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Abstract. The current manuscript aims to introduce complex-valued intuitionisitic fuzzy metric spaces as a fresh

perspective on complex-valued fuzzy metric spaces and intuitionistic fuzzy metric spaces. Existence together with

distinctiveness of the fixed points within maps with diverse contractive criteria in this novel space are established.

Additionally, our work yields a few common fixed-point findings for intuitionistic fuzzy Banach contraction on this

newly introduced space. The outcomes presented in this study go beyond the existing literature, adding to the growing

body of knowledge in this field. Our research outcomes are exemplified through examples that are included in this

paper to help readers better grasp our findings. Our paper concludes with a discussion of how our findings can be

applied to the problem of determining the presence of an exclusive solution for Fredholm integral equations.

1. Introduction

Fixed-point theory is a powerful tool in mathematical analysis that has broad applicability. The

renowned Banach contraction principle, which originated in [4], is widely employed in solving

problems related to the existence of solutions in nonlinear analysis. It has been generalized into

various versions of fixed-point theorems and has been developed using different approaches.

Received: Mar. 23, 2024.

2020 Mathematics Subject Classification. 47H10, 54H25.
Key words and phrases. complex-valued intuitionistic fuzzy metric spaces; fixed points; contractive mappings; com-

mon fixed points; Fredholm integral equations.

https://doi.org/10.28924/2291-8639-22-2024-91
ISSN: 2291-8639

© 2024 the author(s).

https://doi.org/10.28924/2291-8639-22-2024-91


2 Int. J. Anal. Appl. (2024), 22:91

Ambiguous and vague situations in natural phenomena or real-life problems cannot always

be expressed by mathematical models using classical set theory. To tackle this issue, Zadeh [27]

established fuzzy sets, indicating an element’s membership in a set by assigning it a value from

the interval [0, 1]. Later, Atanassov [2] proposed intuitionistic fuzzy sets, which allow for the rep-

resentation of degree of uncertainty when assigning element’s membership and non-membership

in a set.

Kramosil and Michalek [18] put forth fuzzy metric spaces, extending probabilistic metric spaces.

The investigation into fuzzy metric fixed-point idealogy was pioneered under Grabiec [11]. By

introducing G-Cauchy sequences and G-completeness, he laid the foundation for a fuzzy coun-

terpart of Banach contraction principle on fuzzy metric spaces inspired by [18]. George and

Veeramani [8] altered fuzzy metric spaces in 1994, which resulted in the emergence of a Hausdorff

topology on such spaces. They also proposed modifications to Grabiec’s Cauchy sequence concept

and demonstrated various fixed-point outcomes on the modified spaces. In 2004, Park [21] put

forward the framework of intuitionistic fuzzy metric spaces which broaden fuzzy metric space’s

scope. Up to the present moment, researchers continue to delve deeper into the exploration of

fuzzy metric fixed-point theory. The research diverges primarily into two directions: broadening

the category of fuzzy metric spaces to encompass a more general scope (detailed exploration is

available in [5,6,19,20,22,25]), and investigating the presence of fixed points for mappings subject

to numerous contractive conditions (for detailed insights, refer to [1, 9, 10, 23]).

Complex-valued metric spaces were brought into metric fixed-point theory by Azam et al. [3]

in 2011. They deviated from the conventional method of employing the set of positive real

numbers, instead utilizing ordered complex numbers to attain fixed-point outcomes for mappings

subject to rational inequality criteria. Recently, Shukla et al. [24] employed this concept in the

realm of fuzzy metric fixed-point theory. By defining complex-valued fuzzy metric spaces, they

formulated several fixed-point findings for transformationst fulfilling certain contractive criteria

on such spaces. In the present era, significant research interest is directed towards exploring fixed-

point findings for mappings with complex-valued fuzzy metric approach. Prominent examples of

such research include the works of [7,28] and the extensive investigations conducted by Humaira

et al. [12–16], which derived numerous relevance outcomes, along with practical applications.

This manuscript presents a novel extension to the category of fuzzy metric spaces through

introduction of complex-valued intuitionistic fuzzy metric spaces. This new concept general-

izes both complex-valued fuzzy metric spaces by [24] alongside intuitionistic fuzzy metric spaces

by [21]. Several fixed-point outcomes for transformations subject to contractive constraints in

newly defined spaces are presented. Furthermore, we expand fuzzy variant of Banach contrac-

tion to intuitionistic fuzzy spaces, establishing common fixed-point outcomes within complex-

valued intuitionistic fuzzy metric spaces. Practical examples, including application are provided

to demonstrate the usefulness and relevance of our results.
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2. Preliminaries

This section offers a concise rundown of essential notions within complex-valued fuzzy metric

spaces, as established in prior works by [24]. In the present work, the notations N, N0 and C refer

to, in order, the collection of natural numbers, non-negative integers, and complex numbers. For

every z ∈ C, we express z = a + ib by (a, b) where a is the real part and b is the imaginary part. Let

P = {(a, b) : 0 ≤ a < ∞, 0 ≤ b < ∞} ⊂ C. We denote (0, 0) and (1, 1) in C as θ and ` respectively.

We denote closed unit complex interval as I = {(a, b) : 0 ≤ a ≤ 1, 0 ≤ b ≤ 1}, alongside the open

unit complex interval I0 = {(a, b) : 0 < a < 1, 0 < b < 1}. Furthermore, P0 is designated as

{(a, b) : 0 < a < ∞, 0 < b < ∞}.
A partial order � is imposed on C, where c1 � c2 if and only if c2 − c1 ∈ P, where c1, c2 ∈ C. We

write c1 ≺ c2 to express Re(c2) > Re(c1) and Im(c2) > Im(c1). It is evident that c1 ≺ c2 implies and

is implied by c2 − c1 ∈ P0. Let {cn} be a sequence in C. If cn+1 � cn or cn � cn+1 holds for each n
belonging to N, then {cn} is termed monotonic sequence in relation to �.

In the context of a subset K of C, an element inf K ∈ C is known as the infimum or greatest

lower bound of K provided that it acts as lower bound of K, which means inf K � k for each k ∈ K
along with l � inf K for any other lower bound l of K. We introduce sup K in a similar way as the

supremum or least upper bound of K.

Remark 2.1 ( [24]). Given that cn ∈ P for every n ∈N, all statements below hold:

(1) If {cn} is a monotonic sequence in relation to � and for some α, β ∈ P satisfy α � cn � β for each
n ∈N, it follows that a limit c ∈ P exists where cn → c as n→∞.

(2) While � does not establish a total ordering on C, it does create a lattice structure on C.
(3) For K ⊂ C, if every k ∈ K satisfies α � k � β for some α, β ∈ C, then inf K and sup K are present.

Remark 2.2 ( [24]). Given that cn, c′n ∈ P0 for each n ∈N,the following assertions are valid:

(1) If for every n ∈ N, we have cn � c′n � ` along with cn → ` as n approaching ∞, it follows that
c′n = `.

(2) Whenever cn � z for each n ∈N plus there is c ∈ P such that limn→∞ cn = c, c � z holds.
(3) Whenever z � cn for each n ∈N plus there is c ∈ P such that limn→∞ cn = c, z � c holds.

Definition 2.1 ( [24]). Consider Z as nonempty set. Complex fuzzy set Γ is described as the mapping from
Z to closed unit complex interval I.

Definition 2.2 ( [24]). A binary operation ∗ that maps from I × I to I is referred to as complex-valued
t-norm when it satisfies conditions below:

(1) θ ∗ c = θ, ` ∗ c = c for every c ∈ I;
(2) ∗ is associative and commutative;
(3) c3 ∗ c4 � c2 ∗ c1 given that c3 � c1, c4 � c2 for each c1, c2, c3, c4 belonging to I.

Example 2.1 ( [24]). Assuming ci = (ai, bi) ∈ I where i = 1, 2, binary operations ∗p, ∗m, ∗L : I×I → I

are defined as follow:
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(1) c1 ∗p c2 = (a1a2, b1b2);
(2) c1 ∗m c2 = (min{a1, a2}, min{b1, b2});
(3) c1 ∗L c2 = (max{a1 + a2 − 1, 0}, max{b1 + b2 − 1, 0}).

