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Abstract. The vital goals of this manuscript are to combine metric-like spaces with S−metric spaces under a control

function to obtain a new space called the controlled S−metric-like spaces (CSMLSs, for short). Under this name,

many fixed-point (FP) results have been obtained for multi-valued mappings (MVMs). In addition, we present several

non-trivial examples to back up our statements. The results obtained generalize and unify many results in the same

direction. Finally, to support and test the adequacy of the theoretical results, the existence of the solution to the

differential inclusion problem (DIP) was studied as a type of application.

1. Introduction

Let f be a non-empty set and µ : f → f be a self-mapping. A FP of µ is a solution to

an equation µ(ϑ) = ϑ. Theorems dealing with the existence and construction of a solution to an

operator equationµ(ϑ) = ϑ are considered the most important part of fixed point theory. Theorems

concerning the existence and development of a solution to the operator equations µ(ϑ) = ϑ are

regarded as the most significant portion of FP theory. This theory is a well-known study subject

in nonlinear analysis. Among its essential theorems, Banach’s and Brouwer’s FP theorems are

crucial.
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Banach’s FP theorem, in particular, is an important tool in the metric theory of FPs. Its generaliza-

tions are crucial in many various domains, including physics, resolving electric circuit equations,

etc. [1–5]. Numerous papers have been written to investigate and solve a wide range of practical

and theoretical problems using Banach’s FP theorem and its generalization; see [6–9].

In 1906, Fréchet [10] proposed the metric space (MS) concept. Since this date, many writers

have been interested in exploiting the metric function by introducing various restrictions in order

to extend and expand the idea of MSs. For more details, we direct the reader to the papers [11–16].

Czerwik [17] developed the concept of b−MS in 1993 as a generalization of MS. To broaden

the definition of b-MS, Kamran et al. [18] proposed the concept of an extended b−MS in 2017.

In 2018, Mlaiki et al. [19] introduced a brand-new type of extended b−MS called controlled MS.

Later, many authors examined controlled MSs and arrived at various FP findings for single and

MVMs; see [20–25], for more information. In 2012, S-MS was investigated by Sedghi et al. [26] as

a generalization of G-MS [27] and D-MS [28]. Also, they obtained some FP results for S−MSs.

Nadler [29] demonstrated one of the more exciting and well-known generalizations by utilizing

the Hausdorff metric, which is defined on a family of closed and bounded subsets of a complete

MS. He was the first to propose the concept of multivalued contraction maps. We recall a few

common notations and words for the reader’s benefit.

Let (f,ω) be a MS (whereω refers to the distance) andfcb,fcp be a non-empty closed bounded

(compact) subsets of f, respectively. The symmetric functional Z : fcb
×fcb

→ R+ = [0,+∞)

described as

Z(φ,ψ) = max
{
D (φ,ψ) , D (ψ,φ)

}
,

where

D (φ,ψ) = sup
θ∈φ

inf
ϑ∈ψ

ω(θ,ϑ), for all φ,ψ ∈ fcb,

is called the Hausdorff metric. The same author proved a FP theorem for MVMs that satisfy

the symmetric contraction condition. Following that, some exciting FP results for MVMs were

discovered; see, for example [30–35].

Similar to the previous approach, in this manuscript, we merge metric-like spaces with S-metric

spaces using a control function to produce a new space known as CSMLSs. Further, some FP

findings for MVMs have been obtained under this space. In addition, we provide several non-

trivial examples to support our claims. The results produced generalize and unify several results

in the same direction. Finally, as a sort of application, the existence of the solution to the DI was

explored to support and test the adequacy of the theoretical results.

2. Preliminaries work

Here, to be thorough, we will now recollect certain fundamental definitions, premises, lemmas,

and necessary results from the current literature for our research.

Assume that f is a non-empty set with a parameter η > 1. Let ζ : f ×f → [0,∞) be a control

function andωη : f×f→ [0,∞) be a mapping fulfilling the assumptions below for all θ,ϑ,ρ ∈ f,
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(η1) ωη(θ,ϑ) = 0 if and only if θ = ϑ;

(η2) ωη(θ,ϑ) = 0 implies θ = ϑ;

(η3) ωη(θ,ϑ) = ωη(ϑ,θ);

(η4) ωη(θ,ϑ) ≤ ωη(θ,ρ) +ωη(ρ,ϑ);

(η5) ωη(θ,ϑ) ≤ η
(
ωη(θ,ρ) +ωη(ρ,ϑ)

)
;

(η6) ωη(θ,ϑ) ≤ ζ (θ,ρ)ωη(θ,ρ) + ζ (ρ,ϑ)ωη(ρ,ϑ).

Definition 2.1. The pair
(
f,ωη

)
is called

(i) metric-like space [17] if the axioms (η2) − (η4) are satisfied.
(ii) b−MS [37] if the axioms (η1), (η3) and (η5) hold.

(iii) b−metric-like space [37] if the axioms (η2), (η3) and (η5) are true.
(iv) controlled MS [19] if the axioms (η1), (η3) and (η6) are fulfilled.

Definition 2.2. [38] Assume that f , ∅ is a given set and S : f3
→ R+ (where f3 = f×f×f) is a

function fulfilling the hypotheses below for all θ,ϑ,ρ, ν ∈ f,

(a) S (θ,ϑ,ρ) = 0 iff θ = ϑ = ρ;

(b) S (θ,ϑ,ρ) ≤ S (θ,θ, ν) + S (ϑ,ϑ, ν) + S (ρ,ρ, ν) .

Then, (f, S) is an S−MS and S is called an S−metric on f.

Example 2.1. [39] Let f = [0,∞) and ζ ≥ 0. Define S : f3
→ R+ by

S (θ,ϑ,ρ) =

 0, if θ = ϑ = ρ,

max
{
θ,ϑ,ρ

}
− ζ otherwise.

Then S is an S−MS on f.

Example 2.2. [39] Let f = [0,∞). Describe S : f3
→ R+ as

S (θ,ϑ,ρ) =

 0, if θ = ϑ = ρ,

θ+ ϑ+ 2ρ otherwise.

Then S is an S−MS on f.

