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Abstract. In this paper, a new augmented mixed DG formulation for the numerical approximation of the electrostatic

field was introduced and studied. Its error analysis was carried out and an optimal error estimates as a function of the

mesh size was obtained. Some numerical tests confirming the theoretical convergence were given.

1. Introduction

Along this paper, we consider the study and analysis of the mixed discontinuous Galerkin method

for the three dimensional Maxwell’s equations: Find u, p such that

∇∧ (µ−1
∇∧ u) − ε∇p = J in Ω,

∇ · (εu) − αp = 0 in Ω,

n∧ u = 0 on ∂Ω, (1.1)

p = 0 on ∂Ω.

Assuming α = 0, then u is linked to the electric field E by E(t, x) = u(x) cos(ωt), with ω is non

zero frequency and p is the Lagrange multiplier used for controlling the divergence of the electric

field. The piecewise coefficients µ and ε are the magnetic permeability and electric permittivity

of the media, we assume that these coefficients are sufficiently regular and there exists two lower

bounds µ`, ε` and two upper bounds µu, εu such that 0 < µ` ≤ µ(x) ≤ µu and 0 < ε` ≤ ε(x) ≤ εu for

all x ∈ Ω. α is any non negative function in L∞(Ω). We assume that Ω is a smooth subdomain of R3.
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In the last years, the Maxwell equations have been studied and analysed by using several nu-

merical methods such as discontinuous Galerkin methods [5,6,9,10,13–16] and by weak Galerkin

formulations [18]. Thanks to works of Cockburn et al. [1–3], DG methods are developed very

well and it was applied to solve numerically many problems of partial differential equations like

Poisson’s equation [2], Stokes equations [7] , Maxwell’s equations [5,6,8,10,13,17]. The researchers

C. Daveau and A. Zaghdani study Maxwell equations and wave equation in [4–6] by using some

new schemes of DG methods. In [16,17], A. Zaghdani et al. presented a mixed DG scheme for the

numerical resolution of the electrostatic field. This work is an expansion of [5] where the problem

(1.1) was considered with constant permeability and permittivity coefficients and when α = 0, the

problem (1.1) was also analysed in [9], however the formulation of equations exploited to find the

error estimates is not consistent, this is due to the choice of the lifting operators. In our study, we

present a new DG formulation using a symmetric principal bilinear form.

The outline of this paper is presented as follows. We start by giving some notations and some

preliminaries results that are essential for our study. Next, we derive the DG formulation, we

show that it is well posed and consistent. Then, we establish a priori error estimations and finally

we present some numerical tests which confirm the theoretical study.

2. Mixed Formulation

2.1. Functional spaces. In the outline of this paper, Ω is an open bounded subset of R3 with

Lipschitz continuous boundary ∂Ω and Th be a quasi-uniform partition of Ω, more precisely

Ω =
⋃

T∈Th

T and Tk ∩ T` = ∅ for k , `.

Let EI
h the set of each interior faces of the subdivision of Ω, ED

h the set of all boundary faces and

Eh = EI
h ∪E

D
h the union of interior and boundary faces. If 0 < s, we define the broken spaces

Hs(Th) = {u ∈ L2(Ω)3 such that u|T ∈ Hs(T) ∀ T ∈ Th}

and

Hs(∇∧,Th) = {u : u|T ∈ Hs(T)3 and ∇∧ (u|T) ∈ Hs(T)3
∀T ∈ Th}.

To establish a weak formulation of (1.1), we also define

V(h) = H1(∇∧,Th) and Q(h) = H1(Th).

