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Abstract: The focus of this paper is on the nonlinear coupled evolution equations, specifically within the context of the 

fractional coupled modified Korteweg–de Vries (mKdV) equation, employing the conformable fractional derivative 

(CFD) approach. The primary objective of this paper is to thoroughly investigate the applicability of the Hirota bilinear 

method for deriving analytical solutions to the fractional mKdV equations. A range of exact analytical solutions for the 

fractional coupled mKdV equations is obtained. The findings in general indicate that the Hirota bilinear method is an 

effective approach for resolving the complexities associated with the fractional coupled mKdV equations. 

 

 

1. Introduction 

A plethora of nonlinear coupled evolution equations have emerged as pivotal tools in 

numerous disciplines, garnering considerable citations within the corpus of scientific research [1–

9]. The coupled Korteweg–de Vries (KdV) equation is at the heart of this extensive research. The 

research regarding coupled KdV equation has been guided by two principal aims: one is to 

determine soliton solutions that typify the solitary wave characteristics inherent in these 
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equations; the other is to verify the complete integrability of the coupled systems, an aspect that 

is essential [10, 11]. The widely recognized KdV equation, as presented in [2, 3], takes the form of 

             𝑢𝑡 + 𝑎 𝑢𝑢𝑥 +  𝑢𝑥𝑥𝑥 = 0,                                                                                                  (1) 

where 𝑢(𝑥, 𝑡) symbolizes the wave's elongation at position 𝑥 and time 𝑡, while 𝑎 represents non-

zero real constant. Various numerical and analytical methods have been utilized to investigate 

the solitary wave solutions that emerge from this equation [3, 5, 6, 7, 11]. According to [7, 12], the 

modified form of the KdV equation (mKdV) takes the form of  

             𝑢𝑡 + 𝑎 𝑢
2𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0.                                                                                                            (2) 

In this paper, the Hirota bilinear transformation method [12, 13] will be employed to 

investigate a variety of fractional coupled mKdV equations. The fractional coupled mKdV 

equations we target are represented by the following three systems 

          {
𝐷𝑡
𝛼𝑢 + 6𝑎𝑢𝑣𝐷𝑥

𝛼𝑢 + 𝐷𝑥
𝛼𝛼𝛼𝑢 = 0,

𝐷𝑡
𝛼𝑣 + 6𝑎𝑢𝑣𝐷𝑥

𝛼𝑣 + 𝐷𝑥
𝛼𝛼𝛼𝑣 = 0;

                                                                                                 (3) 

           {
𝐷𝑡
𝛼𝑢 + 6𝑎𝑢𝑣𝐷𝑥

𝛼𝑣 + 6(𝑢2 − 𝑣2)𝐷𝑥
𝛼𝑢 + 𝐷𝑥

𝛼𝛼𝛼𝑢 = 0,

𝐷𝑡
𝛼𝑣 + 24𝑎𝑢𝑣𝐷𝑥

𝛼𝑢 + 6(𝑢2 − 𝑣2)𝐷𝑥
𝛼𝑣 + 𝐷𝑥

𝛼𝛼𝛼𝑣 = 0;
                                                                (4) 

          {
𝐷𝑡
𝛼𝑢 + 𝑎(𝑣2 − 𝑢2)𝐷𝑥

𝛼𝑢 +
𝑎

4
𝐷𝑥
𝛼𝛼𝛼𝑢 = 0,

𝐷𝑡
𝛼𝑣 + 𝑎(𝑣2 − 𝑢2)𝐷𝑥

𝛼𝑣 +
𝑎

4
𝐷𝑥
𝛼𝛼𝛼𝑣 = 0.

                                                                                    (5) 

This paper is dedicated to the derivation of precise wave solutions for systems (3)  - (5) through 

the application of the conformable fractional derivative (CFD). Introduced by Khalil et al. [14], 

CFD represents a significant advancement in fractional calculus, exhibiting fundamental 

characteristics that are instrumental across various fields, including mathematics, engineering, 

and physics [14-23]. Within the above systems, the CFD related to time (𝑡) and space (𝑥) is denoted 

as 𝐷𝑡
𝛼 and 𝐷𝑥

𝛼, respectively. We further elaborate on higher-order operations, for instance, 𝐷𝑥
𝛼𝛼𝑢 =

𝐷𝑥
𝛼(𝐷𝑥

𝛼𝑢), to describe second-order CFDs. The use of CFD in soliton theory offers many 

advantages, particularly its effectiveness in characterizing soliton wave behaviors and providing 

profound physical insights. Given these advantages, this paper employs the Hirota bilinear 

method to obtain traveling wave solutions for the systems of fractional coupled mKdV equations 

(3) – (5). 
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The method of bilinearization introduced by Hirota [12], is a prominent technique for 

deriving traveling wave solutions for a variety of Nonlinear Partial Differential Equations 

(NPDEs). However, its application to the fractional coupled mKdV equation remains relatively 

unexplored research. Therefore, what is new in this research lies in the application of the Hirota 

method to the fractional coupled mKdV equation, as this method has not been widely applied to 

this particular equation. This not only promises to expand the repository of exact solutions 

available for the fractional coupled mKdV equation but also stands to offer deeper insights into 

the complex behaviors of fractional-order nonlinear systems. Previous scholarly endeavors have 

applied the Hirota method extensively to analyze an array of NPDEs, facilitating the derivation 

of traveling wave solutions; see for example [8, 10]. In undertaking this method, this study aims 

both to augment the compendium of exact solutions for mKdV equations and provide enhanced 

understanding of the intricate dynamics characteristic of fractional-order nonlinear phenomena. 

The primary objective of this paper is to investigate the application of the Hirota bilinear 

method for deriving analytical solutions to the fractional coupled mKdV equation, as well as to 

examine the ramifications of these solutions for elucidating the characteristics of nonlinear 

dynamical systems. This study successfully yielded a broader spectrum of exact analytical 

solutions for the fractional coupled mKdV equation. The organization of this manuscript is 

delineated as follows: Section 2 discusses the conformable fractional derivative. The multiple and 

singular soliton solutions for the systems of fractional coupled mKdV equations (3) – (5) are 

articulated in Sections 3, 4, and 5 respectively. The manuscript culminates with a conclusion in 

Section 6. 

