{j+i}} e_{j+n} - e_j\| \to 0.$$

Hence $\frac{T^n}{n}S_ne_j \to e_j$ for all $j \in \mathbb{N}$. Thus T satisfies the Cesàro-Hypercyclicity Criterion with respect to $(n_j) = (n)$.

Theorem 2.3. Let $T \in B(\mathcal{H})$. Then the following (1) and (2) are equivalent:

- (1) T satisfies Cesàro-Hypercyclic Criterion.
- (2) (Outer Cesàro-Hypercyclic Criterion) There exist an increasing sequence (n_k) of positive integer , a dense linear subspace $Y_0 \subseteq \mathcal{H}$ and, for each $y \in Y_0$, a dense linear subspace X_0 of \mathcal{H} such that:
 - (a) There exists a sequence of mappings $S_{n_k}: Y_0 \to \mathcal{H}$, $k \in \mathbb{N}^*$ such that $(n_k^{-1}T^{n_k} \circ S_{n_k})y \to y$, For each $y \in Y_0$ and
 - (b) $||n_k^{-1}T^{n_k}x|| \, ||S_{n_k}y|| \to 0 \text{ For each } y \in Y_0 \text{ and } x \in X_0$,

Proof. It is obvious that any operator satisfying the Cesàro-Hypercyclic Criterion also satisfie the criteria of (2). It suffices to show that (2) implies (1). Let $U_i, V_i \subseteq \mathcal{H}$ non-empty open sets with i = 1, 2. The same argument as in the proof of [2, Theorem 3.2] and [4, Theorem 2.5] can be used to show that there exist (n_k) of positive integer such that

$$(n_k^{-1}T^{n_k})^{-1}(U_i) \cap V_i \neq \emptyset$$
, for $i = 1, 2$.

Then we can know that $(T \oplus T)$ is $\operatorname{ces} \tilde{a}$ ro-hypercyclic for $\mathcal{H} \oplus \mathcal{H}$ and (x, y) is $\operatorname{ces} \tilde{a}$ ro-hypercyclic vector for $(T \oplus T)$. In particular, x is $\operatorname{ces} \tilde{a}$ ro-hypercyclic vector for T and CH(T) is a dense G_{δ} of \mathcal{H} . Let (U_k) be a base of 0-neighborhoods in \mathcal{H} . Then there exist (n_k) of positive integer such that

$$n_k^{-1}T^{n_k}x \in U_k$$
 and $n_k^{-1}T^{n_k}y \in x + U_k$ for all $k \ge 1$.

This implies that $n_k^{-1}T^{n_k}x \to 0$ and $n_k^{-1}T^{n_k}y \to x$. Let $M_0 = M_1 = Orb(T,x)$, which is dense in \mathcal{H} . Also for all $k \ge 1$ define

$$S_{n_k}(n^{-1}T^nx) = n^{-1}T^ny.$$

Note that

$$n_k^{-1}T^{n_k}S_{n_k}(n^{-1}T^nx) = n_k^{-1}T^{n_k}(n^{-1}T^ny) = n^{-1}T^n(n_k^{-1}T^{n_k}y) \to n^{-1}T^nx.$$

Hence (1) holds. We complete the proof.

Proposition 2.1. *Let* $T \in B(\mathcal{H})$. *The following statements are equivalent.*

- (1) $T \in CH(\mathcal{H})$.
- (2) *T is cesàro-topologically transitive*.
- (3) For each $x, y \in \mathcal{H}$, there exist sequences (x_k) in \mathcal{H} , (n_k) in \mathbb{N}^* , such that $x_k \to x$ and $n_k^{-1} T^{n_k} x_k \to y$.
- (4) For each $x, y \in \mathcal{H}$, and each neighborhood W of the zero in \mathcal{H} , there exist $z \in \mathcal{H}$, $n \ge 1$ such that $x z \in W$ and $n^{-1}T^nz y \in W$.

Proof.

 $1 \Leftrightarrow 2$: By Theorem 2.1 and Corollairy 2.1.

