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Abstract. The aim of this research is to study the local, global, and boundedness of the difference equation

Tη+1 = r +
p1Tη−l1

Tη−m1

+
p2Tη−l1

Tη−m2

+ ... +
psTη−l1

Tη−ms

,

where l1,m1,m2, ..., ms, s, are positive real numbers. It also studies periodic solutions of special case of this equation.

Finally, numerical examples are given to confirm results.

1. Introduction

The main goal of this study is to investigate the poropties of solutions such as boundedness,

local stability and global stability of the difference equation

Tη+1 = r +
p1Tη−l1

Tη−m1

+
p2Tη−l1

Tη−m2

+ ... +
psTη−l1

Tη−ms

, η = 0, 1, ..., (1.1)

such that l1,m1,m2, ..., ms, s, and the initial values T−l1, , T−m1 , T−m2 , T−ms are arbitrary positive real

numbers. In addition, we study periodic solutions for special case of above equations. Numerical

examples are given to confirm results.

Many researchers find the study of difference equations interesting and fruitful because it

supports the analysis of modeling in various phenomena in life [15]. For example, Elsayed [15]

study third and second periodic solution of the difference equation given by

Tη+1 = a +
bTη
Tη−1

+
bTη−1

Tη
.

El-Metwally et a studied the global attractivity and the periodic character of some difference

equation

Tη+1 =
Tη−(2k+1) + p

Tη−(2k+1) + qTη−2l
.
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Camouzis et al. in [3] investigated ,the dynamics of following difference equation

Tη+1 =
α+ γTη−1 + δTη−2

A + Tη−2

The global attractivity and local stability of the difference equation

Tη+1 =
Tη−1

c + dTη−1Tη−2
,

have investigated by Yang et al. [24].

Khaliq et al. [17] studies the dynamical behavior of solutions of the seventh order difference

equation

Tη+1 = aTη−3 +
αTn−3Tη−7

βTη−3 + γTη−7
.

Elabbasy et al. [11] studied the qualitative properties of the difference equation

Tη+1 = aTη +
αTn

βTη + γTη−1
,

Dilip, et al. [7] studied the behavior of solutions of difference equation

Tη+1 = a + αTη−1λ
−Tn .

Another associated papers on rational difference equations see [1-24].

2. Behavior of the Solutions of Eq. (1.1)

In this secion we investigated the behavior of the solution of Eq. (1.1),

2.1. Local Stability. In this subsection we investigate the local stability character of the solutions

of Eq. (1.1).

Theorem 2.1. Assume that p1 + p2 + ... + ps < r,then the equiliribum point T̄ = r + p1 + p2 + ... + ps,

of Eq. (1.1) is Locally asymptotically stable.

proof: The equilibrium point of Eq. (1.1) is given by

T̄ = r + p1 + p2 + ... + ps. (2.1)

Define a function g : (0,∞)→ (0,∞) as

g(x1, y1, y2, ..., ys) = r +
p1x1

y1
+

p2x1

y2
+ ... +

psx1

ys
.
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Hence we obtain,

∂g
∂x1

(x1, y1, y2, ..., ys) =
p1

y1
+

p2

y2
+ ... +

ps

ys
,

∂g
∂y1

(x1, y1, y2, ..., ys) = −
p1x1

y2
1

,

∂g
∂y2

(x1, y1, y2, ..., ys) = −
p2x2

y2
2

, ...,

, ...,

∂g
∂ys

(x1, y1, y2, ..., ys)) = −
psxs

y2
s

.

It follows that

∂g
∂x1

(T̄, T̄, ..., T̄) =
p1 + p2 + ... + ps

T̄
= −a1,

∂g
∂y1

(T̄, T̄, ..., T̄) = −
p1

T̄
= −b1,

∂g
∂y2

(T̄, T̄, ..., T̄) = −
p2

T̄
= −b2, ...,

, ...,

∂g
∂ys

(T̄, T̄, ..., T̄) = −
ps

T̄
= −bs.

Therefore, the linearized equation becomes

Sη+1 = a1Sη−l1 + b1Sη−m1 + b2Sη−m2 + ... + bsSη−ms ,

using Theorem A, we get that the equiliribum point is asympototically stable if

|a1|+ |b1|+ |b1|+ ... + |b1| < 1,

and hence

p1 + p2 + ... + ps < r,

which means the prove is complete.