2. Conformable fractional derivative (CFD) 

We engage in an analytical exploration of the core principles of CFD, as discussed in [15-23]. 

We articulate the definition of the conformable derivative of order α, wherein the range for α is 

confined to 𝛼 ∈ (0,1], with respect to an independent variable denoted as 𝑡. This is expressed 

mathematically as follows 

        𝐷𝛼𝑓(𝑡) = lim
𝜏→0

𝑓(𝑡+𝜏𝑡1−𝛼)−𝑓(𝑡)

𝜏
, ∀ 𝑡 > 0, 𝛼 ∈ (0,1],   𝑓𝛼(0) = lim

𝑡→0+
𝐷𝛼𝑓(𝑡).                       (6) 

This fractional derivative upholds specific inherent characteristics that are vital. We are to 

examine a derivative with order 𝛼 within the interval (0,1]. Assume that 𝑓 and 𝑔 signify functions 

that are α-differentiable for any positive value of 𝑡, with m and n being constant factors. Then: 
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• 𝐷𝛼𝑡𝑞 = 𝑞𝑡𝑞−𝛼 , 𝑞 ∈ ℝ. 

• 𝐷𝛼𝑚 = 0. 

• 𝐷𝛼𝑓(𝑡) = 𝑡1−𝛼  
𝑑𝑓

𝑑𝑡
. 

• 𝐷𝛼(𝑚𝑓 + 𝑛𝑔) = 𝑚𝐷𝛼𝑓 + 𝑛𝐷𝛼𝑔. 

• 𝐷𝛼(𝑓𝑔) = 𝑓𝐷𝛼𝑔 + 𝑔𝐷𝛼𝑓. 

• 𝐷𝛼 (
𝑓

𝑔
) =

𝑔𝐷𝛼𝑓−𝑓𝐷𝛼𝑔

𝑔2
 . 

• 𝐷𝛼 (𝑓(𝑔(𝑡))) =
𝑑𝑓

𝑑𝑔
𝐷𝛼𝑔(𝑡) = 𝑡1−𝛼  

𝑑𝑓

𝑑𝑔

𝑑𝑔

𝑑𝑡
. 

These properties have been established and exhibit extensive congruities with integral derivatives 

as illustrated in [14]. It is observed that the conformable differential operator adheres to a 

multitude of essential axioms analogous to those governing the chain rule, Taylor series 

expansion, and Laplace transformation [20]. 

3. Multiple and singular soliton solutions of system (3) 

We begin by examining the fractional coupled mKdV equations in system (3) given by 

𝐷𝑡
𝛼𝑢 + 6𝑎𝑢𝑣𝐷𝑥

𝛼𝑢 + 𝐷𝑥
𝛼𝛼𝛼𝑢 = 0, 

                                                           𝐷𝑡
𝛼𝑣 + 6𝑎𝑢𝑣𝐷𝑥

𝛼𝑣 + 𝐷𝑥
𝛼𝛼𝛼𝑣 = 0,  

where 𝑎 represents an arbitrary constant. It should be noted that when the condition 𝑢 = 𝑣 is 

applied to this system, it simplifies to what is recognized as the first fractional coupled mKdV 

equation. 

3.1. Multiple-soliton solutions  

We introduce the multiple-soliton solutions pertaining to the fractional coupled mKdV 

equation by assuming that the solutions of system (3) is given by 

                       𝑢(𝑥, 𝑡) = 𝑒𝜃𝑖 , 𝑣(𝑥, 𝑡) = 𝐴𝑒𝜃𝑖 ,  𝜃𝑖 = (𝑘𝑖𝑥
𝛼 − 𝑐𝑖𝑡

𝛼) 𝛼,⁄   𝑖 = 1, 2, 3 ,⋯ , 𝑁,                        (7) 

where 𝐴 signifies a constant parameter. Substituting Equation (7) into the linear term of system 

(3), presents the dispersion relation  
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                                                                           𝑐𝑖 = 𝑘𝑖
3.                                                                            (8) 

As a result of this equation, we acquire 

                                                       𝜃𝑖 = (𝑘𝑖𝑥
𝛼 − k𝑖

3𝑡𝛼) 𝛼⁄ .                                                                       (9) 

Following [11, 24], the multiple-soliton solutions are characterized by the auxiliary functions 

𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) as follows 

{
𝑢(𝑥, 𝑡) = 𝛽𝐷𝑥

𝛼 [𝑡𝑎𝑛−1 (
𝑓(𝑥,𝑡)

𝑔(𝑥,𝑡)
)] = 𝛽 

𝑔(𝑥,𝑡)𝐷𝑥
𝛼𝑓(𝑥,𝑡)−𝑓𝐷𝑥

𝛼𝑔(𝑥,𝑡)

𝑓(𝑥,𝑡)2+𝑔(𝑥,𝑡)2
,                                                    

𝑣(𝑥, 𝑡) = 𝛽1𝐷𝑥
𝛼 [𝑡𝑎𝑛−1 (

𝑓(𝑥,𝑡)

𝑔(𝑥,𝑡)
)] = 𝛽1

𝑔(𝑥,𝑡)𝐷𝑥
𝛼𝑓(𝑥,𝑡)−𝑓(𝑥,𝑡)𝐷𝑥

𝛼𝑔(𝑥,𝑡)

𝑓(𝑥,𝑡)2+𝑔(𝑥,𝑡)2
,               

                      (10) 

where the constants 𝛽and 𝛽1 require determination. For the single-soliton solution, the auxiliary 

functions 𝑓(𝑥, 𝑡) and 𝑔(𝑥, 𝑡) are defined thusly: 

                      𝑓(𝑥, 𝑡) = 𝑒𝜃1 = 𝑒(𝑘1𝑥
𝛼−𝐾1

3𝑡𝛼) 𝛼⁄  and 𝑔(𝑥, 𝑡) = 1.                                                                 (11) 

By substituting the relations from Equation (11) into Equation (10) and subsequently substituting 

the result into system (3), one can infer values for 𝛽 and 𝛽1 as 𝛽 = 𝑐 and 𝛽1 =
4

𝑎𝑐
, with 𝑐 

representing a constant. Therefore, combining Equations (8) – (11), the single-soliton solution of 

system (3) is explicitly given by  

𝑢1(𝑥, 𝑡) =
𝑐𝑘1𝑒

(𝑘1𝑥
𝛼−𝐾1

3𝑡𝛼) 𝛼⁄

1 + 𝑒2(𝑘1𝑥
𝛼−𝐾1

3𝑡𝛼) 𝛼⁄
,  𝑣1(𝑥, 𝑡) =

4𝑘1𝑒
𝑒
(𝑘1𝑥

𝛼−𝐾1
3𝑡𝛼) 𝛼⁄

𝑎𝑐(1 + 𝑒2(𝑘1𝑥
𝛼−𝐾1

3𝑡𝛼) 𝛼⁄ )
.  