Multiplying the first and the second equations in (1.1) by v and ψ and integrating over T, we get∫
T
µ−1(∇∧ u) · (∇∧ v) dx−

∫
∂T

v · ((µ−1
∇∧ u)∧ nT)ds +

∫
T

p∇ · εv dx

−

∫
∂T

(εv · nT)p ds =
∫

T
J · v dx for all v ∈ V(h) (2.1)

and

−

∫
T
εu∇ψ dx−

∫
T
αpψ dx +

∫
∂T
(εu · nT)ψ ds = 0 for all ψ ∈ Q(h). (2.2)
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The primal DG method consists to replace the traces of functions used in (2.1)-(2.2) by numerical

fluxes, this is due to the discontinuity of solution (u, p) on interfaces of the triangulation. For the

definitions of averages and jumps of a discontinuous function on the interfaces we refer to [16]. As

in [1], the numerical fluxes are chosen to provide a numerical scheme consistent and conservative.

In this sense, denote by ηa and ηc the stabilization parameters introduced in [16] and we adapt the

numerical fluxes given in [3] for the laplacien and for the curl-curl operators in [2,10] for defining

the fluxes as

µ−1
∇̂ ∧ u = µ−1

{∇ ∧ u} − ηa[u]T, (2.3)

ε̂u = {εu} − ηc[p]N in E
I
h and εu− ηcpn in E

D
h .

and

p̂ = {p} − ηa[εu]N in E
I
h and 0 in E

D
h .

Now, equations (2.1)-(2.2) can be replaced by∫
T
(µ−1
∇∧ u) · (∇∧ v) dx−

∫
∂T

v · (µ−1(∇̂ ∧ u)∧ nT) ds +
∫

T
p∇ · εv dx

−

∫
∂T

(εv · nT)p̂ds =
∫

T
J · v dx (2.4)

and

−

∫
T
εu · ∇v dx−

∫
T
αpψ dx +

∫
∂T
(ε̂u · nT)v ds = 0. (2.5)

we integrate back by parts the equation (2.5) and arrive at∫
T

v∇ · εu dx−
∫

T
αpψ dx +

∫
∂T

((ε̂u− εu) · nT)v ds = 0. (2.6)

2.2. Discontinuous Galerkin scheme. Let us first remark that the equations (see [13]),∑
T∈Th

∫
∂T
φ(t∧ nT)ds =

∫
Eh

[φ]T{t} −
∫
EI

h

[t]T{φ} ds

and ∑
T∈Th

∫
∂T

v(φ · nT)ds =
∫
EI

h

({v}[φ]N + [v]N{φ})ds +
∫
ED

h

v(φ · n) ds

are valid for any t and φ in ΠT∈ThL2(∂T)3 and for any v ∈ ΠT∈ThL2(∂T). In order to simplify

notations, we define the following three bilinear forms

sT(u, v) :=
∫
Eh

ηa[u]T[v]T ds,

sN(u, v) :=
∫
EI

h

ηa[εu]N[εv]N ds,

S(u, v) :=
∫
Eh

µ−1[u]T∇∧ v ds.



4 Int. J. Anal. Appl. (2024), 22:85

By summation of the equations (2.4), (2.6) over all elements of Th, using the introduced numerical

fluxes and the last formulas, we obtain∫
Ω
µ−1
∇∧ u∇∧ v dx−

∫
Eh

[v]Tµ−1
{∇ ∧ u} ds + sT(u, v)+sN(u, v) +

∫
Ω

p∇ · εv dx

−

∫
EI

h

[εv]N{p} ds =
∫

Ω
J ·ψ dx

and ∫
Ω
εu∇ψ dx−

∫
Ω
αpψdx−

∫
EI

h

[εu]N{ψ}ds−
∫
EI

h

ηc[p]N[ψ]N ds

−

∫
ED

h

ηc[ψ]N[p]N ds = 0.

Using the fact that for the true solution u we have n∧ u = 0 in ED
h , [u]T = 0 in EI

h and ∇ · εu = 0 in

Ω, we can add a term of penalization as

r
∫

Ω
∇ · (εu)∇ · (εv) dx−S(u, v).