Consequently, ∗p, ∗m, ∗L are complex-valued t-norms.

Definition 2.3 ( [24]). Suppose Z represents nonempty set, ∗ is a continuous complex-valued t-norm and
Γ is a complex fuzzy set defined on Z2

×P0 whereby criteria below hold:

(1) Γ($,κ, c) � θ;
(2) Γ($,κ, c) = ` for each c ∈ P0 if and only if $ = κ;
(3) Γ($,κ, c) = Γ(κ,$, c);
(4) Γ($, ς, c + c′) � Γ($,κ, c) ∗ Γ(κ, ς, c′);
(5) Γ($,κ, ·) : P0 → I is continuous;

for every $,κ, ς ∈ Z and c, c′ ∈ P0.
Then, (Z, Γ, ∗) is termed complex-valued fuzzy metric space together with Γ is referred to as complex-

valued fuzzy metric on Z. Γ characterizes the closeness degree between a pair of points in the set Z relative
to a complex factor c ∈ P0.

3. Complex-valued intuitionistic fuzzy metric spaces

The presentation and analysis of properties for complex-valued intuitionistic fuzzy metric spaces

are main focus of this section.

Definition 3.1. A binary operation � that maps from I×I to I is referred to as complex-valued t-conorm
when it satisfies conditions below:

(1) c � θ = c, c � ` = ` for every c ∈ I;
(2) � is associative and commutative;
(3) c3 � c4 � c1 � c2 given that c3 � c1, c4 � c2 for each c1, c2, c3, c4 belonging to I.

Example 3.1. Assuming ci = (ai, bi) ∈ I where i = 1, 2, binary operations �n, �m, �L : I ×I → I are
defined as follow:

(1) c1 �n c2 = (a1 + a2, b1 + b2) − (a1a2, b1b2);
(2) c1 �m c2 = (max{a1, a2}, max{b1, b2});
(3) c1 �L c2 = (min{a1 + a2, 1}, min{b1 + b2, 1}).

Consequently, �n, �m, �L are complex-valued t-conorms.

Remark 3.1. Both binary operations t-norm and t-conorm, are commonly utilized in fuzzy set theory,
particularly in [0, 1] and lattice cases. The former interprets as the common region between two fuzzy sets,
in an alternative expression, conjunction in fuzzy logic. The latter, which serves as a duality of t-norm,
is interpret as the combination region of two fuzzy sets, in an alternative expression, disjunction in fuzzy
logic. Further insights into both t-norm and t-conorm concepts are encouraged to refer [17] and [26].
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Definition 3.2. Suppose Z represents nonempty set, ∗ and � are continuous complex-valued t-norm and
t-conorm, respectively, and Γ, Λ are complex fuzzy sets defined on Z2

×P0 whereby the following conditions
hold:

(1) Γ($,κ, c) + Λ($,κ, c) � `;
(2) Γ($,κ, c) � θ;
(3) Γ($,κ, c) = ` for each c ∈ P0 if and only if $ = κ;
(4) Γ($,κ, c) = Γ(κ,$, c);
(5) Γ($, ς, c + c′) � Γ($,κ, c) ∗ Γ(κ, ς, c′);
(6) Γ($,κ, ·) : P0 → I is continuous;
(7) Λ($,κ, c) ≺ `;
(8) Λ($,κ, c) = θ for every c ∈ P0 if and only if $ = κ;
(9) Λ($,κ, c) = Λ(κ,$, c′);

(10) Λ($, ς, c + c′) � Λ($,κ, c) �Λ(κ, ς, c′);
(11) Λ($,κ, ·) : P0 → I is continuous;

for each $,κ, ς ∈ Z and c, c′ ∈ P0.
Then, (Z, Γ, Λ, ∗, �) is known as complex-valued intuitionistic fuzzy metric space while the pair (Γ, Λ)

is referred to as complex-valued intuitionistic fuzzy metric on Z. The pair (Γ, Λ) characterizes the closeness
degree and the non-closeness degree between a pair of points in the set Z relative to a complex parameter
c ∈ P0.

Remark 3.2. Given a complex-valued fuzzy metric space (Z, Γ, ∗), one approach for defining a complex-
valued intuitionistic fuzzy metric space is to consider (Z, Γ, ` − Γ, ∗, �), where both complex-valued t-norm
∗ and complex-valued t-conorm � have association, for instance, c1 � c2 = ` − ((` − c1) ∗ (` − c2)) for every
c1, c2 ∈ I.

Example 3.2. Consider (Z, d) as a metric space. For ci = (ai, bi) ∈ Iwhere i = 1, 2, two binary operations
∗m and �m are defined by

c1 ∗ c2 = (min{a1, a2}, min{b1, b2}) and c1 � c2 = (max{a1, a2}, max{b1, b2}).

Let complex fuzzy sets Γ and Λ be defined as follow:

Γ($,κ, c) =
a + b

a + b + d($,κ)
`, Λ($,κ, c) =

d($,κ)
a + b + d($,κ)

`

for all $,κ ∈ Z and c = (a, b) ∈ P0. As a result, (Z, Γ, Λ, ∗m, �m) is a complex-valued intuitionistic fuzzy
metric space.

Example 3.3. Consider Z = (0,∞) and a mapping T : P0 → (0,∞). Define two binary operations ∗
and � by c1 ∗ c2 = (a1a2, b1b2) and c1 � c2 = (a1 + a2, b1 + b2) − (a1a2, b1b2) where ci = (ai, bi) ∈ I for
i = 1, 2. Let complex fuzzy sets Γ and Λ be defined as follow:

Γ($,κ, c) =
(
exp
−($−κ)2

T(c)

)
`, Λ($,κ, c) =

(
1− exp

−($−κ)2

T(c)

)
`
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for each $,κ ∈ Z and c = (a, b) ∈ P0. As a result, (Z, Γ, Λ, ∗, �) is a complex-valued intuitionistic fuzzy
metric space.

Lemma 3.1. Given that (Z, Γ, Λ, ∗, �) is a complex-valued intuitionistic fuzzy metric space, Γ($,κ, ·) is
non-decreasing and Λ($,κ, ·) is non-increasing, that is, for any c, c′ ∈ P0 with c ≺ c′, it follows that
Γ($,κ, c) � Γ($,κ, c′) and Λ($,κ, c) � Λ($,κ, c′) for every $,κ ∈ Z.

Proof. Taking into account c, c′ ∈ P0 where c ≺ c′, this implies that c′ − c ∈ P0. Utilizing condition

(5) from Definition 3.2, we have

Γ($,κ, c′) = Γ($,κ, c′ − c + c)

� Γ($,$, c′ − c) ∗ Γ($,κ, c)

= ` ∗ Γ($,κ, c)

= Γ($,κ, c).

Hence, Γ($,κ, c′) � Γ($,κ, c). On the other hand, utilizing condition (10) from Definition 3.2, we

have
Λ($,κ, c′) = Λ($,κ, c′ − c + c)

� Λ($,$, c′ − c) �Λ($,κ, c)

= θ �Λ($,κ, c)

= Λ($,κ, c).

Hence, Λ($,κ, c′) � Λ($,κ, c). �

Definition 3.3. Consider (Z, Γ, Λ, ∗, �) as a complex-valued intuitionistic fuzzy metric space. We say that
sequence {$n} in Z converges to $ ∈ Z provided that all r ∈ I0 as well as c ∈ P0, the condition below is
satisfied by some n0 ∈N:

Γ($n,$, c) � ` − r and Λ($n,$, c) ≺ r for all n > n0.

Definition 3.4. Consider (Z, Γ, Λ, ∗, �) as a complex-valued intuitionistic fuzzy metric space. A sequence
{$n} in Z shall be referred to as Cauchy sequence provided that

lim
n→∞

inf
m>n

Γ($n,$m, c) = `,

lim
n→∞

sup
m>n

Λ($n,$m, c) = θ

for all c ∈ P0.
A complex-valued intuitionistic fuzzy metric space (Z, Γ, Λ, ∗, �) is considered complete provided that

each Cauchy sequences in Z converges.

