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Abstract. This research presents a highly efficient fixed point algorithm for the computation of fixed points for a

very general class of nonexpansive mappings called generalized (α, β)-nonexpansive mappings within the context

of uniformly convex Banach space. Our research establishes both weak and strong convergence theorems of the

scheme. Furthermore, we demonstrate that the class of generalized (α, β)-nonexpansive mappings contain many

classes of nonlinear mappings of the classical literature. Then, we perform various numerical computations to prove

the efficiency of the proposed approach. We also study the convergence analysis of the scheme for two dimensional

space with taxicab norm. Moreover, we show that our new result gives an alternative approach for solving Caputo

fractional differential equation in a novel mappings setting.

1. Introduction

Throughtout the paper Ω denotes Banach space and Ψ is its nonempty closed convex subset.

An element ℘ of Ψ is called fixed point of the mapping M : Ψ→ Ψ if M℘ = ℘. If M posses a fixed

point then Fix(M) = {℘ ∈ Ψ : M℘ = ℘} is the set of all fixed point of M. A mapping M is said to be

contraction mapping if there exist some γ ∈ [0, 1) such that ‖Mη −Mµ‖ ≤ γ‖η − µ‖. The mapping

M is called nonexpansive if ‖Mη−Mµ‖ ≤ ‖η− µ‖.

Fixed point theory plays an important role in the field of mathematical analysis, providing

essential tools for finding the solution of those problems of mathematical sciences for which either
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analytical methods are time consumer or they failed to provide the solution. The search for

finding these fixed points encouraged in the development of many mathematical techniques, and

among them, iterative algorithms stand out as a versatile and powerful tool. The study of iterative

algorithms for finding the fixed points gained fame in the mid20th century, driven by the need

to solve complex mathematical problems in computational and systematic way. Many results

in analysis like the Banach contraction mapping theorem and Picard-Lindelof iteration played

pivot roles in the establishing the theoretical framework for iterative fixed point algorithms, [1,2].

Though, Picard iterative method was easy to but Krasnoselskii [3] noticed that it may diverged for

nonexpansive mappings. The nonexpansive mappings are generalization of contractive mappings,

they play a pivotal role in ensuring the existence and convergence of fixed points, making them

indispensable in areas like functional analysis, convex optimization and signal processing.

The Banach contraction principle uses the Picard iterative method which is defined as follows:

ηs+1 = Mηs for s ∈N, (1.1)

for contraction mappings but in case of nonexpansive mappings, this methods does not coverge

to any fixed point in general. In 1953, Mann [4] proposed an iterative method which converges for

the class of nonexpansive mappings but it may fails when mappings are pseudo-contractive. In

1974, Ishikawa [5] resolved that problem and proposed a two steps iterative method. Some other

examples of commonly used iterative methods, to approximate the fixed points of nonexpansive

mappings are by Noor [6], Agarwal [7], Abbas and Nazir [8], Thukar et al. [9], Ullah and Arshad

[10], Ullah et al. [11], Saleem et al. [12], Abbas et al. [13], Ahamd et al. [14], JK iteration (see, also

[15] and many others) proved the convergence results for Suzuki-type generalized nonexpansive

mappings.

Let {as}, {bs} and {cs} are three sequences of real numbers in (0, 1) then Mann [4], Ishikawa [5],

Noor [6], Agarwal [7], Abbas and Nazir [8], Thukar [9], Ullah and Arshad [10], Ullah et al. [11]

and Abbas et al. [13] iterative methods are respectivley given below:η1 ∈ Ψ,

ηs+1 = (1− as)ηs + asM(ηs), for s ∈N.
(1.2)


η1 ∈ Ψ,

ηs+1 = (1− as)ηs + asM(µs),

µs = (1− bs)ηs + bsM(ηs), for s ∈N.

(1.3)



η1 ∈ Ψ,

ηs+1 = (1− as)ηs + asM(µs),

µs = (1− bs)ηs + bsM(ξs),

ξs = (1− cs)ηs + csM(ηs), s ∈N.

(1.4)
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
η1 ∈ Ψ,

ηs+1 = (1− as)M(ηs) + asM(µs),

µs = (1− bs)ηs + bsM(ηs), s ∈N.

(1.5)



η1 ∈ Ψ,

ηs+1 = (1− as)M(µs) + asM(ξs),

µs = (1− bs)M(ηs) + bsM(ξs),

ξs = (1− cs)ηs + csM(ηs), s ∈N.

(1.6)



η1 ∈ Ψ,

ηs+1 = (1− as)M(ξs) + asM(µs),

µs = (1− bs)ξs + bsM(ξs),

ξs = (1− cs)ηs + csηs, s ∈N.

(1.7)



η1 ∈ Ψ,

ηs+1 = M(µs),

µs = M(ξs),

ξs = (1− ac)ηs + anM(ηs), s ∈N.

(1.8)



η1 ∈ Ψ,

ηs+1 = M((1− as)M(ηs) + asM(µs)),

µs = M(ξs),

ξs = M((1− cs)ηs + csM(ηs)), s ∈N.

(1.9)

Piri et. al. [16] introduced a new faster three-steps iterative process which converges faster than

above mentioned. For two sequences of real numbers in {as} and {bs} in (0, 1) then the sequence

{ηs} obtained by Piri et al. [16] is given as:

η1 ∈ Ψ,

ηs+1 = (1− as)M(ξs) + asM(µs)),

µs = M(ξs),

ξs = M((1− bs)ηs + bsM(ηs)), s ∈N.

(1.10)

In this research article, we are focusing on the extension of the iterative process (1.10) from the

case of generalized α-nonexpansive mappings to generalized (α, β)-nonexpansive mappings. We

aim to provide a comprehensive understating of the theoretical foundation of this extension and its

practical implications, with a specific focus on its application in solving Delay Caputo Fractional

Differential Equation. We will also present the weak and strong convergence results and numerical
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example to showcase the effectiveness and potential of our proposed approach. By doing so, we

aspire to contribute to the dynamic landscape of fixed point theory and provide valuable tools for

solving complex mathematical problems in practical setting.

2. Preliminaries

The following definitions, theorems, propositions and lemmas help to prove our main results.

Definition 2.1. Let M : Ψ → Ψ is a nonexapnsive mapping such that Fix(M) , ∅ and ‖M(η) − ℘‖ ≤

‖η−℘‖,∀℘ ∈ Fix(M) is true then M is called quasi -nonexpansive mapping.

In 1965, Krik [17] showed that for a nonempty, bounded, closed and convex subset of a reflexive

Banach space the nonexpansive mappings possess a fixed point. In 1965 Dietrich Göhde [18] and

Felix E. Browder [19] separately proved the similar result for Uniformly Convex Banach space.

Definition 2.2. [20, 21] A Banach space Ω is said to be uniformly convex Banach space if for every
ε ∈ (0, 2], there exist a δ ≥ 0, such that for any two η,µ ∈ Ω with ‖η‖ ≤ 1, ‖µ‖ ≤ 1 and ‖η− µ‖ ≥ ε =⇒

‖
η+ µ

2
‖ ≤ 1− δ.

