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Abstract. This article introduces a new model using the alpha power cosine transformed method for modeling complex
data used in hydrology and engineering studies. The alpha power novel distribution transformed the cosine moment
exponential model with two parameters. Its probability density function can be skewed and unimodal. Various
statistical and mathematical properties are established, and the unknown parameters of the suggested model are
determined using numerous estimation procedures. Also, the potential of these estimation techniques is calculated
via some simulation studies. In the end, two real data sets are made using the proposed model to make a practical
application in environmental and survival fields. The potential and utility of the recommended distribution are verified

with other well known models and it shows great superiority in fitting the proposed data sets.

1. INTRODUCTION

The transformation of classical model and the proposal of a novel version of the existing prob-
ability distributions are famed and motivating research topics in the literature. Further, the
approaches of the probability models using different techniques, including trigonometric, power
transformed, and compounding methods, have received great attention in the last few decades.
These new extensions of models represent more efficiency in fitting and modeling data in many
applied sciences areas, particularly hydrology, engineering, survival analysis, finance, economics,
and medical sciences. In this context, different techniques for obtaining a novel family of models
have been provided, for example, Hamedani et al. [12], Eugene et al. [10], Marshall and Olkin [16],
Cordeiro and Castro [7], Almetwally et al. [20], BuHamra et al. [6], and Alizadeh et al. [1].

The probability distribution functions (PDFs) defined on R™ are extensively implemented to

fit the period until a particular event or phenomenon occurs. The Moment exponential (ME)
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distribution has a special place provided by Dara and Ahmad [24]. The ME model is one of the
tirst selections of authors to implement for modeling data in the expiry times of patients, time to
performance failure, and recovery time after health injury see El Gazar et al. [8], Almetwally et
al. [3], Abonongo et al. [22], Igbal et al. [32], Zafar Igbal et al. [31], and Salem et al. [27].

Let X has the ME distribution denoted by X ~ ME(0), with cumulative distribution function
(CDF) and PDF can be obtained to be

H(x;0) = 1—e—%(g+1), x, 00, (1.1)
and
xe 0
h(x;0) = 72 (1.2)

Newly, Mahdavi and Kundu [15] proposed a novel extension family of probability distributions, which
are more efficient for exploring more data sets. These ewe family of distributions referred to alpha power

transformation (APT) family with CDF and PDF are defined, respectively, as

AK®) 1
F(X):ﬁ, xeR,A>0 A #1, (13)
and
log A
flx) = —AO & - A k(), (1.4)

where K(x) and k(x) represent the CDF and PDF of the baseline model. It is well documented that
different authors utilize the APT family of distributions to generate some exciting models. In this way, Eissa
and Sonar [11] defined the APT Extended power Lindley (APT-EPL) model by taking the extended power
Lindley baseline distribution, and they derived various distributional properties. Hassan etal. [13] proposed
APT Power Lindley (APT-PL) distribution. Also, the APT Extended Exponential (APT-EE) distribution is
studied by Hassan et al. [14] and they proved that the new model is better than some other well-known
distributions for modeling different kinds of data sets. In the same way, Shivanshi et al. [29] provided
the APT Xgamma (APT-XG) distribution and applied the suggested model to the reliability, survival, and
environmental data sets. Sin extension of the exponential distribution has been introduced by [19]. Reyad
et al. [21] introduced the APT Dagum (APT-D) model and established the various characterizations of the
recommended distributions. Abonongo et al. [22] discussed cosine Fréchet loss distribution with actuarial
measures and insurance applications.

Many researchers attempted to analyze and explain different data by employing generalized structures
of the ME distribution. However, the results were not credible. To overcome the issue and based on the
trigonometric function with the APT family, this article offers two main objectives: firstly, it introduced a
new version of ME distribution that can be applied in various applications, such as fitting the environmental
and engineering data sets. We referred to this novel suggested model as the alpha power transformed cosine
moment exponential (APCos-ME) model with two parameters. The APCos-ME distribution can be skewed
and unimodal. Secondly, the model parameters of APCos-ME have been estimated using various estimation

procedures.
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Suppose T follows the APTCos-T family. The corresponding CDF and PDF of T are expressed by
[n nH(t; 1) J
cos| ~——~
1 \2 2 _
1

F( A1) = .