Below are examples to illustrate the concepts outlined in the Definitions 3.3 and 3.4.

Example 3.4. Examine the complex-valued intuitionistic fuzzy metric space denoted as (Z, Γ, Λ, ∗m, �m)

in Example 3.2. Moreover, set Z = [2, 3] and define metric d as d($,κ) = |$−κ| for all $,κ ∈ Z. Let the
sequence {$n} = {2 + 1

n } and $ = 2.
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Now we verify that Γ($n,$, c) � ` − r for each r = (r1, r2) ∈ I0 and c ∈ P0. For the real part,

Re(Γ($n,$, c) − `+ r) =
a + b

a + b + d($n,$)
− 1 + r1

=
a + b

a + b + |2 + 1
n − 2|

− 1 + r1

=
a + b

a + b + 1
n

− 1 + r1.

As n approaches infinity, we have Re(Γ($n,$, c) − `+ r) → r1. Consequently, for each r ∈ I0 together
with c ∈ P0, there is always an N1 ∈ N in which Re(Γ($n,$, c) − ` + r) > 0 holds for all n > N1.
The procedure for the imaginary part follows the same steps, leading to Im(Γ($n,$, c) − `+ r) → r2 as
n approaches infinity. Consequently, for each r ∈ I0 and c ∈ P0, there is always an N2 ∈ N in which
Im(Γ($n,$, c) − ` + r) > 0 holds for all n > N2. Therefore, for every r ∈ I0 and c ∈ P0, by taking
n0 = max{N1, N2}, we establish Γ($n,$, c) � ` − r for all n > n0.

Now we verify that Λ($n,$, c) ≺ r for every r = (r1, r2) ∈ I0 and c ∈ P0. For the real part,

Re(r−Λ($n,$, c)) = r1 −
d($n,$)

a + b + d($n,$)

= r1 −
|2 + 1

n − 2|

a + b + |2 + 1
n − 2|

= r1 −

1
n

a + b + 1
n

.

As n approaches infinity, we have Re(r −Λ($n,$, c)) → r1. Consequently, for each r ∈ I0 and c ∈ P0,
there is always an N1 ∈ N in which Re(Λ($n,$, c) − `+ r) > 0 holds for all n > N1. The procedure for
the imaginary part follows the same steps, leading to Im(r −Λ($n,$, c)) → r2 as n approaches infinity.
Consequently, for each r ∈ I0 and c ∈ P0, there is always an N2 ∈ N in which Im(r −Λ($n,$, c)) > 0

holds for all n > N2. Therefore, for every r ∈ I0 and c ∈ P0, by taking n0 = max{N1, N2}, we establish
Λ($n,$, c) ≺ r for each n > n0.

Each conditions specified in Definition 3.3 are met. Therefore, we can conclude that {2 + 1
n } converges to

2.

Example 3.5. Employing the same settings as in the previous example, we will show that {2 + 1
n } is a

Cauchy sequence. For all c ∈ P0 and any n, m ∈N where m > n,

Γ($n,$m, c) =
a + b

a + b + d($n,$m)
`

=
a + b

a + b + |2 + 1
n − (2 +

1
m )|

`

=
a + b

a + b + | 1n −
1
m |
`
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and

Λ($n,$m, c) =
d($n,$m)

a + b + d($n,$m)
`

=
|2 + 1

n − (2 +
1
m )|

a + b + |2 + 1
n − (2 +

1
m )|

`

=
|
1
n −

1
m |

a + b + | 1n −
1
m |
`.

As m, n approaches infinity, we observe that Γ($n,$m, c) → ` and Λ($n,$m, c) → θ, which leads to
limn→∞ infm>n Γ($n,$m, c) = ` and limn→∞ supm>n Λ($n,$m, c) = θ. Hence, we demonstrate that
{2 + 1

n } is a Cauchy sequence.

Lemma 3.2. Given that (Z, Γ, Λ, ∗, �) is a complex-valued intuitionistic fuzzy metric space. The sequence
{$n} in Z converges to $ ∈ Z if and only if limn→∞ Γ($n,$, c) = ` and limn→∞Λ($n,$, c) = θ are
satisfied for each c ∈ P0.

Proof. Assume that limn→∞ Γ($n,$, c) = ` and limn→∞Λ($n,$, c) = θ for each c ∈ P0. Consider

a fixed element c in P0. Given any r ∈ I0, it is possible to locate a real number ε > 0 where z ≺ r
hold for all z ∈ C with |z| < ε. Taking into account this specific ε, we can identify an n0 ∈ N such

that

|` − Γ($n,$, c)| < ε and |Λ($n,$, c)| < ε for every n > n0.

These two inequalities imply that

` − Γ($n,$, c) ≺ r

−Γ($n,$, c) ≺ r− `

Γ($n,$, c) � ` − r

as well as

Λ($n,$, c) ≺ r

for every n > n0 respectively. Therefore, {$n} is converging to $ ∈ Z.

Conversely, let c ∈ P0 fixed and a real number ε > 0 be given. Assume that {$n} converges

to $ ∈ Z, that is, for every r ∈ Io, an n0 ∈ N can be chosen such that Γ($n,$, c) � ` − r and

Λ($n,$, c) ≺ r for all n > n0. A complex number r ∈ I0 is picked in a way that |r| < ε. It follows

that

|` − Γ($n,$, c)| < |r| < ε and |Λ($n,$, c)| < |r| < ε for any n > n0.

Therefore, limn→∞ Γ($n,$, c) = ` and limn→∞Λ($n,$, c) = θ is satisfied for every c ∈ P0. �

Lemma 3.3. Given that (Z, Γ, Λ, ∗, �) is a complex-valued intuitionistic fuzzy metric space. {$n} in Z is
considered Cauchy sequence if and only if for each r ∈ I0 and c ∈ P0, one can find an n0 ∈N satisfying

Γ($n,$m, c) � ` − r and Λ($n,$m, c) ≺ r for all n, m > n0.
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Proof. Suppose that sequence {$n} is Cauchy. Let c ∈ P0 be fixed, then for each r ∈ I0 one can find

n0 ∈ N satisfying ` − infm>n Γ($n,$m, c) ≺ r and supm>n Λ($n,$m, c) ≺ r for all n > n0. Here we

consider 3 situations. For the case where m > n > n0, this leads to ` − r ≺ infm>n Γ($n,$m, c) ≺
Γ($n,$m, c) and Λ($n,$m, c) ≺ supm>n Λ($n,$m, c) ≺ r. Now if m = n > n0, then ` − r ≺ ` =

Γ($n,$m, c) and Λ($n,$m, c) = θ ≺ r. Last but not least, for the case where n > m > n0, it follows

that ` − r < infn>m Γ($m,$n, c) � Γ($m,$n, c) = Γ($n,$m, c) and Λ($m,$n, c) = Λ($n,$m, c) �
supn>mΓ($n,$m, c) ≺ r. Hence, we conclude that Γ($n,$m, c) � ` − r as well as Λ($n,$m, c) ≺ r for

any n, m > n0.

Conversely, let c ∈ Po fixed and a real number ε > 0 be given. Assume that for all r ∈ I0, one can

identify an n0 ∈ N in which Γ($n,$m, c) � ` − r and Λ($n,$m, c) ≺ r for any n, m > n0. It follows

that

` − 2r ≺ ` − r � inf
m>n

Γ($n,$m, c)

and

sup
m>n

Λ($n,$m, c) � r ≺ 2r

for all n > n0. Pick a complex number r ∈ I0 which satisfies |r| < ε
2 , then we have

|` − inf
m>n

Γ($n,$m, c)| ≺ 2|r| < ε and | sup
m>n

Λ($n,$m, c)| ≺ 2|r| < ε for every n > n0.

Hence, we have limn→∞ infm>n Γ($n,$m, c) = ` and limn→∞ supm>n Λ($n,$m, c) = θ, which means

that sequence {$n} is Cauchy. �

4. Fixed-point results

Our focus will now shift to the presence and distinctiveness of fixed points for self-mappings

fulfilling specific contractive criteria within complex-valued intuitionistic fuzzy metric space. Con-

sider a sequence {cn} that belongs to C, we say that limn→∞ cn = ∞ = (∞,∞) whenever in the case

of each c ∈ C, one can find an n0 ∈N satisfy cn � c for any n > n0.