By considering the quotient of 𝑢1 and 𝑣1, the following relationship is deduced 

                                                          
𝑢1(𝑥,𝑡)

 𝑣1(𝑥,𝑡)
=

𝑎 𝑐2

4
.                                                                                  (12) 

In the determination of the two-soliton solutions, the auxiliary functions, 𝑓(𝑥, 𝑡) and 𝑔(𝑥, 𝑡) are 

given by 

                                        {
𝑓(𝑥, 𝑡) = 𝑒𝜃1 + 𝑒𝜃2 = 𝑒(𝑘1𝑥

𝛼−𝐾1
3𝑡𝛼) 𝛼⁄ + 𝑒(𝑘2𝑥

𝛼−𝐾2
3𝑡𝛼) 𝛼⁄ ,

𝑔(𝑥, 𝑡) = 1 − 𝑎12𝑒
𝜃1+𝜃2 = 1 − 𝑎12𝑒

((𝑘1+𝑘2)𝑥
𝛼−(𝐾1

3+𝐾2
3)𝑡𝛼) 𝛼 ⁄ ,

           (13) 

where the term 𝑎12 symbolizes the temporal displacement inherent to a wave formation and is 

referred to as the phase shift. Deduction of the phase shift can be achieved through the 
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substitution of Equation (13) into Equation (10), followed by substituting the result into system 

(3). This procedure gives 

                                                                   𝑎12 =
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2.                                                                      (14) 

This relationship can further be extended to encompass a generic case as depicted below 

                                                                𝑎𝑖𝑗 =
(𝑘𝑖−𝑘𝑗)

2

(𝑘𝑖+𝑘𝑗)
2 , 1 ≤ 𝑖 < 𝑗 ≤ 3.                                                  (15) 

Through incorporating equations (14) and (13) into equation (10), one arrives at the two-soliton 

solutions characterized as 

𝑢2(𝑥, 𝑡) = 𝛽𝐷𝑥
𝛼 [𝑡𝑎𝑛−1 (

𝑓(𝑥,𝑡)

𝑔(𝑥,𝑡)
)] = 𝑐𝐷𝑥

𝛼 [𝑡𝑎𝑛−1 (
𝑒
(𝑘1𝑥

𝛼−𝐾1
3𝑡𝛼) 𝛼⁄

+𝑒
(𝑘2𝑥

𝛼−𝐾2
3𝑡𝛼) 𝛼⁄

1−
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2𝑒

((𝑘1+𝑘2)𝑥
𝛼−(𝐾1

3+𝐾2
3)𝑡𝛼) 𝛼⁄

)], 

𝑣2(𝑥, 𝑡) = 𝛽1𝐷𝑥
𝛼 [𝑡𝑎𝑛−1 (

𝑓(𝑥,𝑡)

𝑔(𝑥,𝑡)
)] =

4

a 𝑐
𝐷𝑥
𝛼 [𝑡𝑎𝑛−1 (

𝑒
(𝑘1𝑥

𝛼−𝐾1
3𝑡𝛼) 𝛼⁄

+𝑒
(𝑘2𝑥

𝛼−𝐾2
3𝑡𝛼) 𝛼⁄

1−
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2𝑒

((𝑘1+𝑘2)𝑥
𝛼−(𝐾1

3+𝐾2
3)𝑡𝛼) 𝛼⁄

)]. 

It is imperative to note, following the demonstration in [24], that the value of 𝑎12 outlined in 

Equation (14) is neither zero nor infinity provided that |𝑘1| ≠ |𝑘2|. Under such conditions, the 

fractional coupled mKdV system presented in system (3) is exempt from generating resonant 

phenomena [25].  

The auxiliary functions 𝑓(𝑥, 𝑡) and 𝑔(𝑥, 𝑡) can be used to construct the three-soliton solutions 

given by 

                    {
𝑓(𝑥, 𝑡) = 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3 − 𝑎12𝑎13𝑎23𝑒

𝜃1+𝜃2+𝜃3,

𝑔(𝑥, 𝑡) = 1 − 𝑎12𝑒
𝜃1+𝜃2 − 𝑎13𝑒

𝜃1+𝜃3 − 𝑎23𝑒
𝜃2+𝜃3 ,

                                                        (16) 

where 𝜃1 = (𝑘1𝑥
𝛼 − k1

3𝑡𝛼) 𝛼, 𝜃2 = (𝑘2𝑥
𝛼 − k2

3𝑡𝛼) 𝛼,⁄⁄  and  𝜃3 = (𝑘3𝑥
𝛼 − k3

3𝑡𝛼) 𝛼⁄ . The phase shifts 

𝑎𝑖𝑗 , where 1 ≤ 𝑖 < 𝑗 ≤ 3, are explained previously in Equation (15).  

The three-soliton solutions of system (3) are obtained by substituting Equation (16) and Equation 

(15) into Equation (10) 

𝑢3(𝑥, 𝑡) = 𝛽𝐷𝑥
𝛼 [𝑡𝑎𝑛−1 (

𝑓(𝑥, 𝑡)

𝑔(𝑥, 𝑡)
)] = 𝑐𝐷𝑥

𝛼 [𝑡𝑎𝑛−1 (
𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3 − 𝑎12𝑎13𝑎23𝑒

𝜃1+𝜃2+𝜃3

1 − 𝑎12𝑒
𝜃1+𝜃2 − 𝑎13𝑒

𝜃1+𝜃3 − 𝑎23𝑒
𝜃2+𝜃3

)], 
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𝑣3(𝑥, 𝑡) = 𝛽1𝐷𝑥
𝛼 [𝑡𝑎𝑛−1 (

𝑓(𝑥,𝑡)

𝑔(𝑥,𝑡)
)] =

4

a 𝑐
𝐷𝑥
𝛼 [𝑡𝑎𝑛−1 (

𝑒𝜃1+𝑒𝜃2+𝑒𝜃3−𝑎12𝑎13𝑎23𝑒
𝜃1+𝜃2+𝜃3

1−𝑎12𝑒
𝜃1+𝜃2−𝑎13𝑒

𝜃1+𝜃3−𝑎23𝑒
𝜃2+𝜃3

)], 

where 𝑎12 = 
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2 , 𝑎13 = 

(𝑘1−𝑘3)
2

(𝑘1+𝑘3)
2 , and 𝑎23 =

(𝑘2−𝑘3)
2

(𝑘2+𝑘3)
2. 