Definition 2.3. [40] Let f , ∅ be a given set, σ ≥ 1 and Sσ : f3
→ R+ (where f3 = f×f×f) be a

function satisfying the axioms below for all θ,ϑ,ρ, ν ∈ f,

(s1) Sσ (θ,ϑ,ρ) = 0 iff θ = ϑ = ρ;

(s2) Sσ (θ,θ,ϑ) = Sσ (ϑ,ϑ,θ) ;

(b) Sσ (θ,ϑ,ρ) ≤ σ [Sσ (θ,θ, ν) + Sσ (ϑ,ϑ, ν) + Sσ (ρ,ρ, ν)] .

Then, (f, Sσ) is an Sσ−MS and Sσ is called an Sσ−metric on f.

Example 2.3. [40] Letf , ∅ be a given set with card (f) ≥ 5 andf = f1 ×f2 be a partition off such
that card (f1) ≥ 4. Assume that σ ≥ 1 and for all θ,ϑ,ρ ∈ f,

Sσ (θ,ϑ,ρ) =


0, if θ = ϑ = ρ,

3σ, if (θ,ϑ,ρ) ∈ f3
1,

1 if (θ,ϑ,ρ) < f3
1.
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Then Sσ is an Sσ−metric on f.

Definition 2.4. [39] Let (f, S) be an S−MS. Describe the function SZ :
(
fcb

)3
→ R+ as

SZ (℘1,℘2,℘3) = Zs (℘1,℘3) + Zs (℘2,℘3) ,

where Zs (℘1,℘2) = max
{
zs(℘1,℘2), zs(℘2,℘1)

}
, zs(℘1,℘2) = sup

{
S (b, b,℘2) : b ∈ ℘1

}
and

S (b, b,℘2) = inf
{
S (b, b, c) : c ∈ ℘2

}
. Further, SZ is called the Hausdorff S−metric on fcb induced by

S.

3. A CSMLS and topological properties

This part is concerned with introducing the idea of the CSMLS and studying its topological

properties in terms of convergence, Cauchy sequences, and some examples, in addition to pre-

senting some results for FPs under this new distance. Here, we suggest the control function

ζ : f3
→ [1,∞).

Definition 3.1. Let f , ∅ be any set and S : f3
→ R+ and ζ : f3

→ [1,∞) be functions such that for
all θ,ϑ,ρ, ν ∈ f,

(CS 1) S (θ,ϑ,ρ) = 0 implies θ = ϑ = ρ;

(CS 2) S (θ,ϑ,ρ) ≤ ζ (θ,θ, ν) S (θ,θ, ν) + ζ (ϑ,ϑ, ν) S (ϑ,ϑ, ν) + ζ (ρ,ρ, ν) S (ρ,ρ, ν) .

Then, (f, S, ζ) is a CSMLS.

Remark 3.1. It should be noted that the class of CSMLS is larger than the class of S−metric-like space.
Further, every S−metric-like space is CSMLS with ζ (., ., .) = 1.

Example 3.1. Consider f = [0, 1] and describe the functions S : f3
→ [0,+∞) and ζ : f3

→ [1,+∞)

as S (θ,ϑ,ρ) =
∣∣∣θ− ρ∣∣∣2 + ∣∣∣ϑ− ρ∣∣∣2 , and

ζ (θ,ϑ,ρ) =

 max
{

1
θ , 1

ϑ , 1
ρ

}
, if θ , 0, ϑ , 0, ρ , 0,

1, otherwise,

receptively. Then, a trio (f, S, ζ) is a CSMLS.
Verifications. We realize the following cases:

(i) If θ = ϑ = ρ = 0, or θ = ϑ = ρ , 0, the investigation is trivial.
(ii) If θ , 0, ϑ , 0, ρ , 0 with θ > ν, ϑ > ν and ρ > ν, we have

S (θ,ϑ,ρ) =
∣∣∣θ− ρ∣∣∣2 + ∣∣∣ϑ− ρ∣∣∣2 =

∣∣∣θ− ν+ ν− ρ
∣∣∣2 + ∣∣∣ϑ− ν+ ν− ρ

∣∣∣2
= |θ− ν|2 +

∣∣∣ν− ρ∣∣∣2 + 2 (θ− ν) (ν− ρ) + |ϑ− ν|2 +
∣∣∣ν− ρ∣∣∣2 + 2 (ϑ− ν) (ν− ρ)

≤ |θ− ν|2 +
∣∣∣ν− ρ∣∣∣2 + 2 |θ− ν|

∣∣∣ν− ρ∣∣∣+ |ϑ− ν|2 + ∣∣∣ν− ρ∣∣∣2 + 2 |ϑ− ν|
∣∣∣ν− ρ∣∣∣

=
(
|θ− ν|2 + |ϑ− ν|2 +

∣∣∣ρ− ν∣∣∣2)+ (∣∣∣ν− ρ∣∣∣2 + ∣∣∣ν− ρ∣∣∣2)
+2

∣∣∣ν− ρ∣∣∣ (|θ− ν|+ |ϑ− ν|)
≤

(
|θ− ν|2 + |ϑ− ν|2 +

∣∣∣ρ− ν∣∣∣2)+ (∣∣∣ρ− ρ∣∣∣2 + ∣∣∣ρ− ρ∣∣∣2)
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+2
∣∣∣ρ− ρ∣∣∣ (|θ− ν|+ |ϑ− ν|)

=
(
|θ− ν|2 + |ϑ− ν|2 +

∣∣∣ρ− ν∣∣∣2)
≤

2
v

(
|θ− ν|2 + |ϑ− ν|2 +

∣∣∣ρ− ν∣∣∣2)
= max

{ 1
θ

,
1
θ

,
1
ν

} (
2 |θ− ν|2

)
+ max

{ 1
ϑ

,
1
ϑ

,
1
ν

} (
2 |ϑ− ν|2

)
+max

{
1
ρ

,
1
ρ

,
1
ν

} (
2
∣∣∣ρ− ν∣∣∣2)

= ζ (θ,θ, ν) S (θ,θ, ν) + ζ (ϑ,ϑ, ν) S (ϑ,ϑ, ν) + ζ (ρ,ρ, ν) S (ρ,ρ, ν) .