1
St A, >0, A#1, (1.5)

and

H(t; .
nlog A h(t;n) sin(g— z <2 77)) COS[Z_RH(t/W)]
1 2 2

fEAn) = (1.6)

2(A-1)
The article is structured and arranged in the following ways. Section 2 introduced the new version of ME
distribution and its corresponding reliability measures. Numerous statistical properties of the proposed
model are established in Section 3. Section 4 contains the estimation of the unknown parameters by applying
various procedures. Section 5 considers a Monte Carlo simulation study to conduct the comparison and
consistency properties of different proposed estimation methods. Finally, in Section 6, two real data sets
representing environmental and reliability areas are illustrated for validation. In the last section, closing

remarks are devoted.

2. MODEL FORMULATION

In this part of the work, we establish numerous distributional properties of the APTCos-ME model,
likely CDF, PDF, and some reliability functions. Let T be a random variable following the APT-Cos-ME
with parameters A and 0 denoted by T ~ APTCos-ME(A, 0). According to Eq. (1.6) and (1.2), the CDF and
PDF of the APTCos-ME model are, respectively, given by

2 2
A -1
G(t) = T , LA 0>0,A#1, 2.1)
and
t
nfl—e" @ 1—1—1)
LAt ()
COS| ——
1 t n(l—e 9(54—1)) 2 2
0 T
= 1 in| - — . 2.2
q(t) 2A=1) nlog(A) 2 N5 5 A (2.2)

From Eq (2.1), it can be deduced that the proposed APCos-ME model reduces to ME distribution if A tends
to be 1. Figure 1 depicts the PDF curves of the APCos-ME model. The PDF can take numerous shapes; it is
right-skewed, left-skewed, and always unimodal.
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Ficure 1. Density Plots for APCos-ME distribution under different selected param-

eter values.

2.1. Reliability Measures. Suppose T ~ APTCos-ME(A,0). The survival (SF) and hazard rate (HRF)

functions of T are written as

2 2
A=A
S(t) = T , (23)
and
t -1
nf{l—e o i—O—l)
it )
Cos| ——
2 2 to n(l—e‘“é—l—l))
o -1 e 0 . TC
h(t) = 27|A-A nlog(A)?sm 5~ 7
t
n(l-e"o i+1)
L et
COSZ_ 2
X A : (24)

The APCos-ME’s cumulative hazard rate function (CHRF) is defined by

i} n(1—e-é(g+1))

Ccos| ~—

(2.5)
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The HREF plots of the proposed APCos-ME model are plotted in Figure 2. From this Figure, it can be seen

that the hazard function of the suggested model is increasing and reverse-] curves.
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Ficure 2. Hazard Rate Plots for APCos-ME distribution under different selected

parameter values.

3. MATHEMATICAL PROPERTIES

Here, in this Section, we provide different significant statistical features of the APCos-ME model, in-
cluding quantile function, k-moments, moment generating function (MGF), Coefficient of variation (CV),

Lorenz, and Bonferroni and order statistics distribution.

3.1. Quantile Function of APCos-ME model. Let T ~ APTCos-ME(A, 6). Based on inverting Eq (2.1), the

quantile function is expressed as

2 2
A -1
p= 1-1 , (3.1)
for 0 < p <1, thatis,
2¢71 4[1+p(A-1)
—_01 = I G S— 2
Q) 9{ (2 cos [ og() )J” 42

where W(.) represents the Lambert function.

Consequently, for generating random numbers from the APCos-ME model, Eq (3.2) can be used.