Theorem 4.1. Let (Z, Γ, Λ, ∗, �) be a complete complex-valued intuitionistic fuzzy metric space with the
property that any sequence {cn} in P0 satisfies limn→∞ cn = ∞ implies

lim
n→∞

inf
κ∈Z

Γ($,κ, cn) = `, lim
n→∞

sup
κ∈Z

Λ($,κ, cn) = θ

for any $ ∈ Z. Suppose a self-mapping f : Z→ Z satisfies subsequent condition:

Γ( f$, fκ, kc) � Γ($,κ, c) and Λ( f$, fκ, kc) � Λ($,κ, c) (4.1)

for all $,κ ∈ Z and c ∈ P0, where k ∈ (0, 1). Then mapping f possesses a unique fixed point that lies
within Z.

Proof. Consider an arbitrary point$0 in Z. A sequence {$n} is defined in Z as$n = f$n−1 for every

n ∈ N. The existence of an n0 ∈ N where $n0 = $n0−1 secures $n0 as a fixed point of f . Now, we

consider $n , $n−1 for each n ∈N and establish the Cauchy nature for sequence {$n}.
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For every n ∈N as well as a fixed c ∈ P0, let us define

An := {Γ($n,$m, c) : m > n} ⊂ I,

Bn := {Λ($n,$m, c) : m > n} ⊂ I.

As θ ≺ Γ($n,$m, c) � ` for each n ∈ N where n < m, following from Remark 2.1, the infimum

of An, that is, infAn = αn is present in every n ∈ N. Similarly, since θ � Λ($n,$m, c) ≺ ` for

all n ∈ N where m > n, following from Remark 2.1, the supremum of Bn, that is, supBn = βn is

present in every n ∈N. For c ∈ P0 and n, m ∈N where m > n, using (4.1), we obtain

Γ($n+1,$m+1, c) = Γ( f$n+1, f$m, c) � Γ
(
$n,$m,

c
k

)
(4.2)

and

Λ($n+1,$m+1, c) = Λ( f$n, f$m, c) � Λ
(
$n,$m,

c
k

)
. (4.3)

Since k ∈ (0, 1), by Lemma 3.1, it follows that

Γ
(
$n,$m,

c
k

)
� Γ($n,$m, c) and Λ

(
$n,$m,

c
k

)
� Λ($n,$m, c).

which in turn yields

Γ($n+1,$m+1, c) � Γ($n,$m, c)

and

Λ($n+1,$m+1, c) � Λ($n,$m, c)

for each n, m ∈N where m > n. Checking the infimum of Γ and supremum of Λ above, it leads to

θ � αn � αn+1 � `, θ � βn+1 � βn � `

for any n ∈N. Hence, both {αn} and {βn} are monotonic sequences in P. By Remark 2.1, there exist

complex numbers α, β ∈ P satisfying limn→∞ αn = α and limn→∞ βn = β. By (4.2) and (4.3), we

have

αn+1 = inf
m>n

Γ($n+1,$m+1, c) � inf
m>n

Γ
(
$n,$m,

c
k

)
and

βn+1 = sup
m>n

Λ($n+1,$m+1, c) � sup
m>n

Λ
(
$n,$m,

c
k

)
for c ∈ P0 and n ∈N. Apply (4.1) successively on the inequalities above, we get

αn+1 � inf
m>n

Γ
(
$n,$m,

c
k

)
� inf

m>n
Γ
(
$n−1,$m−1,

c
k2

)
� inf

m>n
Γ
(
$n−2,$m−2,

c
k3

)
� · · ·

� inf
m>n

Γ
(
$0,$m−n,

c
kn+1

)
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and

βn+1 � sup
m>n

Λ
(
$n,$m,

c
k

)
� sup

m>n
Λ

(
$n−1,$m−1,

c
k2

)
� sup

m>n
Λ

(
$n−2,$m−2,

c
k3

)
� · · ·

� sup
m>n

Λ
(
$0,$m−n,

c
kn+1

)
for c ∈ P0 and n ∈N. Furthermore, we obtain

αn+1 � inf
m>n

Γ
(
$0,$m−n,

c
kn+1

)
� inf
κ∈Z

Γ
(
$0,κ,

c
kn+1

)
and

βn+1 � sup
m>n

Λ
(
$0,$m−n,

c
kn+1

)
� sup
κ∈Z

Λ
(
$0,κ,

c
kn+1

)
for any c ∈ P0 and n ∈N. In the case where n approaches infinity on both sides of the inequalities

above, as limn→∞ c/kn+1 = ∞ for any c ∈ P0, by the limit of monotonic sequences {αn}, {βn} along

with the hypothesis, we yield

α = lim
n→∞

αn+1 � lim
n→∞

inf
κ∈Z

Γ
(
$0,κ,

c
kn+1

)
= `

and

β = lim
n→∞

βn+1 � lim
n→∞

sup
κ∈Z

Λ
(
$0,κ,

c
kn+1

)
= θ.

which imply α = ` and β = θ. Thus,

lim
n→∞

inf
m>n

Γ($n+1,$m+1, c) = lim
n→∞

αn = `,

lim
n→∞

sup
m>n

Λ($n+1,$m+1, c) = lim
n→∞

βn = θ

for all c ∈ P0 which show sequence {$n} is Cauchy.

Given that (Z, Γ, Λ, ∗, �) is complete, Lemma 3.2 implies the existence of $ ∈ Z satisfying

lim
n→∞

Γ($n,$, c) = ` and lim
n→∞

Λ($n,$, c) = θ for any c ∈ P0. (4.4)

As a consequence of conditions (5), (10) of Definition 3.2 and (4.1), for any c ∈ P0, we can conclude

that

Γ($, f$, c) � Γ
(
$,$n+1,

c
2

)
∗ Γ

(
$n+1, f$,

c
2

)
= Γ

(
$,$n+1,

c
2

)
∗ Γ

(
f$n, f$,

c
2

)
� Γ

(
$,$n+1,

c
2

)
∗ Γ

(
$n,$,

c
2k

)
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and
Λ($, f$, c) � Λ

(
$,$n+1,

c
2

)
�Λ

(
$n+1, f$,

c
2

)
= Λ

(
$,$n+1,

c
2

)
�Λ

(
f$n, f$,

c
2

)
� Λ

(
$,$n+1,

c
2

)
�Λ

(
$n,$,

c
2k

)
.

Now taking the limit as n → ∞ for both inequalities above, using (4.4) along with Remark 2.2, it

follows that

Γ($, f$, c) = ` and Λ($, f$, c) = θ

for every c ∈ P0. By conditions (3) and (8) of Definition 3.2, it can be deduced that $ = f$, that

is, $ is a fixed point of f .

To establish the uniqueness, assume z is a different fixed point of f than $. This implies there

exist some c′ ∈ P0 in which Γ($, z, c′) , ` and Λ($, z, c′) , θ. Apply (4.1) successively, we have

Γ($, z, c′) = Γ( f$, f z, c′) � Γ
(
$, z,

c′

k

)
� Γ

(
$, z,

c′

k2

)
� · · ·

� Γ
(
$, z,

c′

kn

)
and

Λ($, z, c′) = Λ( f$, f z, c′) � Λ
(
$, z,

c′

k

)
� Λ

(
$, z,

c′

k2

)
� · · ·

� Λ
(
$, z,

c′

kn

)
for each n in N. Subsequently, we deduce that

Γ($, z, c′) � Γ
(
$, z,

c′

kn

)
� inf
κ∈Z

Γ
(
$, z,

c′

kn

)
and

Λ($, z, c′) � Λ
(
$, z,

c′

kn

)
� sup
κ∈Z

Λ
(
$, z,

c′

kn

)
.