(iii) if θ , 0, ϑ , 0, ρ , 0 with θ < ν, ϑ < ν and ρ < ν, we get

ζ (θ,θ, ν) S (θ,θ, ν) + ζ (ϑ,ϑ, ν) S (ϑ,ϑ, ν) + ζ (ρ,ρ, ν) S (ρ,ρ, ν)

= max
{ 1
θ

,
1
θ

,
1
ν

} (
2 |θ− ν|2

)
+ max

{ 1
ϑ

,
1
ϑ

,
1
ν

} (
2 |ϑ− ν|2

)
+max

{
1
ρ

,
1
ρ

,
1
ν

} (
2
∣∣∣ρ− ν∣∣∣2)

= 2
( 1
θ
|θ− ν|2 +

1
ϑ
|ϑ− ν|2 +

1
v

∣∣∣ρ− ν∣∣∣2)
≥

2
v

(
|θ− ν|2 + |ϑ− ν|2 +

∣∣∣ρ− ν∣∣∣2) (since θ < ν, ϑ < v and ρ < v)

≥ |θ− ν|2 +
∣∣∣ρ− ν∣∣∣2 + |ϑ− ν|2

= |ν− θ|2 +
∣∣∣ν− ρ∣∣∣2 + |ν− ϑ|2

≥

∣∣∣ρ− θ∣∣∣2 + ∣∣∣ρ− ρ∣∣∣2 + ∣∣∣ρ− ϑ∣∣∣2 (since ρ < ν)

=
∣∣∣θ− ρ∣∣∣2 + ∣∣∣ϑ− ρ∣∣∣2 = S (θ,ϑ,ρ) .

(iv) if θ,ϑ,ρ ∈ f− {0}, we have ζ (., ., .) = 1 and Condition (CS 2) is met directly.

From the above cases we deduce that (f, S, ζ) is a CSMLS.

In the context of CSMLS (f, S, ζ) , we define a topology µS on f whose base is the family of

open-balls defined by µS =
{
G ⊂ f : G is a union of open balls

}
.

Example 3.2. Let f = [0,+∞) with the S−metric

S (θ,ϑ,ρ) =

 0, if θ = ϑ = ρ,

max
{
|θ| , |ϑ| ,

∣∣∣ρ∣∣∣} otherwise,

for ζ > 0. Also, assume the control function

ζ (θ,ϑ,ρ) =

 max
{

1
θ , 1

ϑ , 1
ρ

}
, if θ , 0, ϑ , 0, ρ , 0,

1, otherwise,
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Then for r ∈ f and λ > 0, we have

BS(λ, r) =

 [0, r) if λ < r,

{λ}, if λ ≥ r,

where BS(λ, r) refers to an open ball with radius r and center λ and it is described as

BS(λ, r) =
{
ρ ∈ f : S (ρ,ρ,λ) < r

}
, for r > 0.

Definition 3.2. Let (f, S, ζ) be a CSMLS, then S is continuous if S (θu,ϑu,ρu)→ S (θ,ϑ,ρ) , whenever
θu → θ, ϑu → ϑ and ρu → ρ, as u→∞, but the converse is not true.

The example below illustrates the above definition.

Example 3.3. Let f = [0,+∞), define S : f3
→ R+ and ζ : f3

→ [1,+∞) by

S (θ,ϑ,ρ) =

 1, if (θ,ϑ,ρ) = (1, 2, 3) ,∣∣∣θ− ρ∣∣∣2 + ∣∣∣ϑ− ρ∣∣∣2 otherwise,

and

ζ (θ,ϑ,ρ) =

 max
{

1
θ , 1

ϑ , 1
ρ

}
, if θ , 0, ϑ , 0, ρ , 0,

1, otherwise,

According to Example 3.1, if (θ,ϑ,ρ) , (1, 2, 3) , for ν ∈ f, then a trio (f, S, ζ) is a CSMLS. Now, if
(θ,ϑ,ρ) = (1, 2, 3) , then S (θ,ϑ,ρ) = 1 and for ν ∈ (1, 2, 3), we have ζ (θ,θ, ν) = 1, S (ϑ,ϑ, ν) = 1,

S (ρ,ρ, ν) = 1, and

S (θ,ϑ,ρ) = 1

≤ max
{

1
θ

,
1
ϑ

,
1
ρ

,
1
ν

}
≤ max

{ 1
θ

,
1
θ

,
1
v

}
+ max

{ 1
ϑ

,
1
ϑ

,
1
ν

}
+ max

{
1
ρ

,
1
ρ

,
1
ν

}
= ζ (θ,θ, ν) S (θ,θ, ν) + ζ (ϑ,ϑ, ν) S (ϑ,ϑ, ν) + ζ (ρ,ρ, ν) S (ρ,ρ, ν) .

Therefore, (f, S, ζ) is a CSMLS. Since limu→∞ S (θu,ϑu,ρu) = S (θ,ϑ,ρ) , provided that limu→∞ θu = θ,

limu→∞ ϑu = ϑ and limu→∞ ρu = ρ, then take θu = 1+ 1
u , ϑu = 2+ 2

u and ρu = 3+ 3
u , we have θu → 1,

ϑu → 2, and ρu → 3. But

5 = lim
u→∞

S (θu,ϑu,ρu) , S (1, 2, 3) = 1.

Therefore, S is not continuous.

Definition 3.3. Let (f, S, ζ) be a CSMLS. Then, the assertions below are true:

(i) A sequence {θu} ⊂ f is convergent to θ ∈ f, if limu→+∞ S (θu,θu,θ) = S (θ,θ,θ) and we can
write θu → θ or limu→+∞ θu = θ.

(ii) We say that a sequence {θu} ⊂ f is a Cauchy sequence, if limu, j→+∞ S
(
θu,θu,θ j

)
exists and is

finite.
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(iii) A trio (f, S, ζ) is complete, if every Cauchy sequence in f, there exists θ ∈ f such that
limu→+∞ S

(
θu,θu,θ j

)
= S (θ,θ,θ) = limu→+∞ S (θu,θu,θ) .

The proof of the following lemma is obvious:

Lemma 3.1. Let (f, S, ζ) be a CSMLS and {θu} be a sequence in f. Then, for all ρ,θ ∈ f, we get

(♥1) If S (θ,θ,ρ) = 0, then S (θ,θ,θ) = S (ρ,ρ,ρ) = 0;

(♥2) If limu→+∞ S (θu,θu,θu+1) = 0, then limu→+∞ S (θu,θu,θu) =

limu→+∞ S (θu+1,θu+1,θu+1) = 0;

(♥3) If θ , ρ, then S (θ,θ,ρ) > 0.