3.2. Moments with Related Connects. The moments of density function are of importance in statistical
analysis. They help us to find the mean, variance (Var), skewness (Skw), kurtosis (Kurt), and shape of any
given data set. The k" moment of the APCos-ME is presented by

0 i+1

Y, L8N a6~ 0nilt)], 3)
i=1 ’

- TC
He= 202(A—1)

where,

D; () = foo i,"“rle_t/@cos(E I [1 —e7t9(1 + i)])Z dt
b 0 272 6’1 "
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and -
, k+1,-t/0 n_n [ ot/0 t ])
D x(t) = j(; e cos(2 5 1- (1+ 9) dt.

Consequently, the mean (u), Var, and CV of T can be expressed as

T (log A)i+1
B = 55T 2 Z B [®i1(1) ~ Di1 (1), (34)
Var = Uz — ‘U%,
and
NI
cv=Y~ 1
H1

The coefficients of Skw and Kurt measures of the proposed APCos-ME model are given as
u3 =3y + 213

Skw =
(2 = 1)

7

and
pa = 4z + 6pTin — 3u1

(HZ - /’11)

Table (1) summarizes numerous proposed statistical measures of the APCos-ME by applying varied param-

Kurt =

eter selections A and 0. Clearly from Table (1) as 0 is growing, the u; and Var of the APCos-ME model are
diminishing, whereas the CV, Skew, and Kurt are fixed, which ensures that these values are free parameters
of 0. Another remark from Table (1) is that both CV, Skw, and Kurt amounts are diminishing as A is growing.
Hence, the APCos-ME is a flexible distribution for explaining more complex data. All these conclusions are
confirmed in Figure (3).

The k' incomplete moments of the APCos-ME is

) 1og)\]+1 /0 - /e ANV
Pr(x) = 262/\ ) Z f(;t e feos| -5 1-e (1—1—5) dt

]:1
X j+1
3 k+1,-t/0 T T /6 t
L t"Te cos(2 > [1 e (1+ 6)]) dt}
- logA ]“
- 2 Z, ¥ik(x) —‘I'j+1,k(x)]~ (3.5)
26 /\ 1) &

Finally, the Bonferroni and Lorenz curves of T are defined by

1 [P 1
tg(t)dt = —qi(ty), G(tp) =p,

B(p) = —
») pPH Jo pu

and
L(p) = - ftpf (Dt = 1 (1)
= - = - 1 .
p vy 4 M P1ltp
Now, the MGF of the APCos-ME model is given by

j 1 /\ l+1
Zx = | ®ik(t) = P (8] (3.6)

M(x) = E(e") = B
i=0 j=0

292/\ 1)

3.3. Order Statistics of APCos-ME model. Let T ~ APCos-ME(A, 0) and t(1) < .. <t represent the order

statistics of the random sample from T. Then the " PDF of T is written as
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TasLE 1. Different statistical properties of APCos-ME with various parameter values.

0 t1 Var cv Skw  Kurt
A=0.25 05 0526 0.1380 0.7063 1.4990 3.3105
1.0 1.052 05521 0.7063 1.4990 3.3105
15 1578 1.2422 0.7063 1.4990 3.3105
20 2104 22084 0.7063 1.4990 3.3105

A=0.5 05 05975 0.1624 0.6744 13173 2.4816
1.0 1.1950 0.6495 0.6744 1.3173 2.4816
1.5 1.7925 14614 0.6744 1.3173 2.4816
20 23900 25981 0.6744 1.3173 2.4816

A=0.75 0.5 0.6425 0.1757 0.6524 1.2159 2.0923
1.0 12850 0.7029 0.6524 1.2159 2.0923
1.5 19276 1.5814 0.6524 1.2159 2.0923
20 25701 2.8114 0.6524 1.2159 2.0923

A=125 0.5 0.7015 0.1907 0.6224 1.0976 1.7014
1.0 1.4031 0.7626 0.6224 1.0976 1.7014
1.5 21046 1.7159 0.6224 1.0976 1.7014
20 28061 3.0505 0.6224 1.0976 1.7014