Since k ∈ (0, 1), it is clear that limn→∞ c′/kn = ∞. Therefore, taking the limit of n→∞ on the both

inequalities, by hypothesis, it leads to

Γ($, z, c′) = ` and Λ($, z, c′) = θ

which is a contradiction. Hence, Γ($, z, c) = ` and Λ($, z, c) = θ for every c ∈ P0. From conditions

(3) and (8) of Definition 3.2, it can be deduced that $ = z, which validates the uniqueness fixed

point of f . �
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Remark 4.1. In Theorem 4.1, replacing (4.1) with the following contractive condition of mapping f and
the proof remains similar:

Γ( f$, fκ,K(c)c) � Γ($,κ, c) and Λ( f$, fκ,K(c)c) � Λ($,κ, c)

for every $,κ ∈ Z and c ∈ P0, withK represents a mapping from P0 to (0, 1).

Example 4.1. Assume (Z, d) is a metric space where Z = [0, 1] together with d($,κ) = |$ −κ| for all
$,κ ∈ Z. Define complex-valued t-norm ∗ and complex-valued t-conorm � by ω1 ∗ ω2 = (µ1µ2, ν1ν2)

and ω1 � ω2 = (max{µ1,µ2}, max{ν1, ν2}) for all ω1 = (µ1, ν1),ω2 = (µ2, ν2) ∈ I respectively. Let
complex-valued fuzzy sets Γ and Λ be defined as

Γ($,κ, c) =
ab

ab + d($,κ)
`, Λ($,κ, c) =

d($,κ)
ab + d($,κ)

`

for all$,κ ∈ Z and c = (a, b) ∈ P0. The fact that (Z, Γ, Λ, ∗, �) is a complete complex-valued intuitionistic
fuzzy metric space induced by metric d can be established without much effort. Suppose we have a sequence
{cn} in P0 in which cn = (an, bn) for each n ∈ N satisfying limn→∞ cn = ∞. When $ ∈ Z is fixed and
n ∈N is arbitrary, together with the fact that 0 ≤ d($,κ) ≤ 1 for every κ ∈ Z, this implies that

` � inf
κ∈Z

Γ($,κ, cn)

= inf
κ∈Z

anbn

anbn + d($,κ)
`

=
anbn

anbn + supκ∈Z d($,κ)
`

�
anbn

anbn + 1
`.

As n becomes infinitely large, we arrive at

` � lim
n→∞

inf
κ∈Z

Γ($,κ, cn) � lim
n→∞

anbn

anbn + 1
` = `

which leads to the conclusion that limn→∞ infκ∈Z Γ($,κ, cn) = `. In addition, we have

θ � sup
κ∈Z

Λ($,κ, cn)

= sup
κ∈Z

d($,κ)
anbn + d($,κ)

`

=
supκ∈Z d($,κ)

anbn + infκ∈Z d($,κ)
`

�
1

anbn
`.

As n becomes infinitely large, we arrive at

θ � lim
n→∞

sup
κ∈Z

Λ($,κ, cn) � lim
n→∞

1
anbn

` = θ

which leads to the conclusion that limn→∞ supκ∈Z Λ($,κ, cn) = θ.
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Consider a self-mapping H : Z → Z expressed by H$ = $/2 for all $ ∈ Z. If we pick a real number
k ∈ [1/2, 1) ⊂ (0, 1), thenH satisfies (4.1) for any $,κ ∈ Z and c ∈ P0. Indeed, since 2k ≥ 1, we have

Γ(H$,Hκ, kc) =
kab

kab + d(H$,Hκ)
`

=
kab

kab + |$2 −
κ
2 |
`

=
kab

kab + 1
2 |$−κ|

`

=
2kab

2kab + |$−κ|
`

�
ab

ab + |$−κ|
`

= Γ($,κ, c)

for any $,κ ∈ Z and c = (a, b) ∈ P0. In addition, we have

Λ(H$,Hκ, kc) =
d(H$,Hκ)

kab + d(H$,Hκ)
`

=
|
$
2 −

κ
2 |

kab + |$2 −
κ
2 |
`

=
1
2 |$−κ|

kab + 1
2 |$−κ|

`

=
|$−κ|

2kab + |$−κ|
`

�
|$−κ|

ab + |$−κ|
`

= Λ($,κ, c)

for any $,κ ∈ Z and c = (a, b) ∈ P0. As a consequence, each requirements specified in Theorem 4.1 are
met. The sole fixed point ofH is 0.

Example below serves to illustrate the assumption of Theorem 4.1 is not redundant.

Example 4.2. Consider Z = N. Define two binary operations ∗ and � by c1 ∗ c2 = (a1a2, b1b2) and
c1 � c2 = (a1 + a2, b1 + b2) − (a1a2, b1b2) for any ci = (ai, bi) ∈ I where i = 1, 2. Let complex fuzzy sets
Γ and Λ be defined as follow:

Γ($,κ, c) =
min{$,κ}
max{$,κ}

`, Λ($,κ, c) =
(
1−

min{$,κ}
max{$,κ}

)
`

for every $,κ ∈ Z as well as c = (a, b) ∈ P0. The fact that (Z, Γ, Λ, ∗, �) is a complete complex-valued
intuitionistic fuzzy metric space is established without much effort. Consider a self-mapping H : Z → Z
expressed by $2 + 5 for all $ ∈ Z. Let sequence {cn} defined as cn = (n, n) for each n in N. From the way
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{cn} is constructed, there is no ambiguity in limn→∞ cn = ∞. For each $ ∈ Z, a fixed κ ∈ Z where $ , κ
and any n ∈N, it can be concluded that

inf
κ∈Z

Γ($,κ, cn) = inf
κ∈Z

min{$,κ}
max{$,κ}

` = θ

and

sup
κ∈Z

Λ($,κ, cn) = sup
κ∈Z

(
1−

min{$,κ}
max{$,κ}

)
` = `.

Consequently, we obtain

lim
n→∞

inf
κ∈Z

Γ($,κ, cn) = θ , `

and

lim
n→∞

sup
κ∈Z

Λ($,κ, cn) = ` , θ

for all $ ∈ Z. For any k ∈ (0, 1), $,κ ∈ Z and c ∈ P0, observe that

Γ(H$,Hκ, kc) =
min{$2 + 5,κ2 + 5}
max{$2 + 5,κ2 + 5}

`

�
min{$,κ}
max{$,κ}

`

= Γ($,κ, c)

and

Λ(H$,Hκ, kc) =
(
1−

min{$2 + 5,κ2 + 5}
max{$2 + 5,κ2 + 5}

)
`

�

(
1−

min{$,κ}
max{$,κ}

)
`

= Λ($,κ, c).

Thus mappingH satisfies (4.1) but it does not has any fixed point in Z.

For subsequent result, Ψ is defined as a collection of all mapping ψ : I → I in which ψ is

continuous, ψ(c) � c for each c ∈ I0, ψ(`) = ` and limn→∞ ψn(c) = ` for all c ∈ I0. Likewise, Φ is

defined as a collection of all mapping φ : I → I in which φ is continuous, φ(c) ≺ c for all c ∈ I,

φ(θ) = θ and limn→∞ φn(c) = θ for all c ∈ I.

Theorem 4.2. Suppose that (Z, Γ, Λ, ∗, �) is a complete complex-valued intuitionistic fuzzy metric space.
If a self-mapping f : Z→ Z satisfies subsequent condition:

Γ( f$, fκ, c) � ψ(Γ($,κ, c)) and Λ( f$, fκ, c) � φ(Λ($,κ, c)) (4.5)

for all $,κ ∈ Z and c ∈ P0, where ψ ∈ Ψ and φ ∈ Φ. Then mapping f possesses a unique fixed point that
lies within Z.

Proof. Consider point $0 ∈ Z arbitrary. A sequence {$n} is defined in Z as $n = f$n−1 for every

n ∈ N. The existence of an n0 ∈ N where $n0 = $n0−1 secures $n0 as a fixed point of f . Now, we

consider $n , $n−1 for each n ∈N and establish the Cauchy nature for sequence {$n}.
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For every n ∈N as well as a fixed c ∈ P0, let us define

An := {Γ($n,$m, c) : m > n} ⊂ I,

Bn := {Λ($n,$m, c) : m > n} ⊂ I.