4. Results on fixed points

We begin this section with the following definition:

Definition 4.1. Assume that (f, S, ζ) is a CSMLS and = : f → fcb is a MVM. We say that = is a
contraction, if there is a constant µ ∈ (0, 1) such that

SZ (= (θ) ,= (θ) ,= (ρ)) ≤ µS (θ,θ,ρ) . (4.1)

for all θ,ρ ∈ f.

Theorem 4.1. Let (f, S, ζ) be a CSMLS and = : f → fcb be a MVM. If = is a contraction and for
θ0 ∈ f, there exists a sequence θu = =(θu−1), u ∈N such that

sup
v≥1

lim
j→+∞

ζ
(
θ j+1,θ j+1,θ j+2

)
ζ
(
θv,θv,θ j+1

)
ζ
(
θ j,θ j,θ j+1

) ≤
1

2µ
, (4.2)

and lim j→+∞ ζ (θu,θu,θu+1) exists. Then, = owns a unique FP.

Proof. Assume that θ ∈ f and select θ1 ∈ = (θ0) . Then for µ ∈ (0, 1), there is θ2 ∈ = (θ1) such that

S (θ2,θ2,θ1) ≤ SZ (= (θ1) ,= (θ1) ,= (θ0)) + µ ≤ µS (θ1,θ1,θ0) + µ.

Analogously, there is θ3 ∈ = (θ2) fulfilling

S (θ3,θ3,θ2) ≤ SZ (= (θ2) ,= (θ2) ,= (θ1)) + µ

≤ µS (θ2,θ2,θ1) + µ

≤ µ (µS (θ1,θ1,θ0) + µ) + µ

≤ µ2S (θ1,θ1,θ0) + µ2 + µ

≤ µ2S (θ1,θ1,θ0) + µ+ µ

= µ2S (θ1,θ1,θ0) + 2µ.

Repeating the same approach, we find that θu+1 ∈ = (θu) and µu
∈ (0, 1) such that

S (θu+1,θu+1,θu) ≤ SZ (= (θu) ,= (θu) ,= (θu−1)) + µu
≤ µuS (θ1,θ1,θ0) + uµ.
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Next, we claim that the sequence {θu}u∈N is a Cauchy sequence. Let v > u and by Axiom (CS 2),

one has

S (θv,θv,θu) ≤ ζ (θv,θv,θu+1) S (θv,θv,θu+1) + ζ (θv,θv,θu+1) S (θv,θv,θu+1)

+ζ (θu,θu,θu+1) S (θu,θu,θu+1)

= 2ζ (θv,θv,θu+1) S (θv,θv,θu+1) + ζ (θu,θu,θu+1) S (θu,θu,θu+1) .

Again, applying Axiom (CS 2) on S (θv,θv,θu+1) , we can write

S (θv,θv,θu) ≤ 2ζ (θv,θv,θu+1)

 2ζ (θv,θv,θu+2) S (θv,θv,θu+2)

+ζ (θu+1,θu+1,θu+2) S (θu+1,θu+1,θu+2)


+ζ (θu,θu,θu+1) S (θu,θu,θu+1)

= ζ (θu,θu,θu+1) S (θu,θu,θu+1)

+2ζ (θv,θv,θu+1) ζ (θu+1,θu+1,θu+2) S (θu+1,θu+1,θu+2)

+22ζ (θv,θv,θu+1) ζ (θv,θv,θu+2) S (θv,θv,θu+2) .

Using Axiom (CS 2) in the same way as before, we get

S (θv,θv,θu) ≤ ζ (θu,θu,θu+1) S (θu,θu,θu+1)

+
v−2∑

j=u+1

2 j−u
j∏

w=n+1

ζ (θv,θv,θw) ζ
(
θ j,θ j,θ j+1

)
S
(
θ j,θ j,θ j+1

)
+2v−u−1

v−1∏
y=n+1

ζ
(
θv,θv,θy

)
S (θv−1,θv−1,θv)

≤ ζ (θu,θu,θu+1) S (θu,θu,θu+1)

+
v−1∑

j=u+1

2 j−u
j∏

w=n+1

ζ (θv,θv,θw) ζ
(
θ j,θ j,θ j+1

)
S
(
θ j,θ j,θ j+1

)
.

Now, by ratio test, the series

Sv =
v−1∑
j=u

2 j−u
j∏

w=n
ζ (θv,θv,θw) ζ

(
θ j,θ j,θ j+1

) (
µ jS (θ0,θ0,θ1) + 2µ

)
,

converges if

sup
v≥ j

lim
j→+∞

ζ
(
θ j+1,θ j+1,θ j+2

)
ζ
(
θv,θv,θ j+1

)
ζ
(
θ j,θ j,θ j+1

) ≤
1

2µ
.

Passing v, u→ +∞, we obtain that

lim
v,u→+∞

S (θv,θv,θu) = 0.
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Hence, limu, j→+∞ S
(
θu,θu,θ j

)
exists and is finite. Therefore {θu}u∈N is a Cauchy sequence in f.

Since f is complete, then the sequence θu in f converges to θ ∈ f such that

lim
u→+∞

S (θu,θu,θ) = S (θ,θ,θ) = lim
v,u→+∞

S (θu,θu,θv) = 0.

Applying the contraction condition (4.1), the MVM = is continuous and since θu ∈ = (θu−1) , we

have θ ∈ = (θ) , that is θ is a FP of =. The uniqueness follows immediately by the condition

(4.1). �

The example below support Theorem 4.1.