- $2\Rightarrow 3$: Let $x,y\in \mathcal{H}$, and let $B(x,\frac{1}{k})$, $B(y,\frac{1}{k})$ for all $k\geq 1$. Then, there exist (n_k) in \mathbb{N}^* and (x_k) in \mathcal{H} such that $x_k\in B(x,\frac{1}{k})$ and $n_k^{-1}T^{n_k}x_k\in B(y,\frac{1}{k})$ for all $k\geq 1$. Then $||x_k-x||<\frac{1}{k}$ and $||n_k^{-1}T^{n_k}x_k-y||<\frac{1}{k}$ for all $k\geq 1$.
- $3 \Rightarrow 4$: Follows immediately from part (3).
- 4 ⇒ 2: Let *U* and *V* be two non-empty open subset of \mathcal{H} . Let *W* be a neighborhood for zero, pick $x \in U$ and $y \in V$, so there exist $z \in \mathcal{H}$, $n \ge 1$ such that $x z \in W$ and $n^{-1}T^nz y \in W$. It follows immediately that $z \in U$ and $n^{-1}T^nz \in V$.

Definition 2.4. Let $T \in B(\mathcal{H})$. For every $x_0 \in \mathcal{H}$ and $n \ge 1$ the sets

$$L^{mix}(x_0) := \{x_1 \in \mathcal{H}: n^{-1}T^nx_0 \to x_1\}$$

 $J^{mix}(x_0) = \{x_1 \in \mathcal{H} : \text{for every neighborhood } V_0, V_1 \text{ of } x_0, x_1 \text{ respectively, there exists } m \geq 1 \text{ such that } (n^{-1}T^n)(V_0) \cap V_1 \neq \emptyset \text{ for every } n \geq m\}$

will be called the cesàro-mixing limit set of x_0 under T and cesàro-mixing extended limit set of x_0 under T respectively.

Proposition 2.2. An equivalent definition for the set $J^{mix}(x_0)$ is the following:

```
J^{mix}(x_0) = \{x_1 \in \mathcal{H} : \text{there exists a sequence } (x_n)_{n \geq 1} \text{ in } \mathcal{H} \text{ such that } x_n \to x_0 \text{ and } n^{-1}T^nx_0 \to x_1 \}
```

Proof. Let us prove that

 $J^{mix}(x_0) \subset \{x_1 \in \mathcal{H} : \text{there exists a sequence } (x_n)_{n \geq 1} \text{ in } \mathcal{H} \text{ such that } x_n \to x_0 \text{ and } n^{-1}T^nx_0 \to x_1 \}$ Let $x_1 \in J^{mix}(x_0)$ and consider the open balls

 $V_0 = B(x_0, \frac{1}{n}), V_1 = B(x_1, \frac{1}{n})$ centered at $x_0, x_1 \in \mathcal{H}$ and with radius 1/n for $n \ge 1$. Then there exists $m \ge 1$ so that $\left(n^{-1}T^n\right)(V_0) \cap V_1 \ne \emptyset$ for every $n \ge m$. Hence there exists $x_n \in V_0 = B(x_0, \frac{1}{n})$ such that $n^{-1}T^n(x_n) \in V_1$. Therefore there exists a sequence (x_n) in \mathcal{H} such that $x_n \to x_0$ and $Tx_n \to x_1$. The converse is obvious.

Proposition 2.3. Let $T \in B(\mathcal{H})$. For every $x_0 \in \mathcal{H}$, $J^{mix}(x_0) = X$. Then T is cesàro-mixing.

Proof. Let V_0, V_1 the nonempty open. Consider $x_1 \in V_1$. Since $J^{mix}(x_0) = X$. There exists $m \ge 1$ such that $(n^{-1}T^n)(V_0) \cap V_1 \ne \emptyset$ for every $n \ge m$. By definition T is $\operatorname{ces} \hat{a}$ ro-mixing.

Theorem 2.4. Let $S \in B(\mathcal{H})$ and $S^n = n^{-1}T^n$. If S is power bounded then $J^{mix}(x_0) = L^{mix}(x_0)$ For every $x_0 \in \mathcal{H}$.