A=15 05 0.7230 0.1954 0.6113 1.0586 1.5874
1.0 1446 0.7814 0.6113 1.0586 1.5874
1.5 21690 1.7582 0.6113 1.0586 1.5874
20 28919 3.1256 0.6113 1.0586 1.5874
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Ficure 3. 3D plots of the recommended mathematical measures of the APCos-ME

distribution using different parameter values of A and 0.
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J4r-1

n! n-r (_1)1 .
2(r=1)!(n~-r)! 0(/\_1)I+r—2( I )/\ -1

—

Respectively, we can be defined the first and latest order statistics of the random variable T as g1.,(f) =

min(Ty, Ty, ..., Ty} and gu.n(t) = max{Ty, T, ..., Ty} Its pdf are given by

; n(1—e‘é(5+1))

ncos| —-—
i n(l—e_é(é—i—l)) 2 2
() " tog(M) L sin| T - A
8L 20012 OB T s 2 /
and
t
1-eo(5+1 )
LAl ()
COS| ——
71(1—6 9(54—1)) 2 2
0 TC
Snen(t) -1 smlog(A) 7 sin| 5~ 5 A
n-1
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4. EstimaTioN METHODS OF APCo0s-ME MODEL

Here, various estimation techniques for determining the APCos-ME'’s parameters are covered. For
additional information concerning the application of estimation techniques, see Alshawarbeh et al. [4],
Rahman et al. [18], Rodrigues et al. [23], Shama et al. [28], and Almetwally and Meraou [2].

4.1. Maximum Likelihood Estimation. Let {t1, ..., t;} be observed random sample (RS) taken from APCos-
ME(A, 0). The corresponding log-likelihood function may be expressed as

I(t¥) = ) logg(t¥)
i=1

(1= (541))

1 n n
- nlog(A—l)—anogG—§Zti+log)\2cos g— >
i=1 i=1
Lot
: n(1—e—e (gH))
+ Zlog sin| = - 4.1)
& 2 2 ’

with ¥ = (4,0). Suppose Ayrr and Opir are the MLEs of A and 6. They are obtained, respectively, by

solving the two non-linear equations

oA~ A-1 A2 2 v
and
.
1-eo(5+1
a(t,Y) 2n 1 v log At [t _t fo 4t - n( ¢ (6+ ))
90 __+—Zti— [—le (1+2)-e e—l]sm——
26 0 " 07 2 Ller 0 027" 2 2
t.
1-e o (4+1
logAnZn:[Le_g(l+E)_e—gﬁ]cot E_n( e (6"‘ )) Y
2 Sle 0 02 2 2 o

4.2. Least Square and Weighted Least Square Estimators. Let {1, ..., f;, be an observed RS taking from the
APCos-ME model. The ordinary least square estimator(OLS) of A and O (note that, Aors and Oprg) are

resulted with minimize the function
n

Y. [G(fo‘)l‘l’) - i 1]2,

i=1

where G(#[¥) is (2.1). As a result, the estimate of A and 6 based on LSE can be obtained by resolving the

non-linear equations
n

Z [G(t(i) IY) - ﬁ]®1(t(i>w) =0,

i=1
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and
- i
[G(t(i) I¥) - n—_H]®2(f(i)|‘Y) =0,
im1
where 5
O (t;)¥) = ﬁc(t(i) IY), (4.2)
and 5
O2(tylY) = 575Gt [¥). 4.3)

Further, the ordinary weighted least square estimators (OWLS) of A and 0, note Apwrs and Bpowig are

defined with minimize the function

n

Z (n+1)%(n+2)

. 2
1
B PRy [G(t(i)|‘y)_n+1]'

Consequently, Aowrs and Bowis can be obtained as solution of

(D2t 2)f RN B

; in—i+1) G(tmIY) n+1_@1(f(i)|‘1’)—0,
and

D 2y o) — 0

Z‘W» (tl¥) = ;[ Oalt¥) = 0.