Example 4.1. Assume that f = [0, 1]. Describe the functions S : f3
→ R+ and ζ : f3

→ [1,+∞) by

S (θ,ϑ,ρ) =

∣∣∣θ− ρ∣∣∣2 + ∣∣∣ϑ− ρ∣∣∣2
2

and

ζ (θ,ϑ,ρ) = 1 + |θ| .

for all θ,ϑ,ρ ∈ f. The axiom (CS 1) holds directly. To check the axiom (CS 2), for all ν ∈ f, we have

ζ (θ,θ, ν) S (θ,θ, ν) + ζ (ϑ,ϑ, ν) S (ϑ,ϑ, ν) + ζ (ρ,ρ, ν) S (ρ,ρ, ν)

= (1 + |θ|)
(
|θ− ν|2

)
+ (1 + |ϑ|)

(
|ϑ− ν|2

)
+

(
1 +

∣∣∣ρ∣∣∣) (∣∣∣ρ− ν∣∣∣2)
= (1 + |θ|)

(∣∣∣θ− ρ+ ρ− ν
∣∣∣2)+ (1 + |ϑ|)

(∣∣∣ϑ− ρ+ ρ− ν
∣∣∣2)+ (

1 +
∣∣∣ρ∣∣∣) (∣∣∣ρ− ν∣∣∣2)

≥ max{1 + |θ| , 1 + |ϑ| , 1 +
∣∣∣ρ∣∣∣} ((∣∣∣θ− ρ+ ρ− ν

∣∣∣2)+ (∣∣∣ϑ− ρ+ ρ− ν
∣∣∣2)+ (∣∣∣ρ− ν∣∣∣2))

≥

(∣∣∣θ− ρ∣∣∣2 + ∣∣∣ρ− v
∣∣∣2)+ (∣∣∣ϑ− ρ∣∣∣2 + ∣∣∣ρ− v

∣∣∣)2
+

∣∣∣ρ− ν∣∣∣2
= 3

∣∣∣ρ− ν∣∣∣2 + (∣∣∣θ− ρ∣∣∣2 + ∣∣∣ϑ− ρ∣∣∣2)
≥

∣∣∣θ− ρ∣∣∣2 + ∣∣∣ϑ− ρ∣∣∣2
≥

∣∣∣θ− ρ∣∣∣2 + ∣∣∣ϑ− ρ∣∣∣2
2

= S (θ,ϑ,ρ) .

Hence, (f, S, ζ) is a CSMLS. Define the MVM = : f → fcb by = (θ) =
{
θ
3 , 0

}
. Now, we examine the

condition (4.1). Using Definition 2.4, for θ,ϑ,ρ ∈ f, we get

SZ (= (θ) ,= (θ) ,= (ρ)) = Zs (= (θ) ,= (ρ)) + Zs (= (θ) ,= (ρ))

= 2Zs (= (θ) ,= (ρ))

= 2 max
{
zs (= (θ) ,= (ρ)) , zs (= (ρ) ,= (θ))

}
,
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where

zs (= (θ) ,= (ρ)) = sup
θ∗∈=(θ)

inf
ρ∗∈=(ρ)

S (θ∗,θ∗,ρ∗)

= sup
θ∗∈=(θ)

inf
ρ∗∈=(ρ)

∣∣∣θ∗ − ρ∗∣∣∣2 + ∣∣∣θ∗ − ρ∗∣∣∣2
2

= sup
θ∗∈=(θ)

inf
{∣∣∣∣θ∗ − ρ3 ∣∣∣∣2} .

If θ∗ = θ
3 ∈ = (θ) then inf

{∣∣∣θ3 − ρ
3

∣∣∣2} = 0. If θ∗ = 0 ∈ = (θ) , then inf
{∣∣∣θ3 − ρ

3

∣∣∣2} = 0.

Analogously, zs (= (ρ) ,= (θ)) = 0. Hence,

SZ (= (θ) ,= (θ) ,= (ρ)) = 2. max {0, 0} = 0 ≤ µS (θ,θ,ρ) .

Thus, the contractive condition (4.1) is fulfilled with anyµ ∈ (0, 1). Takingµ = 2
9 < 1 and the sequenceθ j =(

1 + 1
j

)
, we have ζ

(
θ j+1,θ j+1,θ j+2

)
=

(
2 + 1
| j+1|

)
, ζ

(
θv,θv,θ j+1

)
=

(
2 + 1

|v|

)
and ζ

(
θ j,θ j,θ j+1

)
=(

2 + 1
| j|

)
.

Further,

sup
v≥1

lim
j→+∞

ζ
(
θ j+1,θ j+1,θ j+2

)
ζ
(
θv,θv,θ j+1

)
ζ
(
θ j,θ j,θ j+1

) = 2 <
9
4
=

1
2µ

.

Therefore, all requirements of Theorem 4.1 are satisfied. Hence, = owns a unique FP which is 0 ∈ f.

Corollary 4.1. Let (f, S, ζ) be a CSMLS and = : f→ fcb be a contraction MVM onf with µ ∈
(
0, 1

2

)
.

Then, = possesses a unique FP.

Proof. We reach the required result by taking ζ (θ,ϑ,ρ) = 1 and using the same methods as in the

preceding theorem. �

Theorem 4.2. Let (f, S, ζ) be a CSMLS and = : f→ fcb be a MVM such that

SZ (= (θ) ,= (θ) ,= (ρ)) ≤ γS (θ,θ,= (θ)) + δS (ρ,ρ,= (ρ)) , (4.3)

where γ, δ ∈ (0, 1) with γ+ δ < 1. Moreover, for θ0 ∈ f, there exists a sequence θu = =(θu−1), u ∈ N

such that

sup
v≥1

lim
j→+∞

ζ
(
θ j+1,θ j+1,θ j+2

)
ζ
(
θv,θv,θ j+1

)
ζ
(
θ j,θ j,θ j+1

) ≤
1− δ
2γ

,

and limu→+∞ ζ (θu,θu,θu+1) exists. Then, = has a unique FP.

Proof. Continuing along the same path as Theorem 4.1, there is a sequence {θu}u∈N in f and

µu
∈ (0, 1) so that

S (θu,θu,θu+1) ≤ SZ (= (θu−1) ,= (θu−1) ,= (θu)) + µu

≤ γS (θu−1,θu−1,=(θu−1)) + δS (θu,θu,=(θu)) + µu

≤ γS (θu−1,θu−1,θu)) + δS (θu,θu,θu+1)) + µu,
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which yields

S (θu,θu,θu+1) ≤
γ

1− δ
S (θu−1,θu−1,θu)) +

µu

1− δ

≤
γ2

(1− δ)2 S (θu−2,θu−2,θu−1)) +
µu

1− δ
+

γµu−1

(1− δ)2 .

