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Generation of Anti-Magic Graphs
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Abstract. An anti-magic labeling of a graph G is a one-to-one correspondence between E(G) and {1, 2, · · · , |E|} such that

the vertex-sum for distinct vertices are different. Vertex-sum of a vertex u ∈ V(G) is the sum of labels assigned to edges

incident to the vertex u. In this paper, we prove that the splittance of an anti-magic graph admits anti-magic labeling.

It was conjectured by Hartsfield and Ringel that every tree other than K2 has an anti-magic labeling. In this paper, we

prove that there exists infinitely many trees that are anti-magic.

1. Introduction

All graphs considered in this paper are simple, finite and undirected. Terms that are not defined

in this paper can be refered from book [10]. Let G = (V, E) be a graph and f : E → {1, 2, · · · , |E|}
is a bijective function. For each vertex u ∈ V(G), the vertex-sum ϕ f (u) at u is defined as ϕ f (u) =∑
e∈E(u)

f (e), where E(u) is the set of edges incident to u. Ifϕ f (u) , ϕ f (u) for any two distinct vertices

u, v of G, then f is called an anti-magic labeling of G. A graph G is called anti-magic if G has an

anti-magic labeling. The problem of anti-magic labeling of graphs was introduced by Hartsfield

and Ringel [4]. They posed the following conjectures on anti-magic labeling of graphs.

Conjecture 1.1. [4] Every connected graph other than K2 is anti-magic.

Conjecture 1.2. [4] Every tree other than K2 is anti-magic.

In spite of much attention given by many researchers, both conjectures remain open. Alon

et al. [1] proved that there is an absolute constant C such that graphs with minimum degree

δ(G) ≥ C log|V(G)| are anti-magic. Also they proved that all complete partite graphs except K2
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are anti-magic. Liang and Zhu [6] proved that cubic graphs are anti-magic. Cranston, Liang and

Zhu [2] proved that odd degree regular graphs are anti-magic.

For Conjecture 2, J. Shang [9] proved that spiders are antimagic. Kaplan et al. [5] showed that

trees without vertices of degree 2 are anti-magic. Liang, Wong and Zhu [7] studied trees with

many degree 2 vertices, with restriction on the subgraph induced by degree 2 vertices and its

complement. They proved that such trees are anti-magic. For an exhaustive survey on anti-magic

graphs, we refer the dynamic survey by Gallian [3].

2. Splittance of an anti-magic graph is anti-magic

In this section, we prove that the splittance of an anti-magic graph is anti-magic. Splittance of a

graph was introduced by Sampathkumar and Walikar [8] in the year 1980. Let G be a graph. Add

a new vertex u′ for every vertex u of G. Add edges between u′ and all the vertices of G that are

adjacent to vertex u. The graph thus obtained is called splitting graph of G and is denoted as S(G).

One can easily observe that if G is a (p, q) graph, then S(G) is a (2p, 3q) graph. In [8], Sampathkumar

and Walikar proved the following characterization result on splittance of a graph.

Theorem 2.1. A graph G is a splitting graph if and only if V(G) can be partitioned into two sets
V1 ∪ V2 such that (i) there exists a bijective mapping V1 → V2 and (ii) N(v2) = N(v1) ∩ V1, where
N(v) = {u : uv ∈ E(G)}.

Now, let us prove one of our main results.

Theorem 2.2. Let G be an anti-magic graph such that δ(G) ≥ 2. Then the splittance graph of G is
anti-magic.

Proof. Let G be an anti-magic graph with n vertices and m edges. Consider f : E→ {1, 2, · · · , |E|} be

the anti-magic labeling of G. Also, for each vertex u of G, the vertex-sum ϕ f (u) =
∑

e∈E(u)
f (e) at u is

distinct, where E(u) is the set of edges incident to u. For convenience, let us arrange and label the

vertices of G as u1, u2, · · · , un such that ϕ f (u1) < ϕ f (u2) < ϕ f (u3) · · · < ϕ f (un). Let us arrange and

label the edges of G as e1, e2, · · · , em such that f (ei) = i for 1 ≤ i ≤ m. Let u′1, u′2, · · · , u′n are the set

of new vertices with respect to the set of vertices u1, u2, u3, · · · , un respectively. For any vertex u′i ,

1 ≤ i ≤ n, let us introduce the new edges and label them as e(i)1 , e(i)2 , · · · , e(i)ki
, where ki = deg(ui), such

that their counterpart edges in the graph G has increasing edge labels as defined by the bijective

function f . More precisely, the newly added edges incident to vertex u′i are arranged in such a

way that their arrangement f (e1) < f (e2) < · · · < f (eki) as defined by the function f .

In the above set up, the vertex set of splittance of graph S(G) can be partitioned as V(S(G)) =

V1 ∪V2, where V1 = V(G) and V2 = {u′1, u′2, · · · , u′n}. The edges of splittance of graph S(G) can

be partitioned as E(S(G)) = E1 ∪ E2, where E1 = E(G) and E2 = {e(i)1 , e(i)2 , · · · , e(i)ki
}, for 1 ≤ i ≤ n.

It is clear that S(G) has 2n vertices and 3m edges. Now, let us define the bijective function

s : E(S(G))→ {1, 2, · · · , 3m} as follows:
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For any edge e(i)r ∈ E2, for 1 ≤ i ≤ n and 1 ≤ r ≤ deg(ui):

s(e(i)r ) = r +
i−1∑
j=1

deg(u′j) (2.1)

For any edge ei ∈ E1, 1 ≤ m:

s(ei) = 2m + f (e1) (2.2)

It is clear that from equation (2.1), the edge labels of 2m edges in E2 are distinct and are from

the set {1, 2, 3, · · · , 2m} as defined by function s. Also from equation (2.2), it is clear that the edge

labels of m edges in E1 are distinct and are from the set {2m + 1, 2m + 2, · · · , 3m} as defined by

function s. Therefore, the function s is bijective.