Definition 2.3. [22] A Banach space Ω is said to satisfy the Opial’s property if every weakly convergent
sequence {ηs} of Ω with the weak limit η and ∀µ ∈ Ω − {η} satisfies the inequality;

lim sup
s→∞

‖ηs − η‖ < lim sup
s→∞

‖ηs − µ‖.

The following lemma is famous as the Characterization of unifrom convexity

Lemma 2.1. [23] Assume Ω is a uniformly convex Banach space and 0 < ts < 1,∀s ∈N. For two sequences
{ηs} and {µs} in Ω such that lim sup

s→∞
‖ηs‖ ≤ ϑ, lim sup

s→∞
‖µs‖ ≤ ϑ and lim sup

s→∞
‖tsηs + (1− ts)µs‖ = ϑ for

some ϑ ≥ 0 then lim
s→∞
‖ηs − µs‖ = 0.

Definition 2.4. [24, 25] Let Ψ be a nonempty closed convex subset of a Banach space Ω and let {ηs} be a
bounded sequence in Ω, we set γ(η, {ηs}) = lim sup

s→∞
‖η− ηs‖.

The asymptotic radius of {ηs} relative to Ψ is given as:
γ(Ψ, {ηs}) = inf{γ(η, {ηs}) : η ∈ Ψ}.

The asymptotic center of {ηs} relative to Ψ is defined as:
Λ(Ψ, {ηs}) = {η ∈ Ψ : γ(η, {ηs}) = γ(Ψ, {ηs})}.

In uniformly convex Banach spaces Λ(Ψ, {ηs}) is nonempty and consist of only one point, when Ψ is weekly
compact and convex then Λ(Ψ, {ηs}) is nonempty.

Definition 2.5. Let ∅ , Ψ ⊂ Ω, a selfmapping M : Ψ→ Ψ is said to be Suzuki generalized nonexpansive
mapping if for all η,µ ∈ Ψ such that
whenever 1

2‖η−M(η)‖ ≤ ‖η− µ‖ =⇒ ‖M(η) −M(µ)‖ ≤ ‖η− µ‖.
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Suzuki generlaized nonexpansive mappings are known as mapping satisfying Condition C.

It is obvious that every Suzuki generalized nonexpansive mapping is also a nonexpansive, but

Suzuki [26] established an example to show that the class of Suzuki generalized nonexpansive

mappings are wider than nonexpansive mappings. He also proved that every Suzuki generalized

nonexpansive mapping that possesses a fixed point is quasi-nonexpanive mapping.

Definition 2.6. Let ∅ , Ψ is closed convex subtset of Banach space Ω. A mapping M : Ψ → Ψ is said to
satisfy Condition I, if for an increasing function γ : [0,∞)→ [0,∞) with γ(0) = 0 and γ(`) > 0,∀` > 0,

such that

d(η, Mη) ≥ γ(d(η, Mη)),∀η ∈ Ψ,

where, d(η, Mη) = inf℘∈Fix(M){d(η,℘)}.

In 2011, Koji Aoyama and Fumiaki Kohsaka [27] opened the new door for researchers by

introducing with a new class of mappings known as α-nonexpansive mappings.

Definition 2.7. Let ∅ , Ψ ⊂ Ω, a selfmapping M : Ψ→ Ψ is said to be α-nonexpansive mapping if for all
η,µ ∈ Ψ there is some α ∈ [0, 1), such that

‖Mη−Mµ‖2 ≤ α‖η−Mµ‖2 + α‖µ−Mη‖2 + (1− 2α)‖η− µ‖2.

In 2016, Ariza-Ruiz et al. [28] revealed the facts that for α < 0 the concept of α-nonexansive

mappings is trivial. It is straight forward that every nonexpansive mapping is 0-nonexpansive

mapping and every α-nonexpansive mapping with fixed point is Quasi-nonexpansive. Suzuki

generalized nonexpansive and α-nonexpansive mappings are not continuous mappings in general

cite [26, 29].

In 2017, Pant and Shukla [29] defined a new class of mappings which contains the mapping

satisfying Condition C which is called generalized α-nonexpansive mappings.

Definition 2.8. Let ∅ , Ψ ⊂ Ω, a selfmapping M : Ψ → Ψ is said to be generalized α-nonexpansive
mapping if for all η,µ ∈ Ψ there is some α ∈ [0, 1), such that whenever;

1
2
‖η−Mη‖ ≤ ‖η− µ‖

implies,

‖Mη−Mµ‖ ≤ α‖η−Mµ‖+ α‖µ−Mη‖+ (1− 2α)‖η− µ‖.

Every Suzuki’s generalized nonexpansive mapping is generalized 0-nonexpansive mapping.

In [29] they showed with an example that class of generalized α-nonexpansive mappings is bigger

than Suzuki’s mappings.

In 2019, Pandey et al. [30] proposed a wider class of mappings that properly coantins Suzuki’s

generalized nonexpansive mappings known as Reich-Suzuki-type-nonexpansive mappings.
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Definition 2.9. Let ∅ , Ψ ⊂ Ω, a selfmapping M : Ψ→ Ψ is said to be β-Reich-Suzki-Type-nonexpansive
mapping if for all η,µ ∈ Ψ there is some β ∈ [0, 1), such that whenever;

1
2
‖η−Mη‖ ≤ ‖η− µ‖

implies
‖Mη−Mµ‖ ≤ β‖η−Mη‖+ β‖µ−Mµ‖+ (1− 2β)‖η− µ‖.

It is trivial to show that every Suzuki’s nonexpansive mapping is 0-Reich-Suzuki-type-

nonexpansive mapping. To show that β-Reich-type-nonexpansive mapping are wider than

Suzuki’s nonexpansive mapping, one can see [30].

In 2020, Ullah et al. [31] defined a wider class of mappings that properly contains Suzuki’s

generalized nonexpansive, generalized α-nonexpansive and β-Reich-Suzuki-type-nonexpansive

mappings known as generalized (α, β)-nonexpansive mappings.

Definition 2.10. Let ∅ , Ψ ⊂ Ω, a selfmapping M : Ψ→ Ψ is said to be generalized (α, β)-nonexpansive
mapping if for all η,µ ∈ Ψ there is some α, β ∈ [0, 1) with α+ β < 1, such that whenever

1
2
‖η−Mη‖ ≤ ‖η− µ‖

implies

‖Mη−Mµ‖ ≤ α‖η−Mµ‖+ α‖µ−Mη‖+ β‖η−Mη‖+ β‖µ−Mµ‖+ (1− 2α− 2β)‖η− β‖.

Proposition 2.1 provide many examples of generalized (α, β)-nonexpanisve mappings.