Proceeding in this manner, we arrive at

S (θu,θu,θu+1) ≤
γu

(1− δ)u S (θ0,θ0,θ1)) +

 µu

1− δ
+

γµu−1

(1− δ)2 + · · ·+
γu−1µ

(1− δ)u


≤

γu

(1− δ)u S (θ0,θ0,θ1)) +
u−1∑
j=0

γ jµu− j

(1− δ) j+1
.

Letting u→ +∞, we have

lim
u→+∞

S (θu,θu,θu+1) = 0.

In the same way as in the proof of Theorem 4.1, for v, u ∈N with v > u, we find that

v−1∑
j=u+1

2 j−u
j∏

w=n+1

ζ (θv,θv,θw) ζ
(
θ j,θ j,θ j+1

)
S
(
θ j,θ j,θ j+1

)
→ 0, as u, v→ +∞,

provided that

sup
v≥1

lim
j→+∞

ζ
(
θ j+1,θ j+1,θ j+2

)
ζ
(
θv,θv,θ j+1

)
ζ
(
θ j,θ j,θ j+1

) ≤
1− δ
2γ

.

Thus,

lim
v,u→+∞

S (θv,θv,θu) = 0.

Hence, limu, j→+∞ S
(
θu,θu,θ j

)
exists and is finite. Therefore {θu}u∈N is a Cauchy sequence in f.

The completeness of f implies that there is a convergent sequence θu in f to θ ∈ f so that

lim
u→+∞

S (θu,θu,θ) = S (θ,θ,θ) = lim
v,u→+∞

S (θu,θu,θv) = 0.

Applying the contraction (4.3), the MVM = is continuous and since θu ∈ = (θu−1) , we have

θ ∈ = (θ) , that is θ is a FP of =. The uniqueness follows immediately by condition (4.3). �

Example 4.2. Let f = {1, 2, 3}. Describe the functions S : f3
→ R+ and ζ : f3

→ [1,+∞) as

S (θ,ϑ,ρ) =

∣∣∣θ− ρ∣∣∣2 + ∣∣∣ϑ− ρ∣∣∣2
2

and

ζ (θ,ϑ,ρ) = 1 +
|θ+ ϑ|

2
,
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respectively, for all θ,ϑ,ρ ∈ f. Clearly, the axiom (CS 1) is trivial. To check the axiom (CS 2), for all ν ∈ f,

we have

ζ (θ,θ, ν) S (θ,θ, ν) + ζ (ϑ,ϑ, ν) S (ϑ,ϑ, ν) + ζ (ρ,ρ, ν) S (ρ,ρ, ν)

= (1 + |θ|)
(
|θ− ν|2

)
+ (1 + |ϑ|)

(
|ϑ− ν|2

)
+

(
1 +

∣∣∣ρ∣∣∣) (∣∣∣ρ− ν∣∣∣2)
= (1 + |θ|)

(∣∣∣θ− ρ+ ρ− ν
∣∣∣2)+ (1 + |ϑ|)

(∣∣∣ϑ− ρ+ ρ− ν
∣∣∣2)+ (

1 +
∣∣∣ρ∣∣∣) (∣∣∣ρ− ν∣∣∣2)

≥ max{1 + |θ| , 1 + |ϑ| , 1 +
∣∣∣ρ∣∣∣} ((∣∣∣θ− ρ+ ρ− ν

∣∣∣2)+ (∣∣∣ϑ− ρ+ ρ− ν
∣∣∣2)+ (∣∣∣ρ− ν∣∣∣2))

≥

(∣∣∣θ− ρ∣∣∣2 + ∣∣∣ρ− v
∣∣∣2)+ (∣∣∣ϑ− ρ∣∣∣2 + ∣∣∣ρ− v

∣∣∣)2
+

∣∣∣ρ− ν∣∣∣2
= 3

∣∣∣ρ− ν∣∣∣2 + (∣∣∣θ− ρ∣∣∣2 + ∣∣∣ϑ− ρ∣∣∣2)
≥

∣∣∣θ− ρ∣∣∣2 + ∣∣∣ϑ− ρ∣∣∣2
≥

∣∣∣θ− ρ∣∣∣2 + ∣∣∣ϑ− ρ∣∣∣2
2

= S (θ,ϑ,ρ) .

Hence, (f, S, ζ) is a CSMLS. Define the MVM = : f→ fcb by

= (θ) =

 {1, 3}, if θ ∈ {1, 2},

2, if θ = 3.

Now, we check the contraction (4.1). Using Definition 2.4, for θ,ϑ,ρ ∈ f, we have

SZ (= (θ) ,= (θ) ,= (ρ)) = Zs (= (θ) ,= (ρ)) + Zs (= (θ) ,= (ρ))

= 2Zs (= (θ) ,= (ρ))

= 2 max
{
zs (= (θ) ,= (ρ)) , zs (= (ρ) ,= (θ))

}
,

where

zs (= (θ) ,= (ρ)) = sup
θ∗∈=(θ)

inf
ρ∗∈=(ρ)

S (θ∗,θ∗,ρ∗)

= sup
θ∗∈=(θ)

inf
ρ∗∈=(ρ)

∣∣∣θ∗ − ρ∗∣∣∣2 + ∣∣∣θ∗ − ρ∗∣∣∣2
2

= sup
θ∗∈=(θ)

inf
ρ∗∈=(ρ)

{∣∣∣θ∗ − ρ∗∣∣∣2} .

= sup
θ∗∈=θ

inf
{∣∣∣θ∗ − ρ∣∣∣2}

If θ ∈ {1, 2}, then θ∗ ∈ {1, 3} and inf
{
|θ∗ − 1|2 , |θ∗ − 2|2 , |θ∗ − 3|2

}
= 0. If θ = 3, then θ∗ = 2 and

inf
{
|θ∗ − 1|2 , |θ∗ − 2|2 , |θ∗ − 3|2

}
= 0.