The discovery of the 𝑁-soliton solution is evidently achievable for any distinct positive integer 

within a finite range. 

3.2. Singular-soliton solutions 

The singular-soliton solutions of system (3) are derived using the Hirota transformation 

method [12, 24], as presented below 

           {
𝑢(𝑥, 𝑡) = 𝛽𝐷𝑥

𝛼 [𝑙𝑛 (
𝑓(𝑥,𝑡)

𝑔(𝑥,𝑡)
)] = 𝛽 

𝑔(𝑥,𝑡)𝐷𝑥
𝛼𝑓(𝑥,𝑡)−𝑓(𝑥,𝑡)𝐷𝑥

𝛼𝑔(𝑥,𝑡)

𝑓(𝑥,𝑡)𝑔(𝑥,𝑡)
,

𝑣(𝑥, 𝑡) = 𝛽1𝐷𝑥
𝛼 [𝑙𝑛 (

𝑓(𝑥,𝑡)

𝑔(𝑥,𝑡)
)] = 𝛽1

𝑔(𝑥,𝑡)𝐷𝑥
𝛼𝑓(𝑥,𝑡)−𝑓(𝑥,𝑡)𝐷𝑥

𝛼𝑔(𝑥,𝑡)

𝑓(𝑥,𝑡)𝑔(𝑥,𝑡)
.
                                                  (17) 

As stated in [10], the auxiliary functions 𝑓(𝑥, 𝑡) and 𝑔(𝑥, 𝑡) take the forms of 

                                             {
𝑓(𝑥, 𝑡) = 1 + ∑ 𝑓𝑛(𝑥, 𝑡)

N
𝑛=1 ,

𝑔(𝑥, 𝑡) = 1 − ∑ 𝑔𝑛(𝑥, 𝑡).
N
𝑛=1

                                                                     (18) 

As previously discussed, the concept of the dispersion relation is introduced by 

                                                       𝑐𝑖 = 𝑘𝑖
3, 𝑖 = 1,2, …𝑁,                                                      (19)                                                                                                                                                

and therefore, we have 

                                                     𝜃𝑖 = (𝑘𝑖𝑥
𝛼 − k𝑖

3𝑡𝛼) 𝛼⁄ .                                                                       (20) 

If we set 𝑁 = 1 in Equation (18), then 

                                                    {
𝑓(𝑥, 𝑡) = 1 + 𝑒𝜃1 = 1 + 𝑒(𝑘1𝑥

𝛼−𝐾1
3𝑡𝛼) 𝛼⁄ ,

𝑔(𝑥, 𝑡) = 1 − 𝑒𝜃1 = 1 − 𝑒(𝑘1𝑥
𝛼−𝐾1

3𝑡𝛼) 𝛼⁄ .
                                          (21) 

In order to calculate 𝛽 and 𝛽1in this scenario, we first insert Equation (21) into Equation (17), and 

then substitute the resulting equation into system (3). This gives 𝛽 = 𝑐 and 𝛽1 = −
1

a𝑐
, where c is 

constant. Combining the above-mentioned results, the single-soliton solution of system (3) is 

given by 
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𝑢4(𝑥, 𝑡) =
2𝑐𝑘1𝑒

(𝑘1𝑥
𝛼−𝐾1

3𝑡𝛼) 𝛼⁄

1−𝑒2(𝑘1𝑥
𝛼−𝐾1

3𝑡𝛼) 𝛼⁄
;  and   𝑣4(𝑥, 𝑡) = −

2𝑘1𝑒
𝑒
(𝑘1𝑥

𝛼−𝐾1
3𝑡𝛼) 𝛼⁄

𝑎𝑐(1−𝑒2(𝑘1𝑥
𝛼−𝐾1

3𝑡𝛼) 𝛼⁄ )
. 

Dividing 𝑢4 by 𝑣4 gives 

                                                                 
𝑢4(𝑥,𝑡)

𝑣4(𝑥,𝑡)
= −𝑎 𝑐2.                                                          (22)                                                                                                     

The following auxiliary functions 𝑓(𝑥, 𝑡) and 𝑔(𝑥, 𝑡) are used to determine the singular two-

soliton solutions  

                                                 {
(𝑥, 𝑡) = 1 + 𝑒𝜃1 + 𝑒𝜃2 + 𝑎12𝑒

𝜃1+𝜃2;

𝑔(𝑥, 𝑡) = 1 − 𝑒𝜃1 − 𝑒𝜃2 + 𝑏12𝑒
𝜃1+𝜃2 .

                           (23)                                        

By Substituting Equation (23) into Equation (17) and then substituting the result into system (3), 

we derive  

                                                   𝑎12 = 𝑏12 =
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2.                                                                      (24) 

Next, substituting Equation (24) into Equation (23), we obtain the auxiliary functions 𝑓(𝑥, 𝑡) and 

𝑔(𝑥, 𝑡) as 

         {
𝑓(𝑥, 𝑡) = 1 + 𝑒(𝑘1𝑥

𝛼−𝐾1
3𝑡𝛼) 𝛼⁄ + 𝑒(𝑘2𝑥

𝛼−𝐾2
3𝑡𝛼) 𝛼⁄ +

(𝑘1−𝑘2)
2

(𝑘1+𝑘2)
2 𝑒

((𝑘1+𝑘2)𝑥
𝛼−(𝐾1

3+𝐾2
3)𝑡𝛼) 𝛼⁄ ,

𝑔(𝑥, 𝑡) = 1 − 𝑒(𝑘1𝑥
𝛼−𝐾1

3𝑡𝛼) 𝛼⁄ − 𝑒(𝑘2𝑥
𝛼−𝐾2

3𝑡𝛼) 𝛼⁄ +
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2 𝑒

((𝑘1+𝑘2)𝑥
𝛼−(𝐾1

3+𝐾2
3)𝑡𝛼) 𝛼⁄ .