Proposition 2.1. [31] Let ∅ , Ψ ⊂ Ω then for a selfmapping M : Ψ→ Ψ, we have

• Every mapping with Condition C is generalized (0, 0)-nonexpansive mapping.
• Every generalized α-nonexpansive mapping is generalized (α,0)-nonexpansive mapping.
• Every β-Reich-Suzuki-nonexpansive mapping is generalized (0,β)-nonexpansive mapping.

Ullah et al. [31] and Ahmad et al. [32] provided some examples that the converse of Proposition

2.1 is not true.

Lemma 2.2. [31] Let ∅ , Ψ ⊂ Ω and M : Ψ → Ψ is generalized (α, β)-nonexpansive mapping with a
fixed point ℘. Then, M is quasi-nonexpansive mapping.

Lemma 2.3. [31] Let ∅ , Ψ ⊂ Ω and M : Ψ → Ψ is generalized (α, β)-nonexpansive mapping then
Fix(M) is closed. Moreover, Fix(M) is convex if Ψ is strictly convex and Ω is convex.

Lemma 2.4. Let ∅ , Ψ ⊂ Ω and M : Ψ → Ψ is generalized (α, β)-nonexpansive mapping then for all
η,µ ∈ Ψ the following inequality holds,

‖η−Mµ‖ ≤

(
3 + α+ β

1− α− β

)
‖η−Mη‖+ ‖η− µ‖.

Theorem 2.1. Let Ψ be a weakly compact convex subset of a uniformly convex Banach space and M : Ψ→ Ψ

be a mapping with Condition C then M has a fixed point.
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Theorem 2.2. Let ∅ , Ψ is closed subset of Ω with Opial’s property and M : Ψ → Ψ is generalized
(α, β)-nonexpansive mapping. If {ηs} converges weakly to a point τ and lim

s→∞
‖Mηs − ηs‖ = 0 then, Mτ = τ,

that is, (I −M) is demiclosed at zero, where I is the identity mapping on Ψ.

3. Convergence Results

In this section, we prove the week and strong convergence theorems for the class of generalized

(α, β)-nonexpansive mappings under our iteration process (1.10).

We now establish our key lemma as follows.

Lemma 3.1. Let ∅ , Ψ is closed convex subset of Ω and M : Ψ → Ψ is generalized (α, β)-nonexpansive
mapping with Fix(M) , ∅. Let {ηs} is a sequence generated by algorithm (1.10), then lim

a→∞
‖ηs −℘‖ exits for

all ℘ ∈ Fix(M).

Proof. Let η ∈ Ψ and ℘ ∈ Fix(M). By Lemma 2.2, M is Qusai-nonexpansive mapping,

‖Mη−℘‖ ≤ ‖η−℘‖

By using (1.10), we have

‖ξs −℘‖ ≤ ‖M((1− bs)ηs + bsηs) −℘‖

≤ ‖(1− bs)ηs + bsηs −℘‖

≤ (1− bs)‖ηs −℘‖+ bs‖Mηs −℘‖. (3.1)

As ℘ ∈ Fix(M) =⇒ M℘ = ℘ and M is generalized (α, β)-nonexpansive mapping, we have

‖Mηs −℘‖ ≤ ‖Mηs −M℘‖

≤ α‖ηs −M℘‖+ α‖℘−Mηs‖+ β‖ηs −Mηs‖+ β‖℘−M℘‖

+(1− 2α− 2β)‖ηs −℘‖

≤ α‖ηs −℘‖+ α‖Mηs −℘‖+ β‖Mηs −℘‖+ β‖ηs −℘‖

+β‖℘−℘‖+ (1− 2α− 2β)‖ηs −℘‖

≤ α‖Mηs −℘‖+ β‖Mηs −℘‖+ (1− α− β)‖ηs −℘‖

≤ ‖ηs −℘‖. (3.2)

Using (3.2) in (3.1), we have

‖ξs −℘‖ ≤ (1− bs)‖ηs −℘‖+ bs‖ηs −℘‖

≤ ‖ηs −℘‖. (3.3)

Now

‖µs −℘‖ ≤ ‖Mξs −℘‖ ≤ ‖ξs −℘‖

by (3.3)

‖µs −℘‖ ≤ ‖ηs −℘‖. (3.4)
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It follows from (1.10), (3.3) and (3.4)

‖ηs+1 −℘‖ ≤ ‖(1− as)Mξs + asMµs −℘‖

≤ (1− as)‖ξs −℘‖+ as‖µ−℘‖

≤ ‖ηs −℘‖. (3.5)

Consequently, for each ℘ ∈ Fix(M) the sequence {‖ηs+1 −℘‖} is bounded and decreasing. It follows

that lim
s→∞
‖ηs+1 −℘‖ exists for each ℘ ∈ Fix(M). �

For generalized (α, β)-nonexpansive mapping on closed convex subset of a Banach space, we

will prove the necessary and sufficient condition for the existence of fixed point in next theorem.

Theorem 3.1. Let ∅ , Ψ is closed convex subset of Banach space Ω and M : Ψ → Ψ is generalized
(α, β)-nonexpansive mapping. Let {ηs} is a sequence generated by algorithm (1.10) then Fix(M) , ∅ if and
only if {ηs} is bounded and lim

s→∞
‖Mηs − ηs‖.

Proof. Let Fix(M) , ∅ and ℘ ∈ Fix(M) then, by Lemma 3.1lim
s→∞
‖ηs − ℘‖ exists for each ℘ ∈ Fix(M)

and {ηs} is bounded. Put

lim
s→∞
‖ηs −℘‖ = κ. (3.6)

By using (3.4), we have

lim sup
s→∞

‖µs −℘‖ ≤ lim sup
s→∞

‖ηs −℘‖ ≤ κ. (3.7)

Using Lemma 2.2, we obtained

lim sup
s→∞

‖Mηs −℘‖ ≤ lim sup
s→∞

‖ηs −℘‖ ≤ κ. (3.8)

By using (3.3), we have ‖ξs −℘‖ ≤ ‖ηs −℘‖. Therefore,

‖ηs+1 −℘‖ = ‖(1− as)Mξs + asMµs −℘‖

≤ (1− as)‖ξs −℘‖+ as‖µs −℘‖

≤ (1− as)‖ηs −℘‖+ as‖µs −℘‖. (3.9)

It follows that

‖ηs+1 −℘‖ − ‖ηs −℘‖ ≤
‖ηs+1 −℘‖ − ‖ηs −℘‖

as
≤ ‖µs −℘‖ − ‖ηs −℘‖.

So, we have

‖ηs+1 −℘‖ ≤ ‖µs −℘‖.