Consequently,

zs (= (θ) ,= (ρ)) = 0.
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Analogously, zs (=ρ,=θ) = 0. Hence,

SZ (= (θ) ,= (θ) ,= (ρ)) = 2 max {0, 0} = 0 ≤ γS (θ,θ,= (θ)) + δS (ρ,ρ,= (ρ)) .

for any γ, δ ∈ (0, 1). Thus, the contractive condition (4.1) holds. Taking δ = 1
3 , γ = 1

10 and the sequence

θ j =
(
2 + 2

j

)
, we have δ+ γ < 1, ζ

(
θ j+1,θ j+1,θ j+2

)
=

(
3 + 2
| j+2|

)
, ζ

(
θv,θv,θ j+1

)
=

(
3 + 2

|v|

)
and

ζ
(
θ j,θ j,θ j+1

)
=

(
3 + 2
| j|

)
.

Further,

sup
v≥1

lim
j→+∞

ζ
(
θ j+1,θ j+1,θ j+2

)
ζ
(
θv,θv,θ j+1

)
ζ
(
θ j,θ j,θ j+1

) = 3 <
10
3

=
1− δ
2γ

.

Therefore, all requirements of Theorem 4.2 are fulfilled. Hence, = has a unique FP which is 1 ∈ f.

Corollary 4.2. Let (f, S, ζ) be a CSMLS and = : f→ fcb be a MVM such that

SZ (= (θ) ,= (θ) ,= (ρ)) ≤ γ (S (θ,θ,= (θ)) + S (ρ,ρ,= (ρ))) ,

where γ ∈
(
0, 1

2

)
. Moreover, for θ0 ∈ f, there exists a sequence θu = =(θu−1), u ∈N such that

sup
v≥1

lim
j→+∞

ζ
(
θ j+1,θ j+1,θ j+2

)
ζ
(
θv,θv,θ j+1

)
ζ
(
θ j,θ j,θ j+1

) ≤
1− γ

2γ
,

and lim j→+∞ ζ (θu,θu,θu+1) exists. Then, = has a unique FP.

Proof. We reach the required result by taking δ = γ in Theorem 4.2. �

5. Existence of solution to the DIP

In this part, we apply the theoretical results, specifically Theorem 4.1 to discuss the existence of

solution to the following DIP:

Find θ ∈ C (V) such that θ′(τ) ∈ Φ (τ,θ(τ)) , for all τ ∈ V, (5.1)

where V = [0, c] with c > 0,f = C (V) is the set of all continuous functions on R, and Φ : V ×R→

2R is a MVM. Describe the functions S : f3
→ R+ and ζ : f3

→ [1,+∞) as

S (θ,ϑ,ρ) =

sup
τ∈V

∣∣∣θ(τ) − ρ(τ)∣∣∣2 + sup
τ∈V

∣∣∣ϑ(τ) − ρ(τ)∣∣∣2
2

and

ζ (θ,ϑ,ρ) = 2,

respectively, for all θ,ϑ,ρ ∈ f. Because the metric established above is identical to the supremum

metric, we can say that (f, S, ζ) is a CSMLS. Define the set of Lebesgue integrable (LI) functions

in Φ (.,θ(.)) by SΦ(θ) =
{
z ∈ L1 (V, R) : z(τ) ∈ Φ (τ,θ(τ))

}
for all τ ∈ V.

Problem (5.1) will be considered under the following assumptions:

(A1) for all θ ∈ f, SΦ(θ) , ∅;

(A2) for (τ,θ) ∈ V ×f, Φ (τ,θ(τ)) is closed;
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(A3) Φ (.,θ(.)) is bounded on V, for all θ ∈ f;

(A4) for a sequence {zu} ∈ SΦ(θ), there is a subsequence {zu j} of {zu} such that zu j → z ∈ L1 (V, R) ,

as j→ +∞. Also,
τ∫

0

zu j(r)dr→

τ∫
0

z(r)dr, as j→ +∞,

for all θ ∈ f and all τ ∈ V;

(A5) for all τ ∈ V and for θ,ϑ ∈ f, there exist a function κ(τ) ∈ L1 (V, R) such that

sup
τ∈V

τ∫
0

∣∣∣κ(r)∣∣∣2 dr ≤
1
9

and 0 ≤ sup
τ∈V
|zθ − zϑ|2 ≤

∣∣∣κ(τ)∣∣∣2 ∣∣∣θ(τ) − ϑ(τ)∣∣∣2 ,

where zθ ∈ SΦ(θ), zϑ ∈ SΦ(ϑ).

Definition 5.1. We say that θ ∈ f is a solution to the DIP (5.1), if there exists z ∈ SΦ(θ) such that
θ′(τ) = z(τ), τ ∈ V.

Our main theorem in this part is as follows:

Theorem 5.1. Under the assumptions (A1) − (A5), the DIP (5.1) has a unique solution.

Proof. Define the MVM = on f by

= (θ) =

` ∈ f : ` (τ) =

τ∫
0

z(r)dr, τ ∈ V, z ∈ SΦ(θ)

 .

Assumption (A1) illustrate that the MVM = is non-empty and well-defined. If θ ∈ = (θ) , then

θ (τ) =
τ∫

0
z(r)dr, this yields θ′ (τ) = z(τ), for τ ∈ V.

Now, we claim that the MVM = fulfills the axioms of Theorem 4.1. To prove that = (θ) is a

closed and bounded subset of f, assume that θ ∈ f is a fixed and {zu} is a sequence in = (θ) so

that zu → z ∈ f, as u→ +∞. Then {zu} ∈ SΦ(θ), this leads to

`u(τ) =

τ∫
0

zu(r)dr, τ ∈ V.

By Assumption (A4), there is a subsequence {zu j} of {zu} such that zu j → z ∈ L1 (V, R) , as j→ +∞.

Also,
τ∫

0

zu j(r)dr→

τ∫
0

z(r)dr, as j→ +∞,

for all θ ∈ f and all τ ∈ V. By Assumption (A2), for (τ,θ) ∈ V ×f, Φ (τ,θ(τ)) is closed and

z(θ) ∈ Φ (τ,θ(τ)) , we have z ∈ SΦ(θ). It is clear that

`(τ) = lim
u→+∞

`u(τ) = lim
u→+∞

τ∫
0

zu(r)dr = lim
j→+∞

τ∫
0

zu j(r)dr =

τ∫
0

z(r)dr,
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hence z ∈ =(θ), that is = is closed. Form the assumptions (A3), we have Φ (.,θ(.)) is bounded on

V, for all θ ∈ f and there exists v > 0 such that
∣∣∣z(τ)∣∣∣ ≤ v, for z ∈ SΦ(θ). Since z(τ) ∈ Φ (τ,θ(τ)) ,

then z ∈ =(θ) and

sup
τ∈V

∣∣∣`(τ)∣∣∣ ≤ sup
τ∈V

τ∫
0

∣∣∣z(r)∣∣∣ dr ≤ vc.