As θ ≺ Γ($n,$m, c) � ` for each m ∈ N where n < m, following from Remark 2.1, the infimum

of An, that is, infAn = αn is present in every n ∈ N. Similarly, since θ � Λ($n,$m, c) ≺ ` for

all n ∈ N where n < m, following from Remark 2.1, the supremum of Bn, that is, supBn = βn is

present in every n ∈N. By (4.5), for all n, m ∈N where m > n, it follows that

Γ($n+1,$m+1, c) = Γ( f$n, f$m, c) � ψ(Γ($n,$m, c)) � Γ($n,$m, c) (4.6)

and

Λ($n+1,$m+1, c) = Λ( f$n, f$m, c) � φ(Λ($n,$m, c)) ≺ Λ($n,$m, c). (4.7)

From this, we can conclude that

Γ($n+1,$m+1, c) � Γ($n,$m, c)

and

Λ($n+1, f$m+1, c) ≺ Λ($n,$m, c)

for any n, m ∈ N where m > n along with c ∈ P0. Taking the infimum of Γ and supremum of Λ

above, it follows that

` � αn+1 � αn � θ, θ � βn+1 � βn � `

for each n belongs to N. Thus, both {αn} and {βn} are monotonic sequences in P. By Remark 2.1,

there exist two elements α, β ∈ P satisfying limn→∞ αn = α and limn→∞ βn = β. From (4.6) and

(4.7), by applying (4.5) successively, we have

Γ($n+1,$m+1, c) � ψ(Γ($n,$m, c))

� ψ2(Γ($n−1,$m−1, c))

� · · ·

� ψn(Γ($0,$m−n, c))

and
Λ($n+1,$m+1, c) � φ(Λ($n,$m, c))

� φ2(Λ($n−1,$m−1, c))

� · · ·

� φn(Λ($0,$m−n, c))

for each n ∈N where m > n and c ∈ P0. It follows that

αn+1 � inf
m>n

ψn(Γ($0,$m−n, c))

and

βn+1 � sup
m>n

φn(Λ($0,$m−n, c)).
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for each n ∈ N along with c ∈ P0. In the case where n approaches infinity on both sides of the

inequalities above, we deduce that

α � lim
n→∞

inf
m>n

ψn(Γ($0,$m−n, c))

= lim
n→∞

ψn(Γ($0,$m−n, c))

= `

and
β � lim

n→∞
sup
m>n

φn(Λ($0,$m−n, c))

= lim
n→∞

φn(Λ($0,$m−n, c))

= θ.

Hence, α = ` and β = θ.This means that

lim
n→∞

inf
m>n

Γ($n+1,$m+1, c) = lim
n→∞

αn = `,

lim
n→∞

sup
m>n

Λ($n+1,$m+1, c) = lim
n→∞

βn = θ

for all c ∈ P0 which indicate that sequence {$n} is Cauchy.

Given that (Z, Γ, Λ, ∗, �) is complete, Lemma 3.2 implies the existence of $ ∈ Z satisfying

lim
n→∞

Γ($n,$, c) = ` and lim
n→∞

Λ($n,$, c) = θ for any c ∈ P0. (4.8)

As a consequence of conditions (5), (10) of Definition 3.2 and (4.5), for any c ∈ P0, we can conclude

that

Γ($, f$, c) � Γ
(
$,$n+1,

c
2

)
∗ Γ

(
$n+1, f$,

c
2

)
= Γ

(
$,$n+1,

c
2

)
∗ Γ

(
f$n, f$,

c
2

)
� Γ

(
$,$n+1,

c
2

)
∗ψ

(
Γ
(
$n,$,

c
2

))
� Γ

(
$,$n+1,

c
2

)
∗ Γ

(
$n,$,

c
2

)
and

Λ($, f$, c) � Λ
(
$,$n+1,

c
2

)
�Λ

(
$n+1, f$,

c
2

)
= Λ

(
$,$n+1,

c
2

)
�Λ

(
f$n, f$,

c
2

)
� Λ

(
$,$n+1,

c
2

)
�φ

(
Λ

(
$n,$,

c
2

))
≺ Λ

(
$,$n+1,

c
2

)
�Λ

(
$n,$,

c
2

)
.

When we consider both of the above inequalities and take the limits as n approaches infinity, by

utilizing (4.8), we can conclude that

Γ($, f$, c) = ` and Λ($, f$, c) = θ
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for any c ∈ P0. By conditions (3) and (8) of Definition 3.2, it can be deduced that $ = f$, that is,

$ is a fixed point of f .

To establish uniqueness, assume z is a different fixed point of f than $ , z. For any c ∈ P0, by

(4.5), it leads to

Γ($, z, c) = Γ( f$, f z, c) � ψ(Γ($, z, c)) � Γ($, z, c)

and

Λ($, z, c) = Λ( f$, f z, c) � φ(Λ($, z, c)) ≺ Λ($, z, c)

resulting in a contradiction. As a result, x = z which demonstrates the uniqueness. �

5. Common fixed-point results

This section presents a generalization of fuzzy Banach contraction concept to complex-valued

intuitionistic fuzzy metric spaces and provides several common fixed-point findings for two map-

pings fulfilling the contraction below on these spaces.

Definition 5.1. Suppose that (Z, Γ, Λ, ∗, �) is a complex-valued intuitionistic fuzzy metric space. A pair
of self-mappings F ,G : Z → Z is referred to as an intuitionistic fuzzy Banach contraction provided that
there is real number k ∈ (0, 1) where

` − Γ(F$,Gκ, c) � k(` − Γ($,κ, c)),

Λ(F$,Gκ, c) � kΛ($,κ, c)
(5.1)

holds for any $,κ ∈ Z and c ∈ P0.

Theorem 5.1. Let (Z, Γ, Λ, ∗, �) be a complete complex-valued intuitionistic fuzzy metric space and a pair
of self-mappings F ,G : Z → Z be a intuitionistic fuzzy Banach contraction. Then mappings F and G
possess a unique common fixed point which lies within Z.

Proof. Consider an arbitrary point $0 ∈ Z. A sequence {$n} is defined in Z as

$2n+1 = F$2n,

$2n+2 = G$2n+1

for any n ∈ N0. The existence of an n0 ∈ N where $n0 = $n0+1 guarantees that $n0 is a common

fixed point of F and G. Indeed, if there is n ∈N0 in which $2n = $2n+1, it indicates $2n is a fixed

point of F . Furthermore, utilizing (5.1), we have

` − Γ($2n+1,$2n+2, c) = ` − Γ(F$2n,G$2n+1, c)

� k(` − Γ($2n,$2n+1, c))

= k(` − `)

= θ



Int. J. Anal. Appl. (2024), 22:91 19

and
Λ($2n+1,$2n+2, c) = Λ(F$2n,G$2n+1, c)

� kΛ($2n,$2n+1, c)

= k(θ)

= θ.

for every c ∈ P0. It follows that Γ($2n+1,$2n+2, c) = ` and Λ($2n+1,$2n+2, c) = θ. By conditions

(3) and (8) of Definition 3.2, $2n+1 = $2n+2 = G$2n+1, which indicate that $2n+1 is a fixed point

of G. Since $2n = $2n+1, we can infer that $2n is a common fixed point of F and G. In similar

fashion, if there is n ∈N0 in which$2n+1 = $2n+2, using (5.1) we can show that$2n+1 is a common

fixed point of F and G.

Assume both $n,$n+1 are always distinct for each n ∈N0. We shall consider two cases. For the

first case suppose n is odd. Substitute $ = $n−1 and κ = $n in (5.1), for all c ∈ P0 we obtain

` − Γ($n,$n+1, c) = ` − Γ(F$n−1,G$n, c)

� k(` − Γ($n−1,$n, c))

≺ ` − Γ($n−1,$n, c)

and
Λ($n,$n+1, c) = Λ(F$n−1,G$n, c)

� kΛ($n−1,$n, c)

≺ Λ($n−1,$n, c).