             (25) 

The singular two-soliton solutions are obtained by substituting Equation (25) into Equation (17) 

to get 

𝑢5(𝑥, 𝑡) = 𝛽𝐷𝑥
𝛼 [𝑙𝑛 (

𝑓(𝑥, 𝑡)

𝑔(𝑥, 𝑡)
)] 

= 𝑐𝐷𝑥
𝛼 [𝑙𝑛(

1+𝑒
(𝑘1𝑥

𝛼−𝐾1
3𝑡𝛼) 𝛼⁄

+ 𝑒
(𝑘2𝑥

𝛼−𝐾2
3𝑡𝛼) 𝛼⁄

+
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2𝑒

((𝑘1+𝑘2)𝑥
𝛼−(𝐾1

3+𝐾2
3)𝑡𝛼) 𝛼⁄

1−𝑒(𝑘1𝑥
𝛼−𝐾1

3𝑡𝛼) 𝛼⁄ − 𝑒(𝑘2𝑥
𝛼−𝐾2

3𝑡𝛼) 𝛼⁄ +
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2𝑒

((𝑘1+𝑘2)𝑥
𝛼−(𝐾1

3+𝐾2
3)𝑡𝛼) 𝛼.⁄

)], 

𝑣5(𝑥, 𝑡) = 𝛽1𝐷𝑥
𝛼 [𝑙𝑛 (

𝑓(𝑥, 𝑡)

𝑔(𝑥, 𝑡)
)] 
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= −
1

a 𝑐
𝐷𝑥
𝛼 [𝑙𝑛 (

1+𝑒
(𝑘1𝑥

𝛼−𝐾1
3𝑡𝛼) 𝛼⁄

+ 𝑒
(𝑘2𝑥

𝛼−𝐾2
3𝑡𝛼) 𝛼⁄

+
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2𝑒

((𝑘1+𝑘2)𝑥
𝛼−(𝐾1

3+𝐾2
3)𝑡𝛼) 𝛼⁄

 

1−𝑒(𝑘1𝑥
𝛼−𝐾1

3𝑡𝛼) 𝛼⁄ − 𝑒(𝑘2𝑥
𝛼−𝐾2

3𝑡𝛼) 𝛼⁄ +
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2𝑒

((𝑘1+𝑘2)𝑥
𝛼−(𝐾1

3+𝐾2
3)𝑡𝛼) 𝛼.⁄

)]. 

To construct a singular three-soliton solution, the following auxiliary functions are used 

          {
𝑓(𝑥, 𝑡) = 1 + 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3 + 𝑎12𝑒

𝜃1+𝜃2 + 𝑎13𝑒
𝜃1+𝜃3 + 𝑎23𝑒

𝜃2+𝜃3 + 𝑓3(𝑥, 𝑡),

𝑔(𝑥, 𝑡) = 1 − 𝑒𝜃1 − 𝑒𝜃2 − 𝑒𝜃3 + 𝑎12𝑒
𝜃1+𝜃2 + 𝑎13𝑒

𝜃1+𝜃3 + 𝑎23𝑒
𝜃2+𝜃3 + 𝑔3(𝑥, 𝑡).  

                (26)                                 

By substituting Equation (26) into Equation (17) then substituting the result in system (3), we 

obtain 

           {
𝑓3(𝑥, 𝑡) = 𝑏123𝑒

𝜃1+𝜃2+𝜃3 ,                                      

 𝑔3(𝑥, 𝑡) = −𝑏123𝑒
𝜃1+𝜃2+𝜃3 ,  𝑏123 = 𝑎12𝑎13𝑎23,

                                                                       (27)                                          

where 𝑎𝑖𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 3, are derived above in Equation (15). Then, the auxiliary functions 𝑓(𝑥, 𝑡) 

and 𝑔(𝑥, 𝑡) are given by 

         

{
 
 
 
 
 
 

 
 
 
 
 
 𝑓(𝑥, 𝑡) = 1 + 𝑒

(𝑘1𝑥
𝛼−𝐾1

3𝑡𝛼) 𝛼⁄ + 𝑒(𝑘2𝑥
𝛼−𝐾2

3𝑡𝛼) 𝛼⁄ + 𝑒(𝑘3𝑥
𝛼−𝐾3

3𝑡𝛼) 𝛼⁄                                 

                      +
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2 𝑒

((𝑘1+𝑘2)𝑥
𝛼−(𝐾1

3+𝐾2
3)𝑡𝛼) 𝛼⁄ +

(𝑘1−𝑘3)
2

(𝑘1+𝑘3)
2 𝑒

((𝑘1+𝑘3)𝑥
𝛼−(𝐾1

3+𝐾3
3)𝑡𝛼) 𝛼⁄

+
(𝑘2−𝑘3)

2

(𝑘2+𝑘3)
2 𝑒

((𝑘2+𝑘3)𝑥
𝛼−(𝐾2

3+𝐾3
3)𝑡𝛼) 𝛼⁄                                          

+
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2

(𝑘1−𝑘3)
2

(𝑘1+𝑘3)
2

(𝑘2−𝑘3)
2

(𝑘2+𝑘3)
2 𝑒

((𝑘1+𝑘2+𝑘3)𝑥
𝛼−(𝐾1

3+𝐾2
3+𝑘3

3)𝑡𝛼) 𝛼 ,⁄

𝑔(𝑥, 𝑡) = 1 − 𝑒(𝑘1𝑥
𝛼−𝐾1

3𝑡𝛼) 𝛼⁄ − 𝑒(𝑘2𝑥
𝛼−𝐾2

3𝑡𝛼) 𝛼⁄ − 𝑒(𝑘3𝑥
𝛼−𝐾3

3𝑡𝛼) 𝛼⁄                                  

                     +
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2 𝑒

((𝑘1+𝑘2)𝑥
𝛼−(𝐾1

3+𝐾2
3)𝑡𝛼) 𝛼⁄ +

(𝑘1−𝑘3)
2

(𝑘1+𝑘3)
2 𝑒

((𝑘1+𝑘3)𝑥
𝛼−(𝐾1

3+𝐾3
3)𝑡𝛼) 𝛼⁄

+
(𝑘2−𝑘3)

2

(𝑘2+𝑘3)
2 𝑒

((𝑘2+𝑘3)𝑥
𝛼−(𝐾2

3+𝐾3
3)𝑡𝛼) 𝛼⁄                                           

−
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2

(𝑘1−𝑘3)
2

(𝑘1+𝑘3)
2

(𝑘2−𝑘3)
2

(𝑘2+𝑘3)
2 𝑒

((𝑘1+𝑘2+𝑘3)𝑥
𝛼−(𝐾1

3+𝐾2
3+𝑘3

3)𝑡𝛼) 𝛼⁄ .