Now, from (3.6), we got

κ ≤ lim inf
s→∞

‖µs −℘‖. (3.10)

Thus, we obtained by (3.7) and (3.10)

κ = lim
s→∞
‖µs −℘‖.
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Therefore, from (3.6), we have

κ = lim
s→∞
‖µs −℘‖ = lim

s→∞
‖Mξs −℘‖

= lim
s→∞
‖M(M((1− bs)ηs + bsMηs)) −℘‖

≤ lim
s→∞
‖M((1− bs)ηs + bsMηs) −℘‖

≤ lim
s→∞
‖(1− bs)ηs + bsMηs −℘‖

= lim
s→∞
‖(1− bs)(ηs −℘) + bs(Mηs −℘)‖

≤ lim
s→∞

(1− bs)‖ηs −℘‖+ lim
s→∞

bs‖Mηs −℘‖

≤ κ. (3.11)

Hence,

lim
s→∞
‖(1− bs)(ηs −℘) + bs(Mηs −℘)‖ = κ. (3.12)

Using (3.7), (3.8), (3.12), and Lemma 2.1, we concluded that lim
s→∞
‖Mηs − ηs‖ = 0. Now suppose

conversely that {ηs} is bounded and ‖Mηs − ηs‖ = 0.

Let ℘ ∈ Λ(Ψ, {ηs}). By Lemma 2.4, we have

γ(M℘, {ηs}) = lim sup
s→∞

‖ηs −M℘‖

≤

(
3 + α+ β

1− α− β

)
lim sup

s→∞
‖Mηs − ηs‖+ lim sup

s→∞
‖ηs −℘‖

= lim sup
s→∞

‖ηs −℘‖

= γ(℘, {ηs}).

Hence, we have M℘ ∈ Λ(Ψ, {ηs}). As Ω is uniformly convex, Λ(Ψ, {ηs}) is singleton set. It follows

that M℘ = ℘. �

Theorem 3.2. Let ∅ , Ψ is a closed convex subset of a uniformly convex Banach space Ω, Ω is uniformly
convex and M : Ψ → Ψ with Opial’s property is generalized (α, β)-nonexpansive mapping. Let {ηs} is
generated by algorithm (1.10) and Fix , ∅. Then, {ηs} converges weakly to the fixed point of M.

Proof. Suppose ℘ ∈ Fix(M). Then, by Theorem 3.1 the sequence {ηs} is bounded and lim
s→∞
‖Mηs −

ηs‖ = 0. Since Ω is uniformly convex, Ω is reflexive. So, there exists a subsequence {ηsi} of {ηs} such

that {ηsi} converges weakly to some τ1 ∈ Ψ. By Lemma 2.2 (I−M)τ1 = 0 =⇒ Mτ1 = τ1. Now it is

sufficient to show that the sequence {ηs} converges weakly to τ1. Suppose on contrary, the sequence

{ηs} does not converges weakly to τ1. Then, there exists a subsequence {ηsk} of {ηs} and τ2 ∈ Ψ, such

that {ηsk} converges weakly to τ2 and τ1 , τ2. Again, by Lemma 2.2, (I−M)τ2 = 0 =⇒ Mτ2 = τ2.

By Lemma 3.1, lim
s→∞
‖ηs‖ exists for all ℘ ∈ Fix(M). Now to prove τ1 = τ2, by Opial’s property, we
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have

lim
s→∞
‖ηs − τ1‖ = lim

si→∞
‖ηsi − τ1‖

< lim
si→∞

‖ηsi − τ2‖

= lim
s→∞
‖ηs − τ2‖

= lim
sk→∞

‖ηsk − τ2‖

< lim
sk→∞

‖ηsk − τ1‖

= lim
s→∞
‖ηs − τ1‖. (3.13)

This is a contradiction. So, we have τ1 = τ2. Thus, ηs converges weakly to τ1 ∈ Fix(M). �

In the next theorem, we will prove necessary and sufficient condition for the convergence to

fixed point.

Theorem 3.3. Let ∅ , Ψ is a subset of uniformly convex convex Banach space Ω and M : Ψ → Ψ is
generalized (α, β) nonexpansive mapping. Let {ηs} is generated by algorithm (1.10) and Fix(M) , ∅ then
{ηs} converges to fixed point of M if and only if lim inf

s→∞
d(ηs, Fix(M)) = 0. Where, lim inf

s→∞
d(ηs, Fix(M)) =

inf℘∈ Fix(M){‖ηs −℘‖}.

Proof. Suppose that {ηs} converges to the fixed point of M that is for ℘ ∈ Fix(M), {ηs} → ℘ as s→∞.

Then,

lim inf
s→∞

d(ηs, Fix(M)) = 0.

Suppose conversely, lim inf
s→∞

d(ηs, Fix(M)) = 0. By Lemma 3.1, lim
s→∞
‖ηs −℘‖ exists for all ℘ ∈ Fix(M).

Therefore, lim inf
s→∞

d(ηs, Fix(M)) = 0. So, for given ε > 0 there exists s0 ∈ N such that for all s ≥ s0,

d(ηs, Fix(M)) <
ε
2

=⇒ inf℘∈ Fix(M){‖ηs −℘‖} <
ε
2

.

Now for s, t ≥ 0, we have

‖ηs+t − ηs‖ ≤ ‖ηs+t −℘‖+ ‖ηs −℘‖

≤ ‖ηs0 −℘‖+ ‖ηs0 −℘‖

= 2‖ηs0 −℘‖

< ε.

Hence, we concluded that the sequence {xs} is a Cauchy sequence in Ψ. As Ψ is closed subset of a

Banach space Ω, there is a point τ ∈ Ψ such that lim
s→∞

= τ. Now lim inf
s→∞

d(ηs, Fix(M)) = 0 gives that

d(ηs, Fix(M)) = 0. Hence, τ ∈ Fix(M). �

In the next theorem, we will prove strong convergence to fixed point.

Theorem 3.4. Let ∅ , Ψ be a compact convex subset of uniformly convex Banch space Ω and M : Ψ→ Ψ

is generalized (α, β)-nonexpansive mapping. Let {ηs} is generated by algorithm (1.10). Then, the sequence
{ηs} converges stronlgy to a fixed point of M.
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Proof. From Theorem 2.1, we have Fix(M) , ∅. Then, by Theorem 3.1, we have

lim
s→∞
‖Mηs − ηs‖ = 0.

As Ψ is compact. So, there is a subsequence {ηsi} of {ηs} that converges to some τ ∈ Ψ. Then, by

Lemma 2.4, we have

‖ηsi −Mτ‖ ≤

(
3 + α+ β

1− α− β

)
‖ηsi −Mηsi‖+ ‖ηsi − τ‖ ∀ ≥ 1.

By applying limit, we obtained ηsi →Mτ as i→∞. This shows that τ ∈ Fix(M). In addition, by

Lemma 3.1 lim
s→∞
‖ηs − τ‖ exists. So the sequence {ηs} converges strongly to τ. �

Now, by using Condition I we shall prove the strong convergence theorem.

Theorem 3.5. Let ∅ , Ψ be a closed convex subset of uniformly convex Banch space Ω and M : Ψ→ Ψ is
generalized (α, β)-nonexpansive mapping satisfying Condition I. Let {ηs} is generated by algorithm (1.10)
and Fix(M) , ∅. Then, the sequence {ηs} converges stronlgy to a fixed point of M.