This proves that = is bounded. Thus, we can write = : f → fcb. Finally, we prove that = is a

contraction. Indeed, using Assumption (A5), for θ,ρ ∈ f, we have

SZ (= (θ) ,= (θ) ,= (ρ)) ≤ 2 max
{
zs (= (θ) ,= (ρ)) , zs (= (ρ) ,= (θ))

}
, (5.2)

where

zs (= (θ) ,= (ρ)) = sup
`θ∈=(θ)

inf
`ρ∈=(ρ)

S
(
`θ, `θ, `ρ

)

= sup
`θ∈=(θ)

inf
`ρ∈=(ρ)

sup
τ∈V

∣∣∣∣∣∣∣∣
τ∫

0

zθ(r)dr−

τ∫
0

zρ(r)dr

∣∣∣∣∣∣∣∣
2

≤ sup
`θ∈=(θ)

inf
`ρ∈=(ρ)

sup
τ∈V

τ∫
0

∣∣∣κ(r)∣∣∣2 ∣∣∣θ(r) − ρ(r)∣∣∣2 dr

≤ sup
`θ∈=(θ)

inf
`ρ∈=(ρ)

sup
τ∈V

S (θ,θ,ρ)

τ∫
0

∣∣∣κ(r)∣∣∣2 dr

≤
1
9

S (θ,θ,ρ) .

Similarly, we can write

zs (= (ρ) ,= (θ)) ≤
1
9

S (θ,θ,ρ) .

Hence, the inequality (5.2) reduces to

SZ (= (θ) ,= (θ) ,= (ρ)) ≤ 2 max
{
zs (= (θ) ,= (ρ)) , zs (= (ρ) ,= (θ))

}
≤ 2×

1
9

S (θ,θ,ρ)

=
2
9

S (θ,θ,ρ) .

Then, = is a contraction with µ = 2
9 < 1. Further, since ζ (θ,ϑ,ρ) = 2, we have

sup
v≥1

lim
j→+∞

ζ
(
θ j+1,θ j+1,θ j+2

)
ζ
(
θv,θv,θ j+1

)
ζ
(
θ j,θ j,θ j+1

) = 2 <
1

2µ
.

Therefore, all requirements of Theorem 4.1 are fulfilled. Then= has a unique FP, which is a unique

solution to the DIP (5.1). �

In order to support Theorem 5.1, we present the following example:
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Example 5.1. Let θ′(τ) = θ
9 and Φ (τ,θ(τ)) =

{
0, θ9

}
, for τ ∈ V = [0, 1] and the functions S : f3

→ R+

and ζ : f3
→ [1,+∞) be defined as in the above section. Now we shall verify the hypotheses (A1) − (A5)

of Theorem 5.1.

(A1) Since z(τ) = θ(τ)
9 is a LI selection of Φ (.,θ(.)) , then for all θ ∈ f, SΦ(θ) , ∅.

(A2) for (τ,θ) ∈ V ×f, it is clear that Φ (τ,θ(τ)) =
{
0, θ7

}
is closed.

(A3) for all θ ∈ f, Φ (.,θ(.)) is bounded on [0, 1].

(A4) for a sequence {`u} ∈ SΦ(θ), u ∈ N, there is a subsequence {`u j} of {`u(τ)} =
{
θu(τ)

9

}
such

that `u j → ` =
{
θ(τ)

9

}
∈ L1 (V, R) , as j→ +∞. Also,

τ∫
0

`u j(r)dr→

τ∫
0

`(r)dr, as j→ +∞,

for every fixed θ ∈ f and all τ ∈ V.

(A5) Take κ = 1
3 ∈ L1 (V, R) for all τ ∈ V with

sup
τ∈V

τ∫
0

∣∣∣κ(r)∣∣∣2 dr ≤
1
9

and 0 ≤ |zθ − zϑ|2 ≤
1
9

∣∣∣θ(τ) − ϑ(τ)∣∣∣2 ,

where zθ =
θ(τ)

9 ∈ SΦ(θ), and zϑ =
ϑ(τ)

9 ∈ SΦ(ϑ). Consider µ = 1
9 < 1, then

sup
v≥1

lim
j→+∞

ζ
(
θ j+1,θ j+1,θ j+2

)
ζ
(
θv,θv,θ j+1

)
ζ
(
θ j,θ j,θ j+1

) = 2 <
1

2µ

Hence, all assumptions of Theorem 5.1 are fulfilled. Therefore, for some constant a, the

suggested DIP has a solution θ(τ) = ae9τ.

6. Conclusion

The concept of an ordinary differential equation (ODE) is generalized by the idea of a DI. As

a result, DIs can be explored for all problems that are typically covered in the theory of ODEs,

such as the existence and continuation of solutions, reliance on initial conditions and parameters,

etc. Due to the fact that a DI typically has a large number of solutions beginning at a given point,

new kinds of issues emerge, including the need to select solutions with specific attributes and

look into the topological characteristics of the set of solutions. In particular, when studying the

dynamics of economic, social, and biological macro-systems, differential inclusions are a valuable

tool for analyzing a wide range of dynamical processes that are represented by equations with

a discontinuous or multivalued right-hand side. They are also highly helpful in demonstrating

control theory existence theorems. So, in this manuscript, we used a control function to combine

metric-like spaces and S−metric spaces to create CSMLSs. Furthermore, several FP results for

MVMs were obtained in this domain. Furthermore, we presented some non-trivial examples to

back up our statements. The findings generalize and unify multiple findings in the same direction.
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Ultimately, as a form of application, the existence of the solution to a DIP was investigated to

support and test the theoretical results.

7. Abbreviation

• CSMLSs controlled S−metric-like space

• FP fixed-point

• MVM multi-valued mapping

• DIP differential inclusion problem

• MS metric space

• LI Lebesgue integrable

• ODE ordinary differential equation

• DI differential inclusion
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