              (28) 

The singular three-soliton solution is then obtained by substituting Equation (28) into Equation 

(17). 

4. Multiple and singular soliton solutions of system (4) 

We next consider the fractional coupled mKdV equation of system (4) given by 

𝐷𝑡
𝛼𝑢 + 6𝑎𝑢𝑣𝐷𝑥

𝛼𝑣 + 6(𝑢2 − 𝑣2)𝐷𝑥
𝛼𝑢 + 𝐷𝑥

𝛼𝛼𝛼𝑢 = 0, 

𝐷𝑡
𝛼𝑣 + 24𝑎𝑢𝑣𝐷𝑥

𝛼𝑢 + 6(𝑢2 − 𝑣2)𝐷𝑥
𝛼𝑣 + 𝐷𝑥

𝛼𝛼𝛼𝑣 = 0, 

where 𝑎 is constant. When 𝑢 = 𝑣, the above system becomes the second fractional coupled mKdV 

equation. 
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4.1. Multiple-soliton solutions  

As given earlier, the dispersion relation 𝑐𝑖 = 𝑘𝑖
3 and 𝜃𝑖 = (𝑘𝑖𝑥

𝛼 − k𝑖
3𝑡𝛼) 𝛼⁄ . The multiple-

soliton solutions of system (4) are assumed earlier in Equation (10) where the auxiliary functions 

are as given above in Equation (11). Substituting Equation (11) into Equation (10), and then 

substituting the result into system (4) gives 𝛽 and 𝛽1 as 

𝛽 = ±
2

√4𝑎 − 3
 𝑎𝑛𝑑  𝛽1 = ±

4

√4𝑎 − 3
, 𝑎 >

3

4
. 

By combining these results, the single-soliton solution can be expressed as follows: 

𝑢6(𝑥, 𝑡) = ±
2𝑘1𝑒

(𝑘1𝑥
𝛼−𝐾1

3𝑡𝛼) 𝛼⁄

√4𝑎−3(1+𝑒2(𝑘1𝑥
𝛼−𝐾1

3𝑡𝛼) 𝛼⁄ )
, 𝑣6(𝑥, 𝑡) = ±

4𝑘1𝑒
(𝑘1𝑥

𝛼−𝐾1
3𝑡𝛼) 𝛼⁄

√4𝑎−3(1+𝑒2(𝑘1𝑥
𝛼−𝐾1

3𝑡𝛼) 𝛼⁄ )
;   𝑎 >

3

4
.           

These results provide the relation between 𝑢6(𝑥, 𝑡) and 𝑣6(𝑥, 𝑡) as follows 

                                                                
𝑢6(𝑥,𝑡)

𝑣6(𝑥,𝑡)
= ±

1

2
.                                                                           (29)                                          

The two-soliton solutions are determined by substituting Equation (13) into Equation (10) and 

then substituting the result into system (4). This gives the following phase shift 

                                                                 𝑎12 =
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2.                                                                        (30) 

The generalization of Equation (30) provides 

                                                                 𝑎𝑖𝑗 =
(𝑘𝑖−𝑘𝑗)

2

(𝑘𝑖+𝑘𝑗)
2 , 1 ≤ 𝑖 < 𝑗 ≤ 3.                                                 (31) 

The two-soliton solutions are obtained by substituting Equations (30) and (13) into Equation (10) 

𝑢7(𝑥, 𝑡) = 𝛽𝐷𝑥
𝛼 [𝑡𝑎𝑛−1 (

𝑓(𝑥,𝑡)

𝑔(𝑥,𝑡)
)] = ±

2

√4𝑎−3
𝐷𝑥
𝛼 [𝑡𝑎𝑛−1 (

𝑒
(𝑘1𝑥

𝛼−𝐾1
3𝑡𝛼) 𝛼⁄

+𝑒
(𝑘2𝑥

𝛼−𝐾2
3𝑡𝛼) 𝛼⁄

1−
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2𝑒

((𝑘1+𝑘2)𝑥
𝛼−(𝐾1

3+𝐾2
3)𝑡𝛼) 𝛼⁄

)], 

𝑣7(𝑥, 𝑡) = 𝛽1𝐷𝑥
𝛼 [𝑡𝑎𝑛−1 (

𝑓(𝑥,𝑡)

𝑔(𝑥,𝑡)
)] = ±

4

√4𝑎−3
𝐷𝑥
𝛼 [𝑡𝑎𝑛−1 (

𝑒
(𝑘1𝑥

𝛼−𝐾1
3𝑡𝛼) 𝛼⁄

+𝑒
(𝑘2𝑥

𝛼−𝐾2
3𝑡𝛼) 𝛼⁄

1−
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2𝑒

((𝑘1+𝑘2)𝑥
𝛼−(𝐾1

3+𝐾2
3)𝑡𝛼) 𝛼⁄

)]. 

The three-soliton solutions of system (4) are then determined by substituting Equations (31) and 

Equation (16) into Equation (10). The 𝑁-soliton solution is evidently achievable for any distinct 

positive integer within a finite range. 
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4.2. Singular-soliton solutions 

Proceeding as before, the dispersion relation 𝑐𝑖 = 𝑘𝑖
3 and 𝜃𝑖 = (𝑘𝑖𝑥

𝛼 − k𝑖
3𝑡𝛼) 𝛼⁄ . Substituting 

Equation (21) into (17) and then substituting the result into system (4), 𝛽 and 𝛽1are given by  

𝛽 = ±
1

√3−4𝑎
 and  𝛽1 = ±

2

√3−4𝑎
; 𝑎 <

3

4
. 

