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Abstract. The aim of this paper is to study the asymptotic behavior for a class of time-dependent convection-diffusion

problems in a square = (0, 1) × (0, 1), which is a simplified model of the Oseen equations. By considering this problem

in a square, we theoretically treat the case where parabolic and ordinary boundary layers are present. We construct

correctors which absorb the singularities of the limit solution; this allows to obtain an approximation of the viscous

solution up to the boundary. The expression of the correctors is giving explicitly and the uniform validity of the

approximate solution is then proved.

1. Introduction

The behavior of the solutions of Navier-Stokes equations at vanishing viscosity (i.e. large

Reynolds numbers) is an outstanding open problem both in fluid mechanics and in mathematical

analysis. The study of boundary layers is of great physical and engineering importance. For a

historical literature about boundary layers in the fluid mechanics field, we refer to ( [2], [3], [7],

[8], [4], [16], and [17]). There are quite a few partial results in the convergence of the Navier-

Stokes equation to the Euler equations. For this, we though that we could learn much more

from simpler equations, (see e.g. [15], [5], [6], [11], [20], and [21]). We consider in this article the

boundary layers associated with a class of a time-dependent convection-diffusion problems. We

can consider this problem as a simplified model of the Oseen equations, namely the Navier-Stokes

equations linearized around a fixed velocity flow. In [19], the authors discussed this problem in

a channel in space dimension two and only parabolic boundary layers are observed. Here, we

treat the same problem considered in [19] but in a square. We note that multiple boundary layers

appear: the ordinary layers with thickness of size ε, and parabolic layers with thickness of size
√
ε.

In fact, some restrictions (compatibility conditions) will be assumed as we will see later. Indeed,
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in the most general case (square with no restriction), several other incontinences occur which

have to be accounted for by still other boundary layers. The convergence to the corresponding

inviscid equations as ε→ 0 occur only in the weak sense (L2 norm); indeed because of the loss of

some boundary conditions, the convergence cannot occur in the strong sense up to the boundary.

Our objective is to introduce a correcting term to absorb these singularities and then obtain an

approximation of uε, as ε→ 0, up to the boundary.

2. Time-dependent convection-diffusion equations

Our primary goal in this section is to study the asymptotic behavior of the following system
∂uε

∂t
− ε∆uε + uεx = f , in (0, T) ×Ω,

uε = 0, on (0, T) × ∂Ω,

uε
|t=0

= u0,

(2.1)

as ε approaches zero. The domain under consideration is the square Ω = (0, 1)× (0, 1), and all the

functions u0 and f = f (t, x, y) are supposed to be as smooth as necessary in (0, T) ×Ω.

We observe that (2.1)1 can be derived from the Oseen equations by simply dropping the pressure

term and omitting the divergence free (mass conservation) constraint. The existence of a regular

solution for the system (2.1) is obtained by classical methods: For f ∈ L2(0, T; H−1(Ω)) and

u0 ∈ L2(Ω), there exists a unique solution uε of the system (2.1) such that

uε ∈ L2(0, T; H1
0(Ω)), uεt ∈ L2(0, T; H−1(Ω)).

The inviscid problem corresponding to (2.1) is easily obtained by setting formally ε = 0 in (2.1),

we obtain the following transport equation
∂u0

∂t
+
∂u0

∂x
= f , in (0, T) ×Ω,

u0
|t=0

= u0.
(2.2)

We need to impose a boundary condition to (2.2) for the well-posedness of this problem. As

suggested by the theory of the transport equations, we prescribe the boundary condition ad the

characteristics enter the domain. Hence, we propose the following boundary condition for u0:

u0(x = 0) = 0. (2.3)

The convergence in L2(Ω) of uε, the solution of (2.1), to u0, the solution of (2.2), as ε approaches

zero, can be somewhat easy to derive. However, the convergence in H1(Ω) is not true due to the

boundary layer phenomena. To prove the convergence in H1(Ω), we usually need to introduce a

function called a corrector which aim to recover the disparity between the boundary values of the

regularizing and limit solutions namely uε and u0 respectively. For more details about corrector,

see e.g. [13], [14], [1], [9], [10], [18] and [12].
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2.1. Construction of the correctors. It is clear that the limit solution u0 does not generally satisfy

the boundary conditions at x = 1, and y = 0, 1. To resolve these discrepancies, we will introduce

the ordinary boundary layer (OBLs) at x = 1, and the parabolic boundary layers (PBLs), at y = 0, 1.