Proof. As proven in Theorem 3.1,

lim
s→∞
‖Mηs − ηs‖ = 0.

using Condition I and (3.10), we have

0 ≤ lim
s→∞

γ(d(ηs, Fix(M))) ≤ lim
s→∞
‖Mηs − ηs‖ = 0.

which implies

lim
s→∞

γ(d(ηs, Fix(M))) = 0.

Since, γ : [0,∞) → [0,∞) is an increaing function with γ(0) = 0,γ(`) > 0,∀` > 0. From this, we

have

lim
s→∞

(d(ηs, Fix(M))) = 0.

Now, all conditions of Theorem 3.3 are satisfied. Consequently, the sequence {ηs} converges

strongly to the fixed point of M. �

4. Examples and Comperative Analysis

To comprehensively assess the significance of the iterative scheme (1.10) in approximating fixed

points of generalized (α, β)-nonexpansive mappings against alternative iterative methods. We

have chosen the following examples example to illuminate its efficacy.

Example 4.1. Consider the mapping M : [0,∞)→ [0,∞) defined by

Mη =

7, η ∈ [0, 2),
10η+ 11

11
, η ∈ [2,∞).
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Here, M does not satisfy Condition C. However, M is generalized (α, β)-nonexpansive mapping. Let η =
7
3

and µ =
17
6

then Mη =
103
33

. So,

1
2

∣∣∣η−Mη
∣∣∣ = 1

2

∣∣∣∣∣73 − 103
33

∣∣∣∣∣ = 1
2

∣∣∣∣∣26
33

∣∣∣∣∣ = 13
33

.

And, |η− µ| =

∣∣∣∣∣73 − 17
6

∣∣∣∣∣ = 1
2

=⇒
1
2

∣∣∣η−Mη
∣∣∣ ≤ |η− µ|.

However, |Mη−Mµ| =

∣∣∣∣∣103
33
− 11

∣∣∣∣∣ = 260
33

,

=⇒ |Mη−Mµ| ≥ |η− µ|.
Hence M does not satisfy Condition C.

Now take α =
10
21

and β =
1
42

. Clearly α+ β =
1
2
< 1, the the following cases arise.

Case 1: If η,µ ∈ [0, 2), then we have

10
21
|η−Mµ|+

10
21
|µ−Mη|+

1
42
|η−Mη|+

1
42
|µ−Mµ)| ≥ 0 ≥ |Mη−Mµ|.

Case 2: If µ ∈ [0, 2), and η ∈ [2,∞), then we have

10
21
|η−Mµ|+

10
21
|µ−Mη|+

1
42
|η−Mη|+

1
42
|µ−Mµ|

=
10
21

∣∣∣η− 11
∣∣∣+ 10

21

∣∣∣∣∣µ− 10η+ 11
11

∣∣∣∣∣+ 1
42

∣∣∣∣∣η− 10η+ 11
11

∣∣∣∣∣+ 1
42
|µ+ 11|

=
10
21

∣∣∣η− 11
∣∣∣+ 10

21

∣∣∣∣∣µ− 10η+ 11
11

∣∣∣∣∣+ 1
42

∣∣∣∣∣η− 11
11

∣∣∣∣∣+ 1
42
|µ− 11|

≥
10
11

∣∣∣η− 11
∣∣∣

= |Mη−Mµ|.

Case 3: If η,µ ∈ [0, 2), then we have

10
21
|η−Mµ|+

10
21
|µ−Mη|+

1
42
|η−Mη|+

1
42
|µ−Mµ|

=
10
21

∣∣∣∣∣η− 10µ+ 11
11

∣∣∣∣∣+ 10
21

∣∣∣∣∣µ− 10η+ 11
11

∣∣∣∣∣+ 1
42

∣∣∣∣∣η− 10η+ 11
11

∣∣∣∣∣+ 1
42

∣∣∣∣∣µ− 10µ+ 11
11

∣∣∣∣∣
=

10
21

∣∣∣∣∣11η− 10µ− 11
11

∣∣∣∣∣+ 10
21

∣∣∣∣∣11µ− 10η− 11
11

∣∣∣∣∣+ 1
42

∣∣∣∣∣η− 11
11

∣∣∣∣∣+ 1
42

∣∣∣∣∣µ− 11
11

∣∣∣∣∣
≥

20
42

∣∣∣∣∣21η− 21µ
11

∣∣∣∣∣+ 1
42
|
η− µ

11
|

≥
421
42

∣∣∣∣∣η− µ11

∣∣∣∣∣
≥

10
11
|η− µ| = |Mη−Mµ|.

Hence, M is generalized
(10
21

,
1
42

)
-nonexpansive mapping.
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Now to establish the fact that the iterative scheme (1.10) is faster than that of Mann iteration

(1.2), S iteration (1.5), Noor iteration (1.4), Abbas and Nazir iteration (1.6), and Thakur iteration

(1.7). Now for the initial guess {ηs} = 16.35312 by asuming {as} = 0.56, {bs} = 0.87 and {cs} = 0.29

the comparision are in the Table 1 and Figure 1.

Table 1. Convergence comparison of different schemes with Piri iterative scheme.
s Piri Thakur Abbas S Noor Mann

1 16.35312 16.35312 16.35312 16.35312 16.35312 16.35312

2 14.86675 15.22812 15.50545 15.65093 15.80823 16.08060

3 13.79309 14.33955 14.79201 15.04085 15.31881 15.82195

4 13.01755 13.63772 14.19154 14.51080 14.87920 15.57647

5 12.45735 13.08338 13.68616 14.05028 14.48434 15.34348

6 12.05270 12.64554 13.26080 13.65016 14.12968 15.12236

7 11.76040 12.29972 12.90280 13.30253 13.81111 14.91250

8 11.54926 12.02657 12.60149 13.0005 13.52497 14.71331

9 11.39675 11.81083 12.34790 12.73809 13.26796 14.52427

10 11.28659 11.64043 12.13446 12.51009 13.03711 14.34486

11 11.20701 11.50583 11.95481 12.31201 12.82975 14.17457

12 11.14953 11.39953 11.80362 12.13991 12.6435 14.01296

13 11.10801 11.31556 11.67636 11.99038 12.47621 13.85957

14 11.07802 11.24925 11.56926 11.86047 12.32595 13.71399

15 11.05636 11.19687 11.47912 11.74760 12.19098 13.57583

16 11.04071 11.15549 11.40325 11.64953 12.06976 13.44469

17 11.02941 11.12282 11.33940 11.56433 11.96087 13.32024

18 11.02124 11.09700 11.28565 11.49031 11.86306 13.20211

19 11.01534 11.07662 11.24042 11.42599 11.77521 13.09001

20 11.01108 11.06052 11.20235 11.37011 11.69630 12.98361

21 11.00801 11.04780 11.17031 11.32156 11.62543 12.88262

22 11.00578 11.03775 11.14334 11.27938 11.56177 12.78678

23 11.00418 11.02982 11.12064 11.24274 11.50458 12.69582

24 11.00302 11.02355 11.10154 11.21090 11.45322 12.60948

25 11.00218 11.01860 11.08546 11.18323 11.40709 12.44978

26 11.00157 11.01469 11.07193 11.15920 11.36565 12.37597

27 11.00114 11.01161 11.06054 11.13831 11.32843 12.30592

28 11.00082 11.00917 11.05095 11.12017 11.29500 12.23944

29 11.00059 11.00724 11.04288 11.10441 11.26498 12.17634

30 11.00042 11.00572 11.03609 11.09071 11.23800 12.11646
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Figure 1. Behaviors of various iterative processes using Example 4.1.
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Figure 2. Behaviors of various iterative processes using Example 4.1.