By synthesizing this result with the results of the auxiliary functions presented in Equation (21), 

the singular-soliton solutions are given by 

𝑢8 = ±
2𝑘1𝑒

(𝑘1𝑥
𝛼−𝑘1

3𝑡𝛼)
𝛼
⁄

√3−4𝑎(1−𝑒
2(𝑘1𝑥

𝛼−𝑘1
3𝑡𝛼)

𝛼
⁄
)

,   𝑣8 = ±
4 𝑘1𝑒

(𝑘1𝑥
𝛼−𝑘1

3𝑡𝛼)
𝛼
⁄

√3−4𝑎(1−𝑒
2(𝑘1𝑥

𝛼−𝑘1
3𝑡𝛼)

𝛼
⁄
)

. 

It is now obvious that   

                                                            
𝑢8(𝑥,𝑡)

𝑣8(𝑥,𝑡)
= ±

1

2
.                                                                       (32)                              

The singular two-soliton solutions are constructed by substituting Equation (23) into Equation 

(17) and then substituting the result into system (4). Therefore, the phase shifts are 

                                                            𝑎12 = 𝑏12 =
(𝑘1−𝑘2)

2

(𝑘1−𝑘2)
2.                                                    (33)                                       

In case of the two-soliton solutions, we use Equation (33) to obtain the auxiliary functions 

presented in Equation (25). As a result of this, the singular two-soliton solutions are obtained if 

we substitute Equation (25) into Equation (17) 

𝑢9(𝑥, 𝑡) = 𝛽𝐷𝑥
𝛼 [𝑙𝑛 (

𝑓(𝑥, 𝑡)

𝑔(𝑥, 𝑡)
)] 

= ±
1

√3−4a
𝐷𝑥
𝛼 [𝑙𝑛 (

1+𝑒
(𝑘1𝑥

𝛼−𝐾1
3𝑡𝛼) 𝛼⁄

+ 𝑒
(𝑘2𝑥

𝛼−𝐾2
3𝑡𝛼) 𝛼⁄

+
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2𝑒

((𝑘1+𝑘2)𝑥
𝛼−(𝐾1

3+𝐾2
3)𝑡𝛼) 𝛼⁄

1−𝑒(𝑘1𝑥
𝛼−𝐾1

3𝑡𝛼) 𝛼⁄ − 𝑒(𝑘2𝑥
𝛼−𝐾2

3𝑡𝛼) 𝛼⁄ +
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2𝑒

((𝑘1+𝑘2)𝑥
𝛼−(𝐾1

3+𝐾2
3)𝑡𝛼) 𝛼.⁄

)], 

𝑣9(𝑥, 𝑡) = 𝛽1𝐷𝑥
𝛼 [𝑙𝑛 (

𝑓(𝑥, 𝑡)

𝑔(𝑥, 𝑡)
)] 

= ±
2

√3−4a
𝐷𝑥
𝛼 [𝑙𝑛 (

1+𝑒
(𝑘1𝑥

𝛼−𝐾1
3𝑡𝛼) 𝛼⁄

+ 𝑒
(𝑘2𝑥

𝛼−𝐾2
3𝑡𝛼) 𝛼⁄

+
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2𝑒

((𝑘1+𝑘2)𝑥
𝛼−(𝐾1

3+𝐾2
3)𝑡𝛼) 𝛼⁄

 

1−𝑒(𝑘1𝑥
𝛼−𝐾1

3𝑡𝛼) 𝛼⁄ − 𝑒(𝑘2𝑥
𝛼−𝐾2

3𝑡𝛼) 𝛼⁄ +
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2𝑒

((𝑘1+𝑘2)𝑥
𝛼−(𝐾1

3+𝐾2
3)𝑡𝛼) 𝛼.⁄

)]. 
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To specify the singular three-soliton solutions of system (4), we substitute Equation (26) into 

Equation (17) and then substitute the result into system (4) to obtain 

                   {
𝑓3(𝑥, 𝑡) = 𝑏123𝑒

𝜃1+𝜃2+𝜃3 ,                                                

  𝑔3(𝑥, 𝑡) = −𝑏123𝑒
𝜃1+𝜃2+𝜃3 , and 𝑏123 = 𝑎12𝑎13𝑎23.

                                                        (34) 

For the singular three-soliton solutions, we use the result of Equation (34) to obtain 

                 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑓(𝑥, 𝑡) = 1 + 𝑒

(𝑘1𝑥
𝛼−𝐾1

3𝑡𝛼) 𝛼⁄ + 𝑒(𝑘2𝑥
𝛼−𝐾2

3𝑡𝛼) 𝛼⁄ + 𝑒(𝑘3𝑥
𝛼−𝐾3

3𝑡𝛼) 𝛼⁄                                 

                      +
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2 𝑒

((𝑘1+𝑘2)𝑥
𝛼−(𝐾1

3+𝐾2
3)𝑡𝛼) 𝛼⁄ +

(𝑘1−𝑘3)
2

(𝑘1+𝑘3)
2 𝑒

((𝑘1+𝑘3)𝑥
𝛼−(𝐾1

3+𝐾3
3)𝑡𝛼) 𝛼⁄

+
(𝑘2−𝑘3)

2

(𝑘2+𝑘3)
2 𝑒

((𝑘2+𝑘3)𝑥
𝛼−(𝐾2

3+𝐾3
3)𝑡𝛼) 𝛼⁄                                          

+
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2

(𝑘1−𝑘3)
2

(𝑘1+𝑘3)
2

(𝑘2−𝑘3)
2

(𝑘2+𝑘3)
2 𝑒

((𝑘1+𝑘2+𝑘3)𝑥
𝛼−(𝐾1

3+𝐾2
3+𝑘3

3)𝑡𝛼) 𝛼⁄ ,

𝑔(𝑥, 𝑡) = 1 − 𝑒(𝑘1𝑥
𝛼−𝐾1

3𝑡𝛼) 𝛼⁄ − 𝑒(𝑘2𝑥
𝛼−𝐾2

3𝑡𝛼) 𝛼⁄ − 𝑒(𝑘3𝑥
𝛼−𝐾3

3𝑡𝛼) 𝛼⁄                                  

                     +
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2 𝑒

((𝑘1+𝑘2)𝑥
𝛼−(𝐾1

3+𝐾2
3)𝑡𝛼) 𝛼⁄ +

(𝑘1−𝑘3)
2

(𝑘1+𝑘3)
2 𝑒

((𝑘1+𝑘3)𝑥
𝛼−(𝐾1

3+𝐾3
3)𝑡𝛼) 𝛼⁄

+
(𝑘2−𝑘3)

2

(𝑘2+𝑘3)
2 𝑒

((𝑘2+𝑘3)𝑥
𝛼−(𝐾2

3+𝐾3
3)𝑡𝛼) 𝛼⁄                                           

    −
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2

(𝑘1−𝑘3)
2

(𝑘1+𝑘3)
2

(𝑘2−𝑘3)
2

(𝑘2+𝑘3)
2 𝑒

((𝑘1+𝑘2+𝑘3)𝑥
𝛼−(𝐾1

3+𝐾2
3+𝑘3

3)𝑡𝛼)𝑡𝛼) 𝛼⁄ .