It follows that

Γ($n,$n+1, c) � Γ($n−1,$n, c)

and

Λ($n,$n+1, c) ≺ Λ($n−1,$n, c)

for any c ∈ P0. For second case suppose n is even. Substitute $ = $n and κ = $n−1 in (5.1), for all

c ∈ P0 we obtain
` − Γ($n+1,$n, c) = ` − Γ(F$n,G$n−1, c)

� k(` − Γ($n,$n−1, c))

≺ ` − Γ($n,$n−1, c)

and
Λ($n+1,$n, c) = Λ(F$n,G$n−1, c)

� kΛ($n,$n−1, c)

≺ Λ($n,$n−1, c).

It follows that

Γ($n,$n+1, c) � Γ($n−1,$n, c)

and

Λ($n,$n+1, c) ≺ Λ($n,$n−1, c)
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for any c ∈ P0. Therefore, we conclude that

Γ($n,$n+1, c) � Γ($n−1,$n, c), Λ($n,$n+1, c) ≺ Λ($n,$n−1, c)

for every n ∈ N0 and c ∈ P0. Denote Γ($n,$n+1, c) = An and Λ($n,$n+1, c) = Bn for all n ∈ N0.

Since

` � An � An−1 � θ

and

θ � Bn ≺ Bn−1 ≺ `

for each n ∈ N0, it leads to the conclusion that both sequences {An} and {Bn} are monotonic in P.

By Remark 2.1, one is possible to locate α, β ∈ P satisfying

lim
n→∞
An = α, lim

n→∞
Bn = β.

Utilizing (5.1), for n ∈N0 and c ∈ P0 we obtain

` − Γ($n,$n+1, c) � k(` − Γ($n−1,$n, c))

` −An � k(` −An−1)

and
Λ($n,$n+1, c) � kΛ($n−1,$n, c)

Bn � kBn−1.

As n becomes infinitely large for both inequalities, we arrive at

` − α � k(` − α)

and

β � kβ.

As k ∈ (0, 1), if α ≺ ` and β � θ, it will lead to a contradiction. Therefore, α = ` and β = θ which

means that
lim
n→∞

Γ($n,$n+1, c) = `,

lim
n→∞

Λ($n,$n+1, c) = θ

for every n ∈N0 and c ∈ P0.

We will now establish the Cauchy nature for sequence {$n}. For every n ∈ N0 as well as fixed

c ∈ P0, consider
Cn = {Γ($n,$m, c) : m > n} ⊆ I,

Dn = {Λ($n,$m, c) : m > n} ⊆ I.

Since θ ≺ Γ($n,$m, c) � ` and θ � Λ($m,$n, c) ≺ `, by Remark 2.1, the infimum of complex

fuzzy set Γ($n,$m, c) and the supremum of complex fuzzy set Λ($n,$m, c) exist. For any positive

integer m > n, by applying condition (5) of Definition 3.2 successively, we have

Γ($n,$m, c) � Γ
(
$n,$n+1,

c
m− n

)
∗ Γ

(
$n+1,$n+2,

c
m− n

)
∗ · · · ∗ Γ

(
$m−1,$m,

c
m− n

)
.
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It follows that
lim
n→∞

inf
m>n

Γ($n,$m, c) � ` ∗ ` ∗ · · · ∗ `

= `

which leads to

lim
n→∞

inf
m>n

Γ($n,$m, c) = `

for every c ∈ P0. On top of that, For any positive integer m > n, by applying condition (10) of

Definition 3.2 successively, we have

Λ($n,$m, c) � Λ
(
$n,$n+1,

c
m− n

)
�Λ

(
$n+1,$n+2,

c
m− n

)
� · · · �Λ

(
$m−1,$m,

c
m− n

)
.

This implies
lim
n→∞

sup
m>n

Λ($n,$m, c) � θ � θ � · · · � θ

= θ

which leads to

lim
n→∞

sup
m>n

Λ($n,$m, c) = θ

for all c ∈ P0. Hence, sequence {$n} is Cauchy.

Given that (Z, Γ, Λ, ∗, �) is complete, Lemma 3.2 indicates the presence of u ∈ Z satisfying

lim
n→∞

Γ($n, u, c) = ` and lim
n→∞

Λ($n, u, c) = θ

for all c ∈ P0. For any n ∈N0 and c ∈ P0, by (5.1) we yield

` − Γ(F u,G$2n+1, c) � k(` − Γ(u,$2n+1, c))

≺ ` − Γ(u,$2n+1, c)

and
Λ(F u,G$2n+1, c) � kΛ(u,$2n+1, c)

≺ Λ(u,$2n+1, c).

These imply that

Γ(F u,G$2n+1, c) � Γ(u,$2n+1, c) (5.2)

and

Λ(F u,G$2n+1, c) ≺ Λ(u,$2n+1, c) (5.3)

for each n ∈ N0 and c ∈ P0. As a consequence of conditions (5), (10) of Definition 3.2, (5.2) and

(5.3), for any n ∈N0 and c ∈ P0, we can conclude that

Γ(u,F u, c) � Γ
(
u,$2n+2,

c
2

)
∗ Γ

(
$2n+2,F u,

c
2

)
= Γ

(
u,$2n+2,

c
2

)
∗ Γ

(
G$2n+1,F u,

c
2

)
= Γ

(
u,$2n+2,

c
2

)
∗ Γ

(
F u,G$2n+1,

c
2

)
� Γ

(
u,$2n+2,

c
2

)
∗ Γ

(
u,$2n+1,

c
2

)
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and
Λ(u,F u, c) � Λ

(
u,$2n+2,

c
2

)
�Λ

(
$2n+2,F u,

c
2

)
= Λ

(
u,$2n+2,

c
2

)
�Λ

(
G$2n+1,F u,

c
2

)
= Λ

(
u,$2n+2,

c
2

)
�Λ

(
F u,G$2n+1,

c
2

)
� Λ

(
u,$2n+2,

c
2

)
�Λ

(
u,$2n+1,

c
2

)
As n becomes infinitely large for both inequalities, we arrive at

Γ(u,F u, c) = ` and Λ(u,F u, c) = θ

for all c ∈ P0. By conditions (3) and (8) of Definition 3.2, it means that u = F u. Using similar

steps as above one can deduce that

Γ(u,Gu, c) = ` and Λ(u,Gu, c) = θ

for all c ∈ P0. By conditions (3) and (8) of Definition 3.2, it means that u = Gu. As a result,

u = F u = Gu which indicates u is common fixed point of both both F and G.

To establish the uniqueness, assume v is a different fixed point of f in which v , u. It is possible

to locate c ∈ P0 satisfying Γ(u, v, c) , ` and Λ(u, v, c) , θ. By (5.1),

` − Γ(u, v, c) = ` − Γ(F u,Gv, c)

� k(` − Γ(u, v, c))

≺ ` − Γ(u, v, c)

and
Λ(u, v, c) = Λ(F u,Gv, c)

� kΛ(u, v, c)

≺ Λ(u, v, c)

which contradicts with our assumption. Thus Γ(u, v, c) = ` and Λ(u, v, c) = θ for all c ∈ P0.

By conditions (3) and (8) of Definition 3.2, we conclude that u = v which demonstrates the

uniqueness. �

Corollary 5.1. Let (Z, Γ, Λ, ∗, �) be a complete complex-valued intuitionistic fuzzy metric space. If a
self-mapping F : Z→ Z satisfying

` − Γ(F$,Fκ, c) � k(` − Γ($,κ, c)),

Λ(F$,Fκ, c) � kΛ($,κ, c)

for every $,κ ∈ Z and c ∈ P0, in which k ∈ (0, 1). Then mapping F possesses a unique fixed point that
lies within Z.

Proof. The conclusion can be derived by substituting F = G into Theorem 5.1. �

Below, an instance effectively highlights the concept expounded in Corollary 5.1.
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Example 5.1. Let Z = [0, 1]. Two binary operations ∗ and � are defined as c1 ∗ c2 = (a1a2, b1b2) and
c1 � c2 = (max a1, a2, max b1, b2) for each ci = (ai, bi) ∈ I where i = 1, 2. Let complex fuzzy sets Γ and
Λ be defined as follow:

Γ($,κ, c) =
(

ab + min{$,κ}
ab + max{$,κ}

)
`, Λ($,κ, c) =

(max{$,κ} −min{$,κ}
ab + max{$,κ}

)
`

for all$,κ ∈ Z and c = (a, b) ∈ P0. The fact that (Z, Γ, Λ, ∗, �) is a complete complex-valued intuitionistic
fuzzy metric space is established without much effort.