Now for the initial guess {ηs} = 9.75123 by asuming {as} = 0.65, {bs} = 0.78 and {cs} = 0.92 the

comparision are in the table 2 and figure 2.
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Table 2. Convergence comparison of different schemes with Piri iterative scheme.
s Piri Thakur Abbas S Noor Mann

1 9.751230 9.75123 9.751230 9.751230 9.751230 9.751230

2 10.09780 10.01553 10.00883 9.917079 9.921108 9.825021

3 10.34819 10.22389 10.21329 10.06090 10.06788 9.894452

4 10.52908 10.38815 10.37558 10.18562 10.19468 9.959779

5 10.65978 10.51764 10.50439 10.29378 10.30423 10.02125

6 10.75420 10.61973 10.60662 10.38757 10.39888 10.07908

7 10.82242 10.70021 10.68777 10.46891 10.48065 10.13350

8 10.87170 10.76366 10.75218 10.53944 10.55130 10.18470

9 10.90731 10.81368 10.8033 10.60061 10.61234 10.23288

10 10.93303 10.85312 10.84388 10.65365 10.66508 10.27821

11 10.95162 10.88420 10.87608 10.69965 10.71064 10.32086

12 10.96505 10.90871 10.90164 10.73954 10.75000 10.36099

13 10.97475 10.92803 10.92193 10.77413 10.78401 10.39875

14 10.98175 10.94326 10.93804 10.80413 10.81339 10.43428

15 10.98682 10.95527 10.95082 10.83014 10.83878 10.46771

16 10.99048 10.96474 10.96096 10.85270 10.86071 10.49916

17 10.99312 10.97220 10.96902 10.87226 10.87966 10.52876

18 10.99503 10.97808 10.97541 10.88923 10.89603 10.55660

19 10.99641 10.98272 10.98048 10.90394 10.91017 10.58280

20 10.99741 10.98638 10.98451 10.91670 10.92239 10.60746

21 10.99813 10.98926 10.98770 10.92776 10.93295 10.63065

22 10.99865 10.99153 10.99024 10.93736 10.94207 10.65248

23 10.99903 10.99333 10.99225 10.94568 10.94995 10.67301

24 10.99929 10.99474 10.99385 10.95289 10.95676 10.69233

25 10.99949 10.99585 10.99512 10.95915 10.96264 10.71051

26 10.99963 10.99673 10.99613 10.96457 10.96772 10.72762

27 10.99973 10.99742 10.99693 10.96928 10.97212 10.74372

28 10.99981 10.99797 10.99756 10.97336 10.97591 10.75886

29 10.99996 10.99840 10.99806 10.97690 10.97919 10.77311

30 11.00000 10.99874 10.99846 10.97996 10.98202 10.78652

Example 4.2. Let Ψ = [0, 2] with taxicab norm. Consider a mapping M : Ψ ×Ψ → Ψ ×Ψ defined by

M(η,µ) =
(
η

2
,
µ+ 1

2

)
, for any (η,µ) ∈ Ψ ×Ψ. Here M is generalized (α, β)-nonexpansive mapping.

For (η1,µ1) and (η2,µ2) in Ψ×Ψ, whenever
1
2
‖(η1,µ1)−M(η1,µ1)‖ ≤ ‖(η1,µ1)− (η2,µ2)‖. For α =

1
4
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and β =
1
4

, we have
1
4
‖(η1,µ1) − M((η2,µ2))‖ +

1
4
‖(η2,µ2) − M((η1,µ1))‖ +

1
4
‖(η1,µ1) − η((η1,µ1))‖ +

1
4
‖(η2,µ2) −

M((η2,µ2))‖

=
1
4
‖(η1,µ1) − (

η2

2
,
µ2 + 1

2
)‖ +

1
4
‖(η2,µ2) − (

η1

2
,
µ1 + 1

2
)‖ +

1
4
‖(η1,µ1) − (

η1

2
,
µ1 + 1

2
)‖ +

1
4
‖(η2,µ2) − (

η2

2
,
µ2 + 1

2
)‖

=
1
4
‖(

2η1 − η2

2
,

2µ1 − µ2 − 1
2

)‖+
1
4
‖(

2η2 − η1

2
,

2µ2 − µ1 − 1
2

)‖+
1
4
‖(
η1

2
,
µ1 − 1

2
)‖+

1
4
‖(
η2

2
,
µ2 − 1

2
)‖

≥
1
4

{
‖(

3η1 − 3η2

2
,

3µ1 − 3µ2

2
)‖+ ‖(

η1 − η2

2
,
µ1 − µ2

2
)‖)

}
≥

1
4

{
‖(

4η1 − 4η2

2
,

4µ1 − 4µ2

2
)‖

}
=

1
4

{
|
4η1 − 4η2

2
|+ |

4µ1 − 4µ2

2
)|

}
= |

η1 − η2

2
|+ |

µ1 − µ2

2
|

= ‖(
η1 − η2

2
,
µ1 − µ2

2
)‖

= ‖M(η1,µ1) −M(η2,µ2)‖.

Now, we will draw graphs and tables to show that the sequence {ηs} of the Piri iterative scheme

(1.10) moves faster to the fixed point of example 4.2 as compared to Mann iteration (1.2), Ishikawa

iteration (1.3), Noor (1.4) and M-iteration (1.8). By assuming {as} = 0.59, {bs} = 0.48 and {cs} = 0.39

and by taking the initial guess (1.5234, 1.8987) the observations are provided in Table 3 and Figure

3, which show that Piri iterative scheme (1.10) is faster than above mentioned.