We propose the following formal approximation:

uε = u0 + Ψε + Rε, (2.4)

with

Ψε = θε + ϕε0 + ϕε1,

where θε (respectively ϕε0, and ϕε1) is the corrector of the boundary layer at x = 1 (respectively

y = 0, and y = 1). We start with the parabolic boundary layer generated near y = 0. A heuristic

argument suggests that ϕε0 be the solution of the following system:

∂ϕε0
∂t
− ε∆ϕε0 + ϕε0x = 0, in (0, T) ×Ω,

ϕε0(t, x, y) = −u0, at y = 0,

ϕε0(t, x, y) = 0, at y = 1,

ϕε0(t, x, y) = 0, at x = 0,

ϕε0|t=0
= 0.

(2.5)

Using the local variable y = y/
√
ε, we define an approximation ϕ̃ε0 of ϕε0 which satisfies:

∂ϕ̃ε0
∂t
−
∂2ϕ̃ε0

∂y2 +
ϕ̃ε0
∂x

= 0, in (0, T) × (0, 1) ×R∗+,

ϕ̃ε0(t, x, y) = −u0, at y = 0,

ϕ̃ε0(t, x, y)→ 0, as y→ +∞,

ϕ̃ε0(t, x, y) = 0, at x = 0,

ϕ̃ε0|t=0
= 0.

(2.6)

To handle the error analysis later on, we need further estimates on the spatial derivatives of ϕ̃ε0. for

that purpose, it is useful to obtain the expression of the ϕ̃ε0 which is provided by the lemma below.

Lemma 2.1. Let ϕ be a solution of the following system:

∂ϕ

∂t
−
∂2ϕ

∂y2 +
∂ϕ

∂x
= 0, in (0,+∞) × (0, 1) ×R∗+,

ϕ(t; x, 0) = g(t, x), at y = 0,

ϕ(t; x, y)→ 0, as y→ +∞,

ϕ(t; x, y) = 0, at x = 0,

ϕ|t=0 = 0.

(2.7)

Then, the solution of (2.7) is unique and it expression is given by:

ϕ(t; x, y) =

√
2
π

∫
∞

y/
√

2x
e−s2/2 g̃(t−

y2

2s2 , x−
y2

2s2 , 0) ds. (2.8)
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where g̃ denotes the extension of the function g as follows:

g̃ =

 g if t ≥ 0,

0 elsewhere.
(2.9)

Proof. Let ϕ be the solution of (2.7). Using (2.9), we define an extension ϕ̃ of ϕ and then, we

derive the Fourier transform of ϕ̃ε:

̂̃ϕ(τ; x, y) =
1

2π

∫ +∞

−∞

e−iτtϕ̃(t; x, y) dt.

Hence, we obtain the following system:

iτ̂̃ϕ− ∂2̂̃ϕ
∂y2 +

∂̂̃ϕ
∂x

= 0, in R× (0, 1) ×R∗+,̂̃ϕ(τ; x, y) = ̂̃g, at y = 0,̂̃ϕ(τ; x, y)→ 0, as y→ +∞,̂̃ϕ(τ; x, y) = 0, at x = 0,̂̃ϕ
|τ=0

= 0.

(2.10)

Note that

iτ̂̃ϕ+
∂̂̃ϕ
∂x

= e−iτx ∂
∂x

(
eiτx̂̃ϕ)

.

Then, we set vε = eiτx̂̃ϕ, which satisfies:

∂vε

∂x
−
∂2vε

∂y2 = 0, in R× (0, 1) ×R∗+,

vε(τ; x, y) = eiτx̂̃g at y = 0,

vε(τ; x, y)→ 0, as y→ +∞,

vε(τ; x, y) = 0, at x = 0,

vε
|t=0

= 0.

(2.11)

Now, we observe that vε satisfies the heat equation supplemented with nonhomogeneous boundary

conditions of which the expression is given by:

vε(τ; x, y) = 2
∫ x

0

∂K
∂y

(x− ξ, y)eiτξ̂̃g(τ; ξ, 0) dξ,

where K is the fundamental solution of the heat equation

K(x, y) =
1

4πx
e−y2/4x.