We note that the first quantity r
∫

Ω ∇ · (εu)∇ · (εv) dx is added to maintain the coercivity of As on

the whole discrete space which will be defined later, while S(u, v) is added for symmetrizing the

principal bilinear form As that we are going to introduce. Now, one define the bilinear forms

As(u, v) =: s(u, v) −S(v, u) −S(u, v), B(v, p) =:
∫

Ω
p∇ · εv dx−

∫
EI

h

[εv]N{p} ds

and

C(p,ψ) =:
∫

Ω
αpψdx +

∫
Eh

ηc[ψ][p] ds.

where we have denoted by

s(u, v) :=
∫

Ω
µ−1(∇∧ u) · (∇∧ v) dx + sT(u, v) + sN(u, v) + r

∫
Ω
∇ · (εu)∇ · (εv) dx

The considered DG formulation associated to (1.1) is to find u ∈ V(h) and p ∈ Q(h) satisfying

As(u, v) + B(v, p) = L(v) for any v ∈ V(h), (2.7)

B(u,ψ) −C(p,ψ) = 0 for any ψ ∈ Q(h). (2.8)

2.3. Discrete scheme. Given T ∈ Th and Pk(T) the set of polynomials of degree at most k on T.

We define the finite space by

Dk = {p : p|T ∈ Pk(T)3, T ∈ Th}.

The numerical discretization for the scheme (2.7)-(2.8) consist first to discretize the space Q(h) ×
V(h) by the finite dimensional space Qh ×Vh =: D1 ×D2. The mixed discontinuous Galerkin
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method take the discrete form: find uh ∈ Vh and ph ∈ Qh satisfying

As(uh, v) + B(v, ph) =L(v) for any v ∈ Vh, (2.9)

B(uh,ψ) −C(ph,ψ) = 0 for any ψ ∈ Qh. (2.10)

In the next theorem, we prove that our mixed DG scheme is consistent and well posed.

Theorem 2.1. One can find a positive constantκ0 such that for allκ greater thanκ0, the problem (2.9)-(2.10)
is consistent and well posed.

Proof. First, we notice that the exact solution (u, p) of (1.1) is in the space H0(∇∧, Ω)∩H(∇ε·, Ω) ×

H1
0(Ω), we integrating by parts (2.1)-(2.2) to show easily that the true solution of (1.1) verify (2.9))-

(2.10), which proves the consistency. Next, we demonstrate that (2.9)-(2.10) has a unique solution.

To do this, we use the fact that (2.9)-(2.10) is a linear and finite dimensional problem. Assume that

J is null in Ω and let v = u and ψ = p in (2.9)-(2.10), substracting the last equation of (2.9)-(2.10)

from the previous, we obtain

C(p, p) + s(u, u) − 2S(u, u) = 0.

That means

C(p, p)+
1
µ

∫
Ω
(∇∧ u) · (∇∧ u) dx + sT(u, u) + sN(u, v)

+

∫
Ω

r∇ · (εu)∇ · (εu) dx− 2
∫
Eh

µ−1[u]T∇∧ u ds = 0.

Using the boundedness of µ and Cauchy Schwarz inequality, we obtain

2S(u, u) ≤2δ
∫
Eh

ηa[u]2T ds +
2C
δ

∫
Eh

1
ηa
|{∇ ∧ uh

}|
2 ds for any δ > 0

≤2δsT(u, u) +
2C
δ

∫
Eh

1
ηa
|{∇ ∧ uh

}|
2 ds for any δ > 0.

Applying the following inverse inequality [8, 11, 12, 16]

‖q‖20,∂T ≤ C
1

hT
‖q‖20,T, for every q ∈ Pk(T) (2.11)

and using the fact that ∇∧Vh ⊂ Vh, we get∫
Eh

|
1
√
ηa
{∇ ∧ v}|2ds ≤

C
κ

∫
Ω
|∇ ∧ v|2 dx for any v ∈ Vh

which means

2S(u, u) ≤ 2δsT(u, u) ds +
2C
δκ

∫
Ω
|∇ ∧ u|2 dx.