Figure 3. Behaviors of various iterative processes using Example 4.2.
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Table 3. Convergence comparison of different schemes with Piri iterative scheme.

s Piri M Noor Ishikawa Mann

1 (1.5234,1.8987) (1.5234,1.8987) (1.5234,1.8987) (1.5234,1.8987) (1.5234,1.8987)

2 (0.2041,1.1204) (0.2685,1.1584) (0.9451,1.5580) (0.9661,1.5700) (1.0740,1.6335)

3 (0.0273,1.0161) (0.0473,1.0279) (0.5863,1.3459) (0.6127,1.3614) (0.7571,1.4467)

4 (0.0037,1.0022) (0.0083,1.0049) (0.3638,1.2146) (0.3880,1.2292) (0.5338,1.3149)

5 (0.0005,1.0002) (0.0015,1.0009) (0.2257,1.1331) (0.2464,1.1454) (0.3763,1.2220)

6 (0.0000,1.0000) (0.0003,1.0002) (0.1400,1.0826) (0.1563,1.0922) (0.2653,1.1565)

7 (0.0000,1.0000) (0.0000,1.0000) (0.0869,1.0512) (0.0991,1.0585) (0.1870,1.1103)

8 (0.0000,1.0000) (0.0000,1.0000) (0.0539,1.0318) (0.0629,1.0371) (0.1319,1.0778)

9 (0.0000,1.0000) (0.0000,1.0000) (0.0334,1.0197) (0.0399,1.0235) (0.0930,1.0548)

10 (0.0000,1.0000) (0.0000,1.0000) (0.0207,1.0122) (0.0253,1.0149) (0.0655,1.0387)

11 (0.0000,1.0000) (0.0000,1.0000) (0.0129,1.0076) (0.0160,1.0095) (0.0462,1.0273)

12 (0.0000,1.0000) (0.0000,1.0000) (0.0080,1.0047) (0.0102,1.0060) (0.0326,1.0192)

13 (0.0000,1.0000) (0.0000,1.0000) (0.0050,1.0030) (0.0064,1.0040) (0.0230,1.0135)

14 (0.0000,1.0000) (0.0000,1.0000) (0.0031,1.0020) (0.0041,1.0024) (0.0162,1.0096)

15 (0.0000,1.0000) (0.0000,1.0000) (0.0019,1.0011) (0.0026,1.0015) (0.0114,1.0067)

16 (0.0000,1.0000) (0.0000,1.0000) (0.0012,1.0007) (0.0016,1.0010) (0.0080,1.0047)

17 (0.0000,1.0000) (0.0000,1.0000) (0.0007,1.0004) (0.0010,1.0006) (0.0057,1.0033)

18 (0.0000,1.0000) (0.0000,1.0000) (0.0005,1.0003) (0.0007,1.0004) (0.0040,1.0024)

19 (0.0000,1.0000) (0.0000,1.0000) (0.0003,1.0002) (0.0004,1.0002) (0.0029,1.0017)

20 (0.0000,1.0000) (0.0000,1.0000) (0.0002,1.0001) (0.0002,1.0001) (0.0020,1.0012)

Figure 4. Behaviors of various iterative processes using Example 4.2.
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By assuming {as} = 0.95, {bs} = 0.84 and {cs} = 0.93 and by taking the initial guess (0.7921, 0.1472)

the observations are provided in Table 4 and Figure 4, which show that Piri iterative scheme (1.10)

is faster than above mentioned.

Table 4. Convergence comparison of different schemes with Piri iterative scheme.
s Piri M Noor Ishikawa Mann

1 (0.7921,0.1472) (0.7921,0.1472) (0.7921,0.1472) (0.7921,0.1472) (0.7921,0.1472)

2 (0.0603,0.9351) (0.1040,0.8881) (0.1843,0.8015) (0.2578,0.7224) (0.4159,0.5528)

3 (0.0046,0.9951) (0.01365,0.9853) (0.0429,0.9538) (0.0839,0.9096) (0.2183,0.7650)

4 (0.0003,0.9996) (0.0018,0.9981) (0.0100,0.9892) (0.0273,0.9706) (0.1146,0.8766)

5 (0.0000,0.9999) (0.0002,0.9993) (0.0023,0.9975) (0.0090,0.9904) (0.0602,0.9352)

6 (0.0000,1.0000) (0.0000,0.9999) (0.0005,0.9994) (0.0029,0.9969) (0.0316,0.9660)

7 (0.0000,1.0000) (0.0000,1.0000) (0.0001,0.9997) (0.0009,0.9990) (0.0166,0.9821)

8 (0.0000,1.0000) (0.0000,1.0000) (0.0000,0.9999) (0.0003,0.9997) (0.0087,0.9906)

9 (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000) (0.0001,0.9999) (0.0046,0.9951)

10 (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000) (0.0024,0.9974)

11 (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000) (0.0013,0.9986)

12 (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000) (0.0007,0.9993)

13 (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000) (0.0003,0.9996)

14 (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000) (0.0002,0.9998)

15 (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000) (0.0001,0.9999)

16 (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000)

17 (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000)

18 (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000)

19 (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000)

20 (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000) (0.0000,1.0000)

5. Application

The fundamental idea behind fractional calculus is to extend the notation of differentiation

and integration by allowing the order of differentiation and integration to be real or complex

numbers instead of positive integers. One of the most intriguing aspects of fractional calculus

is its wide range of applications across various scientific and engineering disciplines. Fractional

differential equations (FDEs), which involves fractional derivatives, are essential tools for modeling

and solving real-world problems that exhibits complex behaviors, such as anomalous diffusion,

viscoelasticity, and non-local phenomena. These equations have found applications in physics,

biology, engineering, finance (see, for more details [33–35] and others).

Mandelbort [36] noted that there are numerous fractional dimension wonders existing in nature

and technology. Various physical systems have fractional-order dynamical manners because of
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the natural properties and singular ingredients. In [37], Richard anticipated the presence of delay

phenomenon in several physical systems. In this section, by using our proposed iterative scheme

(1.10), we shall give the solution of Delay Caputo Fractional Differential Equation.

Consider the following Delay Caputo Fractional Differentional Equation;

c
Dh(u) = g(u, h(u), h(u− v)), u ∈ [u0, G], (5.1)

with initial conditions

h(u) = ϕ(u), u ∈ [u0 −w, u0], (5.2)

where the constant v stands for time delay, v > 0, K > 0, w > 0,ϕ ∈ C([u0 −w, u0] : Rk, h ∈ Rk and

g : [u0, K]×Rk
×Rk

→ Rk are continuous mappings. Consider the following assumptions are true:

(A1) There exists a Lipschitz constant Lg > 0 such that

‖g(u, m1, n1) − g(u, m2, n2)‖ ≤ Lg(‖m1 −m2‖+ ‖n1 − n2‖, ∀m1, n1, m2, n2 ∈ Rk.

(A2) There exists a constant δL > 0 with
2L
δL
< 1.

If ℘ ∈ (C([u0 − w, K] : Rk) ∩ (C1([u0, K] : Rk) is a function satisfying (5.1) and (5.2), then ℘ is

called the solution of the problem (5.1) and (5.2). The solution of the following integral equation

is equivalent to the solution of the problem (5.1) and (5.2).

h(u) = ϕ(u0) +
1

Γ(r)

∫ u

u0

(u−w)(r−1)g(w, h(w), h(w− t))dw, u ∈ [u0, K] (5.3)

where h(u) = ϕ(u), ∀u ∈ [u0 −w, u0]. Let the norm ‖.‖δL on C([u0 −℘, u0]) : Rk) be defined by,

‖ϕ‖δL =
sup ‖ϕ(u)‖

Er(δLur)
∀ϕ ∈ C([u0 −℘, u0] : Rk). (5.4)

where Er : R→ R is called the Mittag-Leffler function. For all r ∈ R the Mittag-Leffler function is

defined by

Er(u) =
∞∑

i=0

ui

Γ(ri + 1)
.