i=1
4.3. Maximum product of Spacings. The maximum product spacing (MPS) can be described as follows.
Let

MPI(‘F) = G(t(l) |‘P) - G(t(1_1)|111>, i= 1, eyt 1,
with
G(t(o)mj) =0, and G(f(n+1)|‘P) =1.
n+1

Evidently, Z MP,(¥) = 1.

i=1
The MPS estimators of A, and 6 (Apps and Ops), can be obtained by maximizing

n+1 ‘rll?
P(Y) = [ [ MPi(¥) (4.4)
i=1
Also, they result by maximizing
n+1
R(Y) = ; log MP;(¥). (4.5)

The estimates Apsps and Oyps are obtained by solving the non-linear equations

391{(1{;) B 1 n+1 1 B
da n+1 ; MP(D) {©1(t)[¥) = O (t_1)[¥)} =0,

and

IRY) 1 E 1 B
i ; MP(D) {@2(t(i)|‘Y) —@2(1‘(1‘—1)“’)} =0.

with @;(.[¥) fori = 1,2 are given in (4.2)-(4.3).
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4.4. Cramer-Von Mises Minimum Distance Estimators. The Cramer-von Mises-type minimum distance

estimates (CVMs) Acya and Oy are obtained by minimizing

¢V 12n+Z‘[

2 17%
o ] . (4.6)

These estimates can also be obtained by solving the non-linear equations

n
i=1
and

n

i=1

Y- et -
Y- [ex - 2

2i

; ]91(t(i)|‘f’) =0,

; ]@2(t(z‘)|‘f’) =0.

4.5. Anderson-Darling Estimators. Anderson-Darling estimators (ADs) Aap, and O4p of A and O are

calculated by minimizing

ADY) = -n—— Z (2i - lnG
Aap, and O 4p are calculated by resolving
Zn:(Zi— 0 [©1(t(;)IY) ~ O1(t(ng1)[¥)]
i—1 | GUt@I¥)  S(tuenl¥) |
and ) _
Z”:(zl__ 0 O2(tp)¥)  O2(t(ui)l¥)
= | GUIY)  S(EulY) |

5. NUMERICAL SIMULATION

) [F) +1In S (k1) [P)].

Here, we provide some results from a Monte Carlo (MC) simulation study to see how the suggested

estimating technique working in the practice. Under selected values of A and 6 and over on N = 1000

times, We generate an observed sample from the APCos-ME model of size n using the quantile function (3.2)

and we calculate the average estimates (AEs), average biases (ABs), and the associated mean squared errors
(MSEs). The results are reported in Tables (2)-(4) represent the result. Tables (2)-(4) show that as the sample

size increases, the AEs, ABs and MSEs decrease based on all estimation methods. This guarantees the

consistency and asymptotic properties of all techniques. Further the MPSEs procedure can be considered

best technique of estimate for the APCos-ME model since it has a smaller MSE among other techniques.
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TasLe 2. AEs, ABs, and MSEs of (A, 0)=(0.75, 0.25) considering different sample sizes.