2.2. Global Attractor. In this subsection we investigate the global attractivity character of solu-

tions of Eq. (1.1)

Theorem 2.2. The equiliribum point of Eq. (1.1) is global Attractor if r , p1 + p2 + ... + ps.

proof: Let a, b are real number and define f : [a, b]s+1
→ [a, b] a function f (x1, y1, y2, ..., ys) =

r+
p1x1

y1
+

p2x1

y2
+ ...+

psx2

ys
. Clearly, the function f is increasing in x1 and decreasing in y1, y2, ..., ys,

hence

N = f (N, n, n, ..., n) and n = f (n, N, ..., N).
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Hence we get

N = r +
p1N

n
+

p2N
n

+ ... +
psN

n
,

n = r +
p1n
N

+
p2n
N

+ ... +
psn
N

,

or

Nn = rn +
p1Nn

n
+

p2Nn
n

+ ... +
psNn

n
,

nN = rN +
p1nN

N
+

p2nN
N

+ ... +
psnN

N
,

subtracting these two equations, we get

0 = (N − n) [r− p1 − p2 − ...− ps] .

Under the conditions r , p1 + p2 + ... + ps, we obtain

N = n,

we obtain by therom (B) that he equiliribum point T̄ of Eq.(1.1) is global Attractor.

2.3. Boundness of solutions. In this subsection we study the boundedness of solutions of Eq.

(1.1).

Theorem 2.3. Every solution of Eq. (1.1) is bounded and prsists if r > p1 + p2 + ... + ps,

Proof: Suppose {Tn}
∞

n=−L be solution of Eq. (1.1). It follows from Eq. (1.1) that

Tn+1 = r +
p1Tn−l1

Tn−m1

+
p2Tn−l1

Tn−m2
++... +

psTn−l1

Tn−ms

> r, (2.2)

thus

Tn+1 > r, for n ≥ 0.

Also, it follows from Eq. (1.1) that

Tn+1 ≤ r +
p1Tn−l1

r
+

p2Tn−l1

r
+ ... +

psTn−l1

r
,

using Comparisons Theroms, we get

lim
n→∞

subTn ≤
r2

(r− p1 − p2...− ps)
.

Therefore {Tn}
∞

n=−L is bounded and persists.
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3. Periodic two Solution of Eq. (1.1)

In this section, we investigate the periodic two solutions of special cases of Eq. (1.1). We states

theorem that gives us necessary and sufficient conditions of the following equation

Tη+1 = r +
p1Tη−l1

Tη−m1

+
p2Tη−l1

Tη−m2

, η = 0, 1, ..., (3.1)

where Tη−2l = ... = Tη−2 = Tη = u, and Tη−(2l+1) = ... = Tη−3 = Tη−1 = v, L = 2l + 2 has a prime

period solution of periodic two.

Theorem 3.1. Assume that l1, m2, odd and m1 even, then Eq. (3.1) has a periodic solution of prime periodic
two if and only if r = p1 − p2, where c = u

v , u = p1(1 + c), v = p1

(
c+1

c

)
and c ∈ R/ {0,±1} such that

u, v, u, v, ... is a periodic solution of Eq. (3.1).

Proof: From Eq. (3.1), we obtain

u = r +
p1u
v

+
p2u
u

, and

v = r +
p1v
u

+
p2v
v

.

Since c = u
v , 0,±1, hence

u = r + p1c + p2, and (3.2)

v = r +
p1

c
+ p2. (3.3)

Then, it follows

u− vc = r(1− c) + p1(c− 1) − p2(1− c) = 0.

Since c , 1, we conclude

r = p1 − p2,

which is the condition of this theorem holds.

Furthermore, we rewrite Eqs. (3.3) and Eq. (3.2) as follows

u = p1 − p2 + p1c + p2,

= p1(1 + c)

v = p1 − p2 +
p1

c
+ p2.

= p1

(c + 1
c

)
, (3.4)

and therefore, u, v distinct real numbers. Let Tη−2l = ... = Tη−2 = Tη = u, and Tη−(2l+1) = ... =

Tη−3 = Tη−1 = v. Acooording Eq. (3.1), we staste

T1 = u, T2 = v.
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T1 = r +
p1v
u

+
p2v
v

= p1 − p2 +
p1

c
+ p2

= v,

T2 = r +
p1u
v

+
p2u
u

= p1 − p2 + p1c + p2,

= u,

Hence simmlar T1, T2, we get T2η+1 = v, T2η = u, for η ≥ 0, therefore the proof is completed.

Theorem 3.2. Assume that l1, m2, even and m1 odd, then Eq. (3.1) has a periodic solution of prime periodic
two if and only if r = −p1

(
c2+c+1

c

)
− p2, where c = u

v , u = −p1(1 + c), v = −p1

(
c+1
c∇

)
and c ∈ R/ {0,±1}

such that u, v, u, v, ... is a periodic solution of Eq. (3.1).

Proof: From Eq. (3.1), we obtain

v = r +
p1u
v

+
p2u
u

, and

u = r +
p1v
u

+
p2v
v

.

Since c = u
v , 0,±1, hence

v = r + p1c + p2, and

u = r +
p1

c
+ p2.

Then, it follows

u− vc = r(1− c) + p1(
1
c
− c2) + p2(1− c)

= r(1− c) + p1

(
1− c3

c

)
+ p2(1− c)

= 0.