Hence, we deduce that

̂̃ϕ(τ; x, y) = e−iτxvε(τ; x, y) (2.12)

= 2
∫ x

0

∂K
∂y

(x− ξ, y)eiτ(ξ−x)̂̃g(τ; ξ, 0) dξ,
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then

ϕ̃(t; x, y) = 2
∫ +∞

−∞

∫ x

0

∂K
∂y

(x− ξ, y)eiτte−iτ(x−ξ)̂̃g(τ; ξ, 0) dτ dξ (2.13)

= 2
∫ x

0

∂K
∂y

(x− ξ, y)
∫ +∞

−∞

eiτ(t−(x−ξ))̂̃g(τ; ξ, 0) dτ dξ

= 2
∫ x

0

∂K
∂y

(x− ξ, y)g̃(t− (x− ξ); ξ, 0) dξ

= 2
∫ x

0
(
−y

2(x− ξ)
e−y2/4(x−ξ)√

4π(x− ξ)
g̃(t− (x− ξ); ξ, 0) dξ

= setting s =
y√

2(x− ξ)

=

√
2
π

∫
∞

y/
√

2x
e−s2/2 g̃(t−

y2

2s2 ; x−
y2

2s2 , 0) ds.

This ends the proof of Lemma 2.1. •

From the previous result, we deduce the following lemma.

Lemma 2.2. Let ϕ̃ε0 be the solution of (2.6). Then ϕ̃ε0 admits the following integral representation:

ϕ̃ε0(t, x,
y
√
ε
) = −

√
2
π

∫
∞

y/
√

2εx
exp(−s2/2)ũ0(t−

y2

2εs2 , x−
y2

2εs2 , 0) ds. (2.14)

Furthermore, we have:

|ϕ̃ε0(t, x,
y
√
ε
)| ≤ k exp(−

y
√
εx

) ∀ (t, x, y) ∈ (0, T) ×Ω. (2.15)

Proof. The explicit expression of ϕ̃ε0, as in (2.14), is simply deduced from Lemma 2.1.

Now, since u0 is smooth as necessary, we have

|ϕ̃ε0(t, x,
y
√
ε
)| ≤ κ

∫
∞

y/
√

2εx
e−s2/2 ds

≤ κ

∫
∞

y/
√

2εx
e−cs ds, for all c > 0

≤ κe−
y
√
εx .

•

Remark 2.1. Similarly at y = 1, we introduce an approximation ϕ̃ε1 ofϕε1, having the same structure

as ϕ̃ε0, with the role of y = y/
√
ε and ỹ = (1− y)/

√
ε being exchanged.

Now, we want to solve the discrepancies at the boundary x = 1. For this, we propose a corrector

θε which satisfies:

−ε∆θε + θεx = 0,
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θε(t, x = 1, y) = −u0
− ϕ̃ε0 − ϕ̃

ε
1, θε(t, x = 0, y) = 0.

Using the local variable x = (1− x)/ε, we define an approximation θ̃ε of θε which verifies
−
∂2θ̃ε

∂x2 +
∂θ̃ε

∂x
= 0, in (0, T) ×R∗+ × (0, 1),

θ̃ε(t, x, y) = −u0(t, 1, y) − ϕ̃ε0(t, 1, y) − ϕ̃ε1(t, 1, ỹ), at x = 0

θ̃ε(t, x, y)→ 0, as x→∞,

θ̃ε
|t=0

= 0.

(2.16)

The solution of (2.16) is given by:

θ̃ε(t, x, y) = −(u0(t, 1, y) + ϕ̃ε0(t, 1, y) + ϕ̃ε1(t, 1, ỹ))e−x.

At this stage, the function uε is tentatively approximated by u0 + ϕ̃ε0 + ϕ̃ε1 + θ̃ε. In the next section,

we will provide norm estimates on the derivatives of all these correctors which will be used below.