Define F : Z → Z by F = $/2 where $ ∈ Z. For any $,κ ∈ Z satisfying $ ≤ κ, it is clear that
F$ ≤ Fκ. It follows that

Γ(F$,Fκ, c) =
(

ab + min{F$,Fκ}
ab + max{F$,Fκ}

)
`

=

(
ab +F$
ab +Fκ

)
`

�

(
ab +$
ab +κ

)
`

= Γ($,κ, c).

If we pick any k ∈ ( 1
2 , 1), we have

` − Γ(F$,Fκ, c) � k(` − Γ($,κ, c))

for every $,κ ∈ Z and c = (a, b) ∈ P0. Similarly, we able to deduce that

Λ(F$,Fκ, c) � kΛ($,κ, c)

for every $,κ ∈ Z and c = (a, b) ∈ P0. The graphical view of these two inequalities are shown in Figure 1
and Figure 2 respectively. Consequently, each conditions specified in Corollary 5.1 are met. Particularly, 0

is the unique fixed point of F .

Figure 1. Graphical view of inequality ` − Γ(F$,Fκ, c) � k(` − Γ($,κ, c)), where

the blue color plane represents the left-hand side and the brown color plane repre-

sents the right-hand side, when k = 2/3 and c = (2, 5).
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Figure 2. Graphical view of inequality Λ(F$,Fκ, c) � kΛ($,κ, c), where the red

color plane represents the left-hand side and the brown color plane represents the

right-hand side, when k = 2/3 and c = (2, 5).

Theorem 5.2. Suppose that (Z, Γ, Λ, ∗, �) is a complete complex-valued intuitionistic fuzzy metric space.
If commuting pair of self-mappings F ,G : Z→ Z satisfying

` − Γ(F n$,Gnκ, c) � k(` − Γ($,κ, c)),

Λ(F n$,Gnκ, c) � kΛ($,κ, c)

for any $,κ ∈ Z, c ∈ P0 and n ∈ N, in which k ∈ (0, 1). Then mappings F and G possess a unique
common fixed point that lies within Z.

Proof. Each conditions in Theorem 5.1 are fulfilled by both F n andGn. Consequently, they possess

a unique common fixed point u in Z, for instance, F nu = Gnu = u. From the fact that

F
n
F u = FF nu = F u,

it can be inferred that F u is a point fixed by F n. Since mappings F and G commute, we can write

G
n
F u = FGnu = F u

which shows that Fu is a point fixed by Gn. Consequently, Fu serves as common fixed point of F n

and Gn .

Similarly, from the fact that

G
n
Gu = GGnu = Gu,

it can be inferred that Gu is a point fixed by Gn. Since mappings F and G commute, we can write

F
n
Gu = GF nu = Gu

which shows that Gu is a point fixed by F n. Consequently, Gu serves as common fixed point of

F
n and Gn.

In light of the common fixed point of F n andGn being unique, this indicates that u = Gu = F u.

As a result, u serve as the point shared and fixed by F and G. Obviously, any common fixed point
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of F and G remains a common fixed point of F n and Gn. For this purpose, the common fixed

point of F and G is uniquely determined. �

Corollary 5.2. Suppose that (Z, Γ, Λ, ∗, �) is a complete complex-valued intuitionistic fuzzy metric space.
If a self-mapping F : Z→ Z satisfying

` − Γ(F n$,F nκ, c) � k(` − Γ($,κ, c)),

Λ(F n$,F nκ, c) � kΛ($,κ, c)

for any $,κ ∈ Z, c ∈ P0 and n ∈ N, in which k ∈ (0, 1). Then, F possess a unique fixed point that lies
within Z.

Proof. The conclusion can be derived by substituting F = G into Theorem 5.2. �

6. Application to Fredholm integral equations of second kind

This section explore how Theorem 4.1 is employed to demonstrate the presence of a unique

solution for Fredholm integral equations. The set C([0, 1], R) denotes the collection of every

continuous functions that map the interval [0, 1] to R. Below is an example of a second-kind

nonlinear Fredholm integral equation:

ψ(t) = Q(t) + γ

∫ 1

0
ω(t, s)χ(s,ψ(s))ds (6.1)

where Q represents real valued function that is continuous on the interval [0, 1], ω(t, s) represents

the kernel of the integral function, χ(s,ψ(s)) represents continuous and nonlinear function defined

on [0, 1] ×R and ψ(t) represents function that we wish to be determined.

Theorem 6.1. Consider Z = C([0, 1], R). Suppose that the conditions outlined below are met:

(1) an element α ∈ (0, 1) can be located in which

|χ(s,ψ(s)) − χ(s,φ(s))| ≤ α|ψ(s) −φ(s)|

for any ψ,φ ∈ Z and s ∈ [0, 1];
(2)

∫ 1
0 ω(t, s)ds ≤ β;

(3) γ2β2α2
≤ k < 1.

Consequently, integral equation (6.1) admits a unique solution in Z.

Proof. Given a mapping F : Z→ Z defined by

Fψ(t) = Q(t) + γ

∫ 1

0
ω(t, s)χ(s,ψ(s))ds

for every ψ(t) ∈ Z and t ∈ [0, 1]. Let complex-valued t-norm and complex valued t-conom be

defined by ∗p and �n respectively. Furthermore, Γ($,κ, c) and Λ($,κ, c) defined by

Γ(ψ(t),φ(t), c) =
a + b

a + b + |ψ(t) −φ(t)|2
`, Λ(ψ(t),φ(t), c) =

|ψ(t) −φ(t)|2

a + b + |ψ(t) −φ(t)|2
`
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for allψ,φ ∈ Z, c = (a, b) > 0 and t ∈ [0, 1]. The fact that (Z, Γ, Λ, ∗, �) is a complete complex-valued

intuitionistic fuzzy metric space is established without much effort.

For all ψ,φ ∈ Z and t ∈ [0, 1], it follows that

|Fψ(t) −Fφ(t)|2 =

∣∣∣∣∣∣Q(t) + γ

∫ 1

0
ω(t, s)χ(s,ψ(s))ds−Q(t) − γ

∫ 1

0
ω(t, s)χ(s,φ(s))ds)

∣∣∣∣∣∣
2

= γ2

∣∣∣∣∣∣
∫ 1

0
ω(t, s)χ(s,ψ(s))ds−

∫ 1

0
ω(t, s)χ(s,φ(s))ds

∣∣∣∣∣∣
2

≤ γ2
(∫ 1

0
ω(t, s)ds

)2

|χ(s,ψ(s)) − χ(s,φ(s))|2

≤ γ2β2α2
|ψ(s) −φ(s)|2

≤ k|ψ(s) −φ(s)|2

Now, for all ψ,φ ∈ Z and c ∈ P0, it leads to

Γ(Fψ(t),Fφ(t), kc) =
k(a + b)

k(a + b) + |Fψ(t) −Fφ(t)|2
`

�
k(a + b)

k(a + b) + k|ψ(t) −φ(t)|2
`

=
a + b

a + b + |ψ(t) −φ(t)|2
`

= Γ(ψ(t),φ(t), c)

and

Λ(Fψ(t),Fφ(t), kc) =
|Fψ(t) −Fφ(t)|2

k(a + b) + |Fψ(t) −Fφ(t)|2
`

=

(
1−

k(a + b)
k(a + b) + |Fψ(t) −Fφ(t)|2

)
`

�

(
1−

k(a + b)
k(a + b) + k|ψ(t) −φ(t)|2

)
`

=

(
1−

k(a + b)
k(a + b) + k|ψ(t) −φ(t)|2

)
`

=
|ψ(t) −φ(t)|2

a + b + |ψ(t) −φ(t)|2
`

= Λ(ψ(t),φ(t), c)

As a consequence, all the requirements specified in Theorem 4.1 are met, indicating F possesses a

unique fixed point in Z. Stated differently, a unique solution to (6.1) exists in C([0, 1], R). �
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