Therefore, we obtain

C(p, p) + s(u, u) − 2S(u, u) ≥C(p, p) + (1−
2C
δκ

)

∫
Ω
(∇∧ uh)2 dx

+

∫
Ω

r(∇ · εuh)2 dx + (1− 2δ)sT(u, u) + sN(u, u)



6 Int. J. Anal. Appl. (2024), 22:85

If we consider κ and δ such that min(1− 2δ, 1− 2C
δκ ) > 0, we get

∇∧ u = 0, ∇ · (εu) = 0 in Ω

and

sN(u, u) = 0 on E
I
h

sT(u, u) = 0 on Eh and C(p, p) = 0.

This means that

[u]T = 0 on Eh and [εu]N = 0 on E
I
h.

The equations ∇∧ u = 0 and [u]T = 0 on Eh implies that u is in H0(∇∧ 0, Ω). Similarly ∇ · (εu) = 0

in Ω and [εu]N = 0 on EI
h means that u belongs to H(∇ε · 0, Ω). We deduce that u is null in Ω. The

equation C(p, p) = 0 implies that [p]N = 0 on Eh and then p is in H1
0(Ω) and it is clear that if α , 0,

then p = 0 in Ω. If α = 0, we integrate by parts the equation (2.10) yields −
∫

Ω v∇p dx = 0 for all

v ∈ Vh which gives that p is null in Ω. �

The objective of the following section is to study the convergence of our numerical scheme. For

this, let us introduce the mesh dependent norm on the discrete spaces Vh and Qh. Given v ∈ Vh

and φ ∈ Qh, then we define

‖v‖2h := s(v, v) + ‖
1
√
ηa
{µ−

1
2∇∧ v}‖20,Eh

(2.12)

and

‖φ‖2h := ‖α
1
2φ‖20,Ω + ‖

√
ηc[φ]‖

2
0,Eh

+ ‖
√
ηc{φ}‖

2
0,Eh

. (2.13)

It is straightforward to prove that (2.12) and (2.13) are two norms on the element spaces Vh and

Qh respectively.

3. Error Estimates

Let us start by studying some properties of the three bilinear forms A, B and C. It is obvious that

the continuity of these bilinear forms follow from the definitions of mesh-dependent norm and the

Cauchy Shwarz inequality. Now, we demonstrate an inf-sup condition for B.

3.1. An inf-sup condition. Let us start by introducing the following lemma which we need for

proving the inf-sup condition for B.

Lemma 3.1. Given u in H1(Th)
3, we can find an interpolant Rh

∈ D2 satisfying∫
T
(∇ · εu−Rh)ψh dx = 0 and

∫
e
(εu−Rh) ds = 0

for any ψh in P1(T), for all T in Th and for all e in Eh.

Proof. The proof can be deduced from theorem 1 in [4] since εu is in H1(Th)
3 for all u in H1(Th)

3 if

ε is sufficiently smooth. �
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Now, An inf-sup condition for B is given in the following theorem.

Theorem 3.1. For any p in Qh, there exists β > 0 independent h and satisfying

sup
u∈Vh\{0}

B(u, p)
‖u‖h

≥ β‖p‖h. (3.1)

Proof. Using the inverse inequality (2.11) and the fact that ηc =
1
ηa

, we obtain

‖ph‖
2
0,Ω ≥

1
3
‖ph‖

2
0,Ω + C‖

1
√
ηa
[p]‖20,Eh

+ C‖
1
√
ηa
{p}‖20,Eh

≥
1
3
‖ph‖

2
0,Ω + C‖

√
ηc[p]‖20,Eh

+ C‖
√
ηc{p}‖20,Eh

≥ C‖p‖2h.

Fix ph ∈ Qh, it is well known that there exists ũh ∈ H1(Ω)3 satisfying

∇ · εũh = ph and ‖ũh‖1,Ω ≤ C‖ph‖0,Ω.

Using Lemma 3.1 and setting uh = Rh(ũh), yields

B(uh, ph) =
∑
T∈Th

∫
T

ph∇ ·Rh(ũh) =
∑
T∈Th

∫
T

ph∇ · εũh = ‖ph‖
2
0,Ω ≥ C‖ph‖

2
h.