Since c , 1, we conclude

r = −p1

(
c2 + c + 1

c

)
− p2,

which is the condition of this theorem holds.

Furthermore, we rewrite Eqs. (3.3) and Eq. (3.2) as follows

u = −p1

(
c2 + c + 1

c

)
− p2 +

p1

c
+ p2,

= −p1(1 + c),

v = −p1

(
c2 + c + 1

c

)
− p2 + p1c + p2
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= −p1

(c + 1
c

)
., (3.5)

and therefore, u, v distinct real numbers. Let Tη−2l = ... = Tη−2 = Tη = u, and Tη−(2l+1) = ... =

Tη−3 = Tη−1 = v. Acooording Eq. (3.1), we staste

T1 = v, T2 = u.

T1 = r + p1c + p2

= −p1

(
c2 + c + 1

c

)
− p2 + p1c + p2

= v,

T2 = r +
p1

c
+ p2

= −p1

(
c2 + c + 1

c

)
− p2 +

p1

c
+ p2,

= u,

Hence simmlar T1, T2, we get T2η+1 = v, T2η = u, for η ≥ 0, therefore the proof is completed.

4. Numerical results:

Example 4.1. For confirming the results of subsection (2.1), we consider difference equation

Tη+1 = 10 +
Tη−2

Tη−3
+

4Tη−2

Tη−1
+

2Tη−2

Tη
, (4.1)

with the initial conditions T−3 = 17.5, T−2 = 16.5, T−1 = 17.2 and T0 = 16.8, where the equilibrium
point is T̄ = 17. (See Fig. 1).

0 5 10 15 20 25 30 35 40 45 50

n

16.5

16.6

16.7

16.8

16.9

17

17.1

17.2

17.3

17.4

17.5

T
(n

)

Figure 1. The figure shows the local stability of T̄ = 17 in Eq. (4.1).
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Example 4.2. For confirming the results of subsection (2.1), we consider difference equation

Tη+1 = 12 +
Tη−1

Tη−3
+

4Tη−1

Tη−2
, (4.2)

with the initial conditions T−3 = 19.5, T−2 = 16.5, T−1 = 19.1 and T0 = 16.9, where the equilibrium
point is T̄ = 17. (See Fig. 2).

0 5 10 15 20 25 30

n

16.5

17

17.5

18

18.5

19

19.5

T
(n

)

Figure 2. The figure shows the local stability of T̄ = 7 in Eq. (4.2).

Example 4.3. For confirming the results of this subsection (2.2), we consider numerical example for Eq.
(4.1) with the initial conditions
IC1: T−3 = 18, T−2 = 15, T−1 = 19, T0 = 14,

IC2: T−3 = 20, T−2 = 13, T−1 = 21, T0 = 16,

IC3: T−3 = 25, T−2 = 8, T−1 = 26, T0 = 11,

IC4: T−3 = 30, T−2 = 3, T−1 = 29, T0 = 5.

(See Fig. 3).

0 5 10 15 20 25 30 35 40 45 50

n

0

5

10

15

20

25

30

35

40

45

50

T
(n

)

Figure 3. The figure shows the global stability of T̄ = 17 in Eq. (4.1).
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Example 4.4. For confirming the results of this subsection (2.2), we consider numerical example for Eq.
(4.2)with the initial conditions IC1-IC4. (See Fig. 4).

0 5 10 15 20 25 30

n

0

10

20

30

40

50

60

T
(n

)

Figure 4. The figure shows the global stability of T̄ = 17.in Eq. (4.2).

Example 4.5. For confirming the results of Theorem 4, we consider difference equation

Tη+1 = r +
p1Tη−5

Tη−2
+

p2Tη−5

Tη−3
, (4.3)

where p1 = 8, p2 = 4, r = 4, c = 3,with the initial condition T−5 = 32, T−4 = 10.6667, T−3 = 32, T−2 =

10.6667, T−1 = 32 and T0 = 10.6667. (See Fig. 5).

0 2 4 6 8 10 12 14 16 18 20

n

10

15

20

25

30

35

T
(n

)

Figure 5. The figure shows Eq. (4.3) has period two solutions where r and initial

condition satisfies the condition of Theorem 4.

Example 4.6. For confirming the results of Theorem 5, we consider difference equation

Tη+1 = r +
p1Tη
Tη−3

+
p2Tη
Tη−2

, (4.4)

where p1 = 2, p2 = 4, r = −12.6667, c = 3,with the initial condition T−3 = −8, T−2 = −2.6667, T−1 =

−8 and T0 = −2.6667. (See Fig. 6).
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0 2 4 6 8 10 12 14 16 18 20

n

10

15

20

25

30

35

T
(n

)

Figure 6. The figure shows Eq. (4.3) has period two solutions where r and initial

condition satisfies the condition of Theorem 5.
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