A

n  Method A 0
AE AB MSE AE  AB MSE

300 MLE 09366 0.1866 ~ 0.2433 02656 0.0156  0.0042
OLS 0.8870 0.1370 0439  0.2647 0.0147  0.0052

OWLS 0.8019 0.0519 03359  0.2608 0.0108  0.0049

MPS 07790 0.0290  0.1964  0.2641 0.0141  0.0029

CVM 09466 0.1966 03996  0.2532 0.0032  0.0017

AD 0.8305 0.0805  0.2446 02572 0.0072  0.0012

500  MLE 0.8230 0.0730  0.1435  0.2519 0.0019  0.0007
OLS 0.8203 0.0703  0.1922 02567 0.0067  0.0014

OWLS 0.8105 0.0605  0.1525  0.2538 0.0038  0.0009

MPS 07257 0.0243  0.0962 02565 0.0065  0.0004

CVM 09074 0.1574 03008  0.2523 0.0023  0.0008

AD 07716 0.0216  0.1325 02564 0.0064  0.0006

700  MLE 0.8012 0.05612  0.0789  0.2498 0.0001  0.0002
OLS 0.7955 0.0455  0.1202 02530 0.0030  0.0005

OWLS 0.8064 0.0564  0.0826 02515 0.0015  0.0004

MPS 0.7380 0.012  0.0690 02548 0.0048  0.0003

CVM 0783 0.0330  0.0992  0.2534 0.0034  0.0005

AD 0.7437 0.0063  0.0764 02563 0.0063  0.0005

1000 MLE 07612 0.0112  0.0409 02515 0.0015  0.0001
OLS 0.7605 0.0105  0.0767 02537 0.0037  0.0003

OWLS 0.7881 0.0381  0.0588  0.2509 0.0009  0.0002

MPS 0.7548 0.0048  0.0398  0.2542 0.0042  0.0001

CVM 0.7429 0.0071  0.0736  0.2548 0.0048  0.0004

AD 07671 0.0171  0.0573 02526 0.0026  0.0002
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TaBLE 3. AEs, ABs, and MSEs of (4, 0)=(0.5, 0.5) considering different sample sizes.

A

n  Method A 0
AE AB MSE AE  AB MSE
300 MLE 05626 0.0626  0.1051 05210 0.0210  0.1050
OLS 0.5557 0.0557  0.1495 05278 0.0278  0.1495
OWLS 05236 0.0236  0.1349 05328 0.0328  0.1348
MPS 0.4442 0.0558  0.0897 05677 0.0677  0.0896
CVM 0.6193 0.1193 03023 05237 0.0237  0.0105
AD 0.6084 0.1084 01619 05114 0.0114  0.0789

500  MLE 0.5518 0.05618  0.0552  0.5014 0.0014  0.0552
OLS 05439 0.0439 01221 05232 0.0232  0.1221

OWLS 05449 0.0449  0.0851  0.5083 0.0083  0.0851

MPS 04867 0.0133  0.0498 05435 0.0435  0.0498

CVM 05451 0.0451 01196 05223 0.0223  0.0775

AD 0.5091 0.0091  0.0699 05138 0.0138  0.0324

700  MLE 0.5540 0.0540  0.0368  0.4979 0.0021  0.0367
OLS 0.5440 0.0440  0.0814  0.5081 0.0081  0.0813

OWLS 05311 0.0311  0.0678  0.5073 0.0073  0.0678

MPS 04673 0.0327  0.029 05234 0.0234  0.029

CVM 0.4909 0.0091  0.0834 05242 0.0242  0.0599

AD 0.5402 0.0402  0.0666 05113 0.0113  0.0577

1000 MLE 0.5181 0.0181  0.0314  0.5050 0.0050  0.0313
OLS 0.5007 0.0007  0.0579  0.5163 0.0163  0.0578

OWLS 05320 0.0320  0.0529 05077 0.0077  0.0529

MPS 0.4938 0.0062  0.0210  0.5083 0.0083  0.0210

CVM 0.5317 0.0317  0.0514 05053 0.0053  0.0278

AD 0.5198 0.0198  0.0407  0.5039 0.0039  0.0447
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TaBLE 4. AEs, ABs, and MSEs of (4, 0)=(1.3, 1.5) considering different sample sizes.