       (35) 

Equation (35) in turn gives the three singular-soliton solutions of system (4) if we substitute it into 

Equation (17). 

5. Multiple and singular soliton solutions of system (5) 

We study now the fractional coupled mKdV of system (5) given by 

𝐷𝑡
𝛼𝑢 + 𝑎(𝑣2 − 𝑢2)𝐷𝑥

𝛼𝑢 +
𝑎

4
𝐷𝑥
𝛼𝛼𝛼𝑢 = 0, 

𝐷𝑡
𝛼𝑣 + 𝑎(𝑣2 − 𝑢2)𝐷𝑥

𝛼𝑣 +
𝑎

4
𝐷𝑥
𝛼𝛼𝛼𝑣 = 0, 

where 𝑎 is an arbitrary constant. 

5.1. Multiple-soliton solutions 

Note that this section follows the same methodology as the previous sections. Some details 

are omitted to avoid redundancy. By substituting Equation (11) into Equation (10), and then 

substituting the result into system (5) we obtain 𝛽 and 𝛽1 as 

𝛽 = √
6

𝑐2−1
 𝑎𝑛𝑑 𝛽1 = √

6

𝑐2−1
𝑐;  𝑐 > 1. 
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Here, 𝑐 is an arbitrary constant. Combining this result with the result of Equation (10), the single-

soliton solution is 

𝑢10(𝑥, 𝑡) =
√

6

𝑐2−1
 𝑘1𝑒

(𝑘1𝑥
𝛼−𝐾1

3𝑡𝛼) 𝛼⁄

1+𝑒2(𝑘1𝑥
𝛼−𝐾1

3𝑡𝛼) 𝛼⁄
,  𝑣10(𝑥, 𝑡) =

√
6

𝑐2−1
𝑐𝑘1𝑒

𝑒
(𝑘1𝑥

𝛼−𝐾1
3𝑡𝛼) 𝛼⁄

1+𝑒2(𝑘1𝑥
𝛼−𝐾1

3𝑡𝛼) 𝛼⁄
. 

The two-soliton solutions are constructed by substituting Equation (13) into Equation (10) and 

then substituting the result into system (5). Thus, the phase shifts are 

                                                𝑎12 =
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2.                                                                                         (36) 

Equation (36) can be extended to other related scenarios, where 

                                               𝑎𝑖𝑗 =
(𝑘𝑖−𝑘𝑗)

2

(𝑘𝑖+𝑘𝑗)
2 , where 1 ≤ 𝑖 < 𝑗 ≤ 3.                                                     (37) 

The two-soliton solutions are then obtained by substituting Equations (36) and (13) into Equation 

(10) as follows 

𝑢11(𝑥, 𝑡) = 𝛽𝐷𝑥
𝛼 [𝑡𝑎𝑛−1 (

𝑓(𝑥,𝑡)

𝑔(𝑥,𝑡)
)] = √

6

𝑐2−1
𝐷𝑥
𝛼 [𝑡𝑎𝑛−1 (

𝑒
(𝑘1𝑥

𝛼−𝐾1
3𝑡𝛼) 𝛼⁄

+𝑒
(𝑘2𝑥

𝛼−𝐾2
3𝑡𝛼) 𝛼⁄

1−
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2𝑒

((𝑘1+𝑘2)𝑥
𝛼−(𝐾1

3+𝐾2
3)𝑡𝛼) 𝛼⁄

)], 

𝑣11(𝑥, 𝑡) = 𝛽1𝐷𝑥
𝛼 [𝑡𝑎𝑛−1 (

𝑓(𝑥,𝑡)

𝑔(𝑥,𝑡)
)] = √

6

𝑐2−1
𝑐 𝐷𝑥

𝛼 [𝑡𝑎𝑛−1 (
𝑒
(𝑘1𝑥

𝛼−𝐾1
3𝑡𝛼) 𝛼⁄

+𝑒
(𝑘2𝑥

𝛼−𝐾2
3𝑡𝛼) 𝛼⁄

1−
(𝑘1−𝑘2)

2

(𝑘1+𝑘2)
2𝑒

((𝑘1+𝑘2)𝑥
𝛼−(𝐾1

3+𝐾2
3)𝑡𝛼) 𝛼⁄

)]. 

The three-soliton solutions of system (5) are then obtained by substituting Equations (37) and 

Equation (16) into Equation (10). The 𝑁-soliton solution is evidently achievable for any positive 

integer within a finite range. 

5.2. Singular soliton solutions 

The single, two and three-soliton solutions of system (5) can be obtained by following the 

same steps that were used in the previous sections. 

6. Conclusion: 

In this paper, the application of the Hirota bilinear method has been meticulously employed 

to generate analytical solutions for the space-time fractional coupled modified Korteweg–de Vries 
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(mKdV) equations, whereby the conformable fractional derivative (CFD) has been incorporated. 

A spectrum of both multiple and singular soliton solutions for the fractional coupled mKdV 

equations have been acquired. The proficiency, simplicity, and practicality of the Hirota bilinear 

method are evident from the results presented within this study. Such a method offered 

promising avenues for addressing complex problems that span various scientific domains. The 

derived soliton solutions in this study were match the solutions provided [25] when the value of 

𝛼 equals 1. These results bear considerable implications for computational and empirical research 

in wave dynamics. All calculations within this study were conducted using MAPLE software. 

Future studies could explore higher-order fractional derivatives within the fractional coupled 

mKdV equation to broaden our comprehension of such phenomena. 
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