Obviously, (C([u0 −℘, u0]) is Banach Space.

In the next theorem, we obtain an approximatate solution of Caputo Fractional Differential

Equation using iterative scheme (1.10).

Theorem 5.1. Let the function h and ϕ be the same as defined above. If the assumptions (A1) and (A2)
satisfied then the problem (5.1) and (5.2) has a unique solution ℘ ∈ (C([u0 −w, K] : Rk) ∩ (C1([u0, K] :

Rk) = S and the sequence {ηn} defined by (1.10) converges to ℘.

Proof. Define an operator M on S as:

Mh(u) =


ϕ(u0) +

1
Γ(r)

∫ u
u0
(u−w)(r−1)g(w, h(w), h(w− t))dw, u ∈ [u0, K],

ϕ(u), u ∈ [u0 −w, u0].
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Now, we will show that hi → ℘ as i → ∞. For u ∈ [u0 −w, u0]. It is easy to verify that hi → ℘ as

i → ∞. Now for u ∈ [u0, K] then by using (1.10), Lemma 3.1 and by assumptions (A1) and (A2),

we have

‖ξs −℘‖ = ‖M((1− bs)ηs + bsM(ηs)) −℘‖

≤ ‖(1− bs)ηs + bsM(ηs) −℘‖

≤ (1− bs)‖ηs −℘‖+ bs‖M(ηs) −wp‖. (5.5)

Using supremum over [u0 −w, K] on both sides of (5.5), we got

sup
u∈[u0−w,K]

‖ξs −℘‖ (5.6)

≤ sup
u∈[u0−w,K]

((1− bs)‖ηs −℘‖+ bs‖M(ηs) −℘‖)

= (1− bs) sup
u∈[u0−w,K]

‖ηs −℘‖+ bs sup
u∈[u0−w,K]

‖M(ηs) −M(℘)‖

= (1− bs) sup
u∈[u0−w,K]

‖ηs −℘‖+ bs sup
u∈[u0−w,K]

∥∥∥ϕ(u0) +
1

Γ(r)

∫ u

u0

(u−w)(r−1)

g(w, ηs(w), ηs(w− t))dw−ϕ(u0) −
1

Γ(r)

∫ u

u0

(u−w)(r−1)g(w,℘(w),℘(w− t))dw
∥∥∥

= (1− bs) sup
u∈[u0−w,K]

‖ηs −℘‖+ bs sup
u∈[u0−w,K]

1
Γ(r)

∫ u

u0

(u−w)(r−1)

(‖g(w, ηs(w), ηs(w− t))dw− g(w,℘(w),℘(w− t))dw‖)dw

≤ (1− bs) sup
u∈[u0−w,K]

‖ηs −℘‖+ bs sup
u∈[u0−w,K]

1
Γ(r)

∫ u

u0

(u−w)(r−1)

Lg(‖ηs(w) −℘(w)‖+ ‖ηs(w− t) −℘(w− t)‖)dw

= (1− bs) sup
u∈[u0−w,K]

‖ηs −℘‖+ bs
Lg

Γ(r)

∫ u

u0

(u−w)(r−1)dw

( sup
u∈[u0−w,K]

‖ηs(w) −℘(w)‖+ sup
u∈[u0−w,K]

‖ηs(w− t) −℘(w− t)‖). (5.7)

Dividing both sides of (5.7) with Er(δLur), we have

supu∈[u0−w,K] ‖ξs −℘‖

Er(δLur)
≤

(1− bs) supu∈[u0−w,K] ‖ηs −℘‖

Er(δLur)
+ bs

Lg

Γ(r)

∫ u

u0

(u−w)(r−1)dwsupu∈[u0−w,K] ‖ηs(w) −℘(w)‖)

Er(δLur)
+

supu∈[u0−w,K] ‖ηs(w− t) −℘(w− t)‖

Er(δLur)


‖ξs −℘‖δL ≤ (1− bs)‖ηs −℘‖δL + bs

Lg

Γ(r)

∫ u

u0

(u−w)(r−1)dw

(‖ηs(w) −℘(w)‖δL − ‖ηs(w− t) −℘(w− t)‖δL)

= (1− bs)‖ηs −℘‖δL + 2Lgbs‖ηs −℘‖δL

1
Γ(r)

∫ u

u0

(u−w)(r−1)dw
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= (1− bs)‖ηs −℘‖δL +
2Lgbs

Er(δLur)
‖ηs −℘‖δL

1
Γ(r)

∫ u

u0

(u−w)(r−1)Er(δLur)dw

= (1− bs)‖ηs −℘‖δL +
2Lgbs

Er(δLur)
‖ηs −℘‖δL

cI0
(

c
D

Er(δLur)

δL

)
= (1− bs)‖ηs −℘‖δL +

2Lgbs

δL
‖ηs −℘‖δL .

Since
2Lg

δL
< 1, we obtained

‖ξs −℘‖δL ≤ ‖ηs −℘‖δL . (5.8)

Now

‖µs −℘‖δL ≤ ‖Mξs −℘‖δL ≤ ‖ξ−℘‖δL ≤ ‖ηs −℘‖δL . (5.9)

Also,

‖ηs+1 −℘‖δL = ‖(1− as)Mξs + asMµ−℘‖δL

≤ (1− as)‖ξ−℘‖δL + as‖µ−℘‖ − δL

Using (5.8) and (5.9), we got

‖ηs+1 −℘‖δL ≤ ‖ηs −℘‖δL .

If we put ‖ηs − ℘‖δL = νs, then we get νs+1 ≤ νs,∀s ∈ N. Thus, {νs} is monotonically dercreasing

sequence. Additionally, it is bounded sequence. So, we can conclude that lim
s→∞

νs = inf{νs} = 0.

Hence, lim
s→∞
‖ηs −℘‖δL = 0. �

6. Conclusion

In this research, we employed an iterative algorithm proposed by Piri et. al. [16] to approxi-

mate fixed points associated with generalized (α, β)-nonexpansive mappings. Our study estab-

lishes both weak and strong convergence results for mappings within uniformly convex Banach

spaces that exhibit generalized (α, β)-nonexpansiveness. Notably, the Piri-iterative scheme for

generalized (α, β)-nonexpansive mappings demonstrated superior convergence rates compared

to certain existing algorithms, as evidenced by a numerical example. Through the utilization of an

Piri-iterative scheme, we established convergence properties for generalized (α, β)-nonexpansive

mappings towards the solution of Caputo fractional differential equation.
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