A

n  Method A 0
AE AB MSE AE  AB MSE
300 MLE 1.3730 0.0730  0.4496  1.5393 0.0393  0.0393
OLS 12754 0.0246  0.6000  1.5798 0.0798  0.0426
OWLS 14171 01171 05646  1.5323 0.0323  0.0419
MPS 1.3197 0.0197 04026  1.5392 0.0392  0.0213
CVM 14010 0.1010 04656  1.5408 0.0408  0.0411
AD 14749 01749  0.8196 15215 0.0215  0.0633

500  MLE 14860 0.1860 02339 14863 0.0137  0.0079
OLS 14633 0.1633 05181  1.5049 0.0049  0.0203

OWLS 14749 01749 03690 14917 0.0083  0.0114

MPS 1.3334 0.0334 02017 15245 0.0245  0.0070

CVM 1.3486 0.0486 02724 15200 0.0200  0.0110

AD 14381 0.1381  0.6913 14972 0.0028  0.0309

700  MLE 1.3575 0.0575 02125 15036 0.0036  0.0071
OLS 12644 0.0356 03080  1.5294 0.0294  0.0110

OWLS 14335 01335 02235 14881 0.0119  0.0078

MPS 12501 0.0499  0.1378 1.531 0.0310  0.0065

CVM 14173 01173 02556  1.4937 0.0063  0.0075

AD 1.3871 0.0871  0.4120  1.4975 0.0025  0.0096

1000 MLE 1.3879 0.0879  0.1331  1.4919 0.0081  0.0053
OLS 1.3199 0.0199 01602  1.5119 0.0119  0.0078

OWLS 1.3005 0.0005  0.1365  1.5152 0.0152  0.0068

MPS 1.2342 0.0658 01029 15322 0.0322  0.0047

CVM 1.3359 0.0359  0.1349  1.5065 0.0065  0.0060

AD 1.3239 0.0239 01820  1.5089 0.0089  0.0089
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6. REAL DATA ANALYSIS

6.1. Snowfall Application. Here, the data set contains the monthly maximum snowfall records for the
month February 2018. The values of the data set are picked from the National Centers for Environmental
Information (NCEI) https://www.ncdc.noaa.gov/cdoweb/datatools/records. The considered data is studied

by Meraou and Raqab [17] and its records are summarized in Table 5.

TaBLE 5. The values for the monthly maximum snowfall data set.

799 598 252 598 799 701 701 799 421 85

799 799 799 10 35 630 10 9.02 12.01 15.98
752 7.01 12.01 9.09 441 1071 799 598 701 799
12.01 5 799 1201 1299 12.01 799 1012 598 4.69

10 098 799 1201 1201 701 598 14.02 551 299
252 1598 17.01

6.2. Reliability Application. This data set provided the strengths measurements of 69 single carbon fibers
which is obtained in GPa. It is considered by workers at the UK National Physical Laboratory and it is
studeid by different reaserches such as Bader and Priest [5], Wani and Shafi [30], Alsadat [25] and Alsadat
et al. [26]. The considered data is given as

TaBLE 6. The values of the second data set.

0.312
1.055
1.382
1.642

0.314
1.063
1.426
1.648

0.479
1.098
1.434
1.684

0.552
1.140
1.435
1.697

0.700
1.179
1.478
1.726

0.803
1.224
1.490
1.770

0.861
1.240
1.511
1.773

0.865
1.253
1.514
1.800

0.944
1.270
1.535
1.809

0.958
1.272
1.554
1.818

0.966
1.274
1.566
1.821

0.977
1.301
1.570
1.848

1.006
1.301
1.586
1.880

1.021
1.359
1.629
1.954

1.027
1.382
1.633
2.012

2.067 2.084 2.090 2.096 2128 2233 2433 2585 2585

For checking the efficiency of the suggested model, the APCos-ME is compared with numerous models
including ME, Gompertz (Gomp), XLindley (XL), Two parameters Mira (TPM), and Extended Exponential
models. The PDFs of competing distributions are

(1) Gomp:
h(t) = aﬁe—ﬁ(e‘”—l)”‘t, t>0,a,B>0.
(2) XL:
0% (0 +t+2
h(t) = e (O+t+ ),- t>0, 0>0.
(6+1)2
(3) TPM:
) 0% (af? +2) et
t - t > O, ,(S 0.
O = a7 wo=
(4) EE:

h(t) = afe % (1-e )L t>0, a,0>0.


https://www.ncdc.noaa.gov/cdoweb/datatools/records
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TaBLE 7. Parameter estimation for fitting models using the two considered datasets.