Claim: Vertex-sum ϕs(u) for any vertex u ∈ V(S(G)) is distinct.

Proof. Recall that for each vertex u of S(G), the vertex-sum ϕs(u) at u is defined by ϕs(u) =∑
e∈E(u)

s(e), where E(u) is the set of edges incident to u. By the construction and arrangement

of vertices and edges of S(G) and since δ(G) ≥ 2 and hence δ(S(G)) ≥ 2, we can form the

monotonically increasing sequence of vertex-sums of vertices of S(G) as follows:

ϕs(u′1),ϕs(u′2),ϕs(u′3), · · · ,ϕs(u′n) followed by ϕs(u1),ϕs(u2),ϕs(u3), · · · ,ϕs(un)

Therefore, Vertex-sum ϕs(u) for any vertex u ∈ V(S(G)) is distinct. �

By the construction and arrangement of vertices and edges of S(G), we defined a bijective

function s : E(S(G)) → {1, 2, · · · , 3m} and hence vertex-sum for any vertex in S(G) is distinct.

Therefore, splittance graph S(G) is anti-magic. Hence the proof. �

3. Construction of anti-magic trees

In this section, we construct infinitely many anti-magic trees given an anti-magic tree. To prove

our result, we introduce some basic definitions.

Definition 3.1. Let G be an anti-magic graph whose anti-magic labeling is given by bijective function
f : E(G) → {1, 2, · · · , |E|}. Let k = max

u∈V(G)
{ϕ f (u)}. A vertex u ∈ V(G) is said to be anti-magic maximum

vertex if ϕ f (u) = k and we denote such vertex as û.

Definition 3.2. Let T be an anti-magic tree. Construct a tree by considering two copies namely T(1) and
T(2) of T. Add an edge between the anti-magic maximum vertex of T(1) and T(2). We denote the tree thus
obtained as T̂.

Remark 3.1. If T has m edges, then T̂ has 2m + 1 edges. Further, it is clear that anti-magic maximum
vertex in any anti-magic graph is unique with respect to the anti-magic labeling.

Theorem 3.1. Let T be an anti-magic tree. Then T̂ admits anti-magic labeling.
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Proof. Since T is an anti-magic tree with m edges, there exists a bijective function f : E(T) →
{1, 2, · · · , m} and its vertex-sum of vertices ϕ f (u) for any vertex u ∈ V(T) form a monotonically

increasing sequence. For convenience, let us arrange the vertices of T as u1, u2, · · · , um+1 such

that ϕ f (u1) < ϕ f (u1) < ϕ f (u3) < · · · < ϕ f (um+1). In view of definition , um+1 = û with respect

to the bijective function f . Similarly, let us arrange the edges of T as e1, e2, · · · , em such that

f (e1) < f (e2) < · · · < f (em). Denote u(1)
1 , u(1)

2 , · · · , u(1)
m+1 and u(2)

1 , u(2)
2 , · · · , u(2)

m+1 be the arrangement

of vertices in the first copy and second copy of T respectively. Similarly, denote e(1)1 , e(1)2 , · · · , e(1)m and

e(2)1 , e(2)2 , · · · , e(2)m be the arrangement of edges in the first copy and second copy of T respectively.

Denote û(1) and û(2) be the anti-magic maximum vertices of first copy and second copy of T
respectively. Observe that T̂ = T(1)

∪ T(2) + ê, where ê = (û(1), û(2)).

Now, let us define a bijective function s : E(T̂)→ {1, 2, · · · , 2m + 1} as follows:

For any edge e(1)i , for 1 ≤ i ≤ m,

s(e(1)i ) = 2 f (ei) − 1 (3.1)

For any edge e(2)i , for 1 ≤ i ≤ m,

s(e(2)i ) = 2 f (ei) (3.2)

s(ê) = 2m + 1 (3.3)

By the definition of function s, it is clear that it is a bijective function defined on the edge set of

T̂.

Claim: Vertex-sum ϕs(u) for any vertex u ∈ V(T̂) is distinct.

Proof. By the construction and arrangement of vertices and edges of T̂, we can form the monoton-

ically increasing sequence of vertex-sum of vertices of T̂ as follows:

ϕs(u
(1)
1 ),ϕs(u

(2)
1 ),ϕs(u

(1)
2 ),ϕs(u

(2)
2 ), · · · ,ϕs(u

(1)
i ),ϕs(u

(2)
i ), · · · ,ϕs(û(1)),ϕs(û(2))

Therefore, Vertex-sum ϕs(u) for any vertex u ∈ V(T̂) is distinct. �

By the construction and arrangement of vertices and edges of T̂, we defined a bijective function

s : E(T̂) → {1, 2, · · · , 2m + 1} and hence vertex-sum for any vertex in T̂ is distinct. Therefore, T̂ is

anti-magic. Hence the proof.

�

Remark 3.2. We can construct infinitely many anti-magic trees by recursively applying Theorem 3.

4. Conclusion

In this paper, we proved that splittance of an anti-magic graph is anti-magic. Further, we proved

that there exists infinitely many anti-magic trees. Our results in this paper strongly supports the

conjectures that every connected graph other than K2 is anti-magic and every tree other than K2 is

anti-magic, posed by Hartsfield and Ringel [4].
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