Since Rh is a continuous operator, we obtain ‖uh‖h = ‖Rh(ũh)‖h ≤ C‖ũh‖1,Ω ≤ C‖ph‖0,Ω ≤ C‖ph‖h and

the proof of (3.1) can be easily deduced. �

For the coercivity of the bilinear form As, it is well known that it is sufficient to demonstrate the

coercivity of As on ker(B). However, we can demonstrate that As is coercive on the whole discrete

spaceVh ×Vh.

Proposition 3.1. We have

As(v, v) ≥ C‖v‖2h for any v ∈ Vh (3.2)

with a constant C > 0 independent of h.

Proof. With the same steps and techniques presented in [16] the proof follows without difficulty. �

Theorem 3.2. Let (u, p) be the true solution of (1.1) and (uh, ph) be the discrete solution of (2.9)-(2.10),
we assume that (u, p) ∈ Ht+1(Th)

3
×Hs−1(Th) with 2 ≤ s and 1 ≤ t then there exists a constant C

independent of h such that

‖p− ph‖
2
h + ‖u− uh‖

2
h ≤ C

(
h2[min(s,2)−1]

‖p‖2s,Th
+ h2 min(t,2)

‖u‖2t+1,Th

)
Proof. The proof is an easy consequence of the known Babuska-Brezzi theory and is well detailed

in [13]. �
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4. Numerical Tests

The numerical tests are conducted for the Maxwell Eqs (1.1) on the unit cube Ω = [0, 1]3. For

the sake of simplicity, we assume that ε = 1, µ = 1 and α(x) is null on Ω which means that the

term αp vanishes from the equation (1.1). Note that, in the numerical scheme (2.9)-(2.10) there

is two parameters κ and r. We can choose r as any non negative real number but not too large

while for κ, it is not chosen too small to ensure the coercivity result of As and also not too large

to maintain the good conditioning of the principal matrix of As. In our numerical code, we have

taken (r,κ) = (1, 100) for the following two examples.

Example 4.1. In this example, we assume that the true solution (u, p) is given by

u =


yz(y− 1)(z− 1) sin(zy)
xz(x− 1)(z− 1) sin(zx)
xy(x− 1)(y− 1) sin(yx)

 and p = xyz(x− 1)(y− 1)(z− 1) sin(zyx).

For this example, the numerical results are presented in table 1, confirming the theoretical conver-

gence estimates as proved in theorem 3.2.

Table 1. Numerical results for Example 4.1.
h ‖u− uh

‖h rate ‖p− ph
‖h rate

0.4367 0.1102 - 0.7005 -

0.2184 0.03162 1.80 0.2201 1.75

0.1733 0.001808 2.41 0.1504 1.64

0.09268 0.004451 2.23 0.06111 1.43

0.07703 0.003052 2.04 0.04803 1.30

Example 4.2. Here we suppose that the exact solution (u, p) is

u =


yz(y− 1)(z− 1) exp(zy)
xz(x− 1)(z− 1) exp(zx)
xy(x− 1)(y− 1) exp(yx)

 and p = xyz(x− 1)(y− 1)(z− 1) exp(zyx).

The values of errors associated to this example are given in table 2. We remark that the numerical

solution uh converge to the true solution u with respect to the rate O(h2) and for p with rate O(h)
as derived in theoretical study.

5. Remarks and Conclusion.

From the two previous error tables, we confirm the convergence results developed in earlier

sections, though the numerical results show an excellent approximation to the exact solution.

As expected, the convergence rate for approximating u is in order O(h2) and O(h) for p and

then our theoretical results are numerically confirmed. We believe that our DG method is of

superconvergent for Maxwell’s equations.
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Table 2. Numerical results for Example 4.2.

h ‖u− uh
‖h rate ‖p− ph

‖h rate

0.4367 0.1305 - 0.8891 -

0.2184 0.03875 1.7524 0.2229 1.9966

0.1733 0.02051 2.7506 0.1700 1.1713

0.09268 0.004521 2.4161 0.06283 1.5904

0.07703 0.003111 2.0209 0.04660 1.6157
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