Data Model Par. Llik
APCos-ME A=14.065 6=4.1707 -143.411
ME 0=4.1250 -152.951

1 Gomp & =02228 p=0.0288  -146.194
XL 0=0.2040 -159.084

TPM 4=0.3627 $=41.970 -147.183

EE 4=0.2858 0=5.6428 -145.950
APCos-ME  A=242.670 0=0.6042 -50.825
ME 0=0.7254 -73.087

2 Gomp & =18940 f=0.0825  -51.471
XL 6=0.8759 -92.176

TPM 4=2.0238 $=102.936 -64.736

EE 4=1.8629 6=8.3802 -56.705

Table (7) reported the obtained results of the MLEs for fitting model parameters with its negative log
likelihood Function (Llik). Now for checking the model validity, Table (8) summarized the values of
certain statistical measures notably Akaike Information Criterion (A; ), Hannan Quinn Information Criterion
(A3), Akaike Information Criterion corrected (Ay), Bayesian Information Criterion (A4) and Kolmogorov-
Smirnov (KS) statistics with associated p-values () which are reported in . Accordingly to these results,
the recommended APCos-ME distribution can be considered as the best choice i for modeling the data set.
In Figures (6)-(9), the estimated PDF, CDEF and SF of suggested models are sketched, while the scaled total
time on the test (TTT), the probability-probability (PP), and box plots are plotted in Figures (4)-(5) for the

two data sets.

TaBLE 8. Comparison of suggested statistical measures for the two proposed datasets.

Data Model Aq Ay As Ay KS P
APCos-ME 290.830 291.065 292.364 294.808 0.1063  0.5742
ME 307.902 307.979 308.669 309.891 0.2214  0.0100

1 Gomp  296.389 296.624 297.923 300.367 0.1576  0.1367
XL 320.169 320.246 320.936 322.158 0.2527  0.0020

TPM 298.366 298.601 299.900 302.344 0.1668  0.0987

EE 295900 296.135 297.434 299.878 0.1267  0.3505
APCos-ME 105.650 105.832 107.423 110.119 0.0615  0.9565
ME 148.175 148235 149.061 150.409 0.2576  0.0002

2 Gomp 106943 107.124 108.715 111.411 0.0790  0.7815
XL 186.353 186.412 187.239 188.587 0.3439 1.63x10~Y

TPM 133.472 133.654 135.245 137.940 0.2043  0.0062

EE 117.418 117.600 119.190 121.886 0.1150  0.3202

Next Table (9) considered estimates of A and 6 employing the various estimation procedures.
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Empirica Distibuton

Ficure 5. TTT, PP, and box curves for second data.
TaBLE 9. The estimates of unknown parameters for the APCos-ME model under

various methods of estimation.

Data Set Par MLE LSE WLSE  MPS CME ADE

1 A 14065 39916 34.080 36.894 33.193 40.311
0 41707 3.8390 3.8993 39217 3.7448 3.8433
2 A 242670 460.561 491.637 463.641 441.162 387.705
0 06042 05949 05881 05972 0.5854 0.5947
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Ficure 9. Estimated ESF using second data for different fitting models.
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7. CONCLUSION

This work defined a novel extension of the moment exponential model using alpha power transformed
with trigonometric function technique. We have obtained numerous characteriscs of the proposed model.
Henceforth, Several estimation technique are applied to obtain the estimation of the unknown parameters.
We conducted some experiment studies for the simulation experiment and to check the utility and effec-
tiveness of suggested estimation techniques. At the end, two applications drown from environmental and
engineering fields to demonstrate the applicability of the recommended model, and it is shown that the

proposed APCos-ME is more appropriate to modeling the two considered data sets.
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