Proof. Since *S* is power bounded, there exists a positive number *M* such that $||S^n|| \le M$ for every positive integer $n \ge 1$. Let $x_0 \in \mathcal{H}$. If $J^{mix}(x_0) = \emptyset$ there is nothing to prove. Therefore assume that

 $J^{mix}(x_0) \neq \emptyset$. Since the inclusion $L^{mix}(x_0) \subset J^{mix}(x_0)$ is always true, it suffices to show that $J^{mix}(x_0) \subset L^{mix}(x_0)$. Take $x_1 \in J^{mix}(x_0)$. There exist a sequence (x_n) in \mathcal{H} such that $x_n \to x_0$ and $S^n x_n \to x_1$. Then we have

$$||S^n x_0 - x_1|| \le ||S^n x_0 - S^n x_n|| + ||S^n x_n - x_1||$$

 $\le M||x_0 - x_n|| + ||S^n x_n - x_1||$

and letting n goes to infinity to the above inequality, we get that $x_1 \in L^{mix}(x_0)$.

Theorem 2.5. Let T and S in $B(\mathcal{H})$ and $T \oplus S$ is cesàro-mixing operator, then T and S are cesàro-mixing operators, respectively.

Proof. let U_1 , U_2 , V_1 and V_2 be open sets in \mathcal{H} , then $U_1 \oplus V_1$ and $U_2 \oplus V_2$ are open in $\mathcal{H} \oplus \mathcal{H}$. So there exists an $n_0 \ge 1$ such that

$$\left(n^{-1}\left(T\oplus S\right)\right)^{-1}\left(U_{1}\oplus V_{1}\right)\cap\left(U_{2}\oplus V_{2}\right)\neq\emptyset.$$

Then

$$(n^{-1}T^n)^{-1}(U_1) \cap U_2 \neq \emptyset, (n^{-1}S^n)^{-1}(V_1) \cap V_2 \neq \emptyset.$$

Therefore, *T* and *S* are cesàro-mixing operators, respectively.

Conflicts of Interest: The author declares that there are no conflicts of interest regarding the publication of this paper.

References

- [1] F. Bayart, E. Matheron, Dynamics of Linear Operators, Cambridge University Press, Cambridge, 2009.
- [2] T. Bermúdez, A. Bonilla and A. Peris, On Hypercyclicity and Supercyclicity Criteria, Bull. Aust. Math. Soc. 70 (2004), 45–54. https://doi.org/10.1017/s0004972700035802.
- [3] P.S. Bourdon, J.H. Shapiro, Cyclic Phenomena for Composition Operators, American Mathematical Society, Providence, 1997.
- [4] M. El Berrag, A. Tajmouati, ON SUBSPACE-SUPERCYCLIC SEMIGROUP, Commun. Korean Math. Soc. 33 (2018), 157–164. https://doi.org/10.4134/CKMS.C170047.
- [5] N. Feldman, Hypercyclicity and Supercyclicity for Invertible Bilateral Weighted Shifts, Proc. Amer. Math. Soc. 131 (2003), 479-485.
- [6] N. Feldman, V. Miller, L. Miller, Hypercyclic and Supercyclic Cohyponormal Operators, Acta Sci. Math. 68 (2002), 303–328.
- [7] R.M. Gethner, J.H. Shapiro, Universal Vectors for Operators on Spaces of Holomorphic Functions, Proc. Amer. Math. Soc. 100 (1987), 281–288.
- [8] C. Kitai, Invariant Closed Sets for Linear Operators, Dissertation, University of Toronto, 1982.
- [9] K.G. Grosse-Erdmann, A.P. Manguillot, Linear Chaos, Springer, London, 2011.
- [10] H.M. Hilden, L.J. Wallen, Some Cyclic and Non-Cyclic Vectors of Certain Operator, Indiana Univ. Math. J. 23 (1974), 557–565. https://www.jstor.org/stable/24890788.
- [11] F. León-Saavedra, Operators With Hypercyclic Cesàro Means, Stud. Math. 152 (2002), 201–215.
- [12] S. Rolewicz, On Orbits of Elements, Stud. Math. 32 (1969), 17–22.

- [13] H.N. Salas, Hypercyclic Weighted Shifts, Trans. Amer. Math. Soc. 347 (1995), 993–1004.
- [14] H.N. Salas, Supercyclicity and Weighted Shifts, Stud. Math. 135 (1999), 55–74.
- [15] A. Tajmouati, M. El Berrag, Some Results on Hypercyclicity of Tuple of Operators, Italian J. Pure Appl. Math. 35 (2015), 487–492.