2.2. Asymptotic behavior of the correctors. We start by studying the asymptotic behavior of the

parabolic boundary layer at y = 0. We assume that the following condition holds:

u0(t, 0, 0) = 0. (2.17)

Then, we have the following lemma

Lemma 2.3. Assume that the condition (2.17) holds. Then, there exists a positive constant κ independent
of ε such that the following inequalities hold:∣∣∣∣∣∣ ∂∂t

ϕ̃ε0(t, x,
y
√
ε
)

∣∣∣∣∣∣ ≤ κ exp(−
y
√
ε
), (2.18)

∣∣∣∣∣∣ ∂i+m

∂xi∂ym ϕ̃
ε
0(t, x,

y
√
ε
)

∣∣∣∣∣∣ ≤ κ ε−m
2 exp(−

y

2
√
ε
), ∀(x, y) ∈ Ω, (2.19)

for all i, m ∈N, with 0 ≤ i + m ≤ 1.

As consequence, we have the following lemma.

Lemma 2.4. Assume that the condition (2.17) holds. For 0 ≤ σ < 1, we set

Ωσ = (0, 1) × (σ, 1).

Then, there exists a positive constant κ independent of ε such that:∥∥∥∥ ∂i+m

∂xi∂ym ϕ̃
ε
0

∥∥∥∥
L2(Ωσ)

≤ κ ε−m/2+1/4 exp(−
σ

2
√
ε
).

In particular, we have ∥∥∥∥ ∂i+m

∂xi∂ym ϕ̃
ε
0

∥∥∥∥
L2(Ω)

≤ κ ε−m/2+1/4,

and ∥∥∥∥ ∂i+m

∂xi∂ym ϕ̃
ε
0

∥∥∥∥
L∞(0,T;L2(Ω))

≤ κ ε−m/2+1/4.
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Proof. Since we have

|
∂i+m

∂xi∂ym ϕ̃
ε
0(t, x,

y
√
ε
)| ≤ κ ε−m/2 exp(

−y

2
√
ε
),

then ∫ 1

0

∫ 1

σ
|
∂i+m

∂xi∂ym ϕ̃
ε
0(t, x,

y
√
ε
)|2 dydx ≤ κ ε−m

∫ 1

0

∫ 1

σ
exp(

−y
√
ε
) dydx

≤ κ ε−m
(
−
√
ε exp(

−1
√
ε
) +
√
ε exp(

−σ
√
ε
)
)

≤ κ ε−m+1/2 exp(−
σ
√
ε
),

which implies ∥∥∥∥ ∂i+m

∂xi∂ym ϕ̃
ε
0(t)

∥∥∥∥
L2(Ωσ)

≤ κ ε−m/2+1/4 exp(−
σ

2
√
ε
). (2.20)

Letting σ→ 0+ in (2.20), we obtain:∥∥∥∥ ∂i+m

∂xi∂ym ϕ̃
ε
0(t)

∥∥∥∥
L2(Ω)

≤ κ ε−m/2+1/4,

and thus ∥∥∥∥ ∂i+m

∂xi∂ym ϕ̃
ε
0

∥∥∥∥
L∞(0,T;L2(Ω))

≤ κ ε−m/2+1/4.

•

Remark 2.2. Similarly for ϕ̃ε1, we need to assume the following condition:

u0(t, 0, 1) = 0. (2.21)

Under the hypothesis (2.21), the estimates obtained in Lemma 2.3 and Lemma 2.4 are valid for ϕ̃ε1,

that is

|
∂i+m

∂xi∂ym ϕ̃
ε
1(t, x,

1− y
√
ε
)| ≤ κ ε−m/2 exp(−

1− y

2
√
ε
), (2.22)

and ∥∥∥∥ ∂i+m

∂xi∂ym ϕ̃
ε
1(t)

∥∥∥∥
L2(Ω)

≤ κ ε−m/2+1/4. (2.23)

Remark 2.3. As for Ωσ = (0, 1)× (σ, 1), we introduce Ωσ′ = (0, 1)× (0, 1− σ′). Therefore, we have∥∥∥∥ ∂i+m

∂xi∂ym ϕ̃
ε
1(t)

∥∥∥∥
L2(Ωσ′ )

≤ κ ε−m/2+1/4 exp(−
σ′
√

2ε
).

Now, setting σ′ = σ = kεα with 0 < α < 1
2 , we deduce that the parabolic boundary layer correctors

ϕ̃ε0 and ϕ̃ε1 are exponentially small on (0, 1)× (σ, 1− σ). This implies that we only need to take care

of the parabolic boundary layers near the boundaries y = 0 and y = 1.

Now, we derive the norm estimates for the ordinary boundary layer corrector θε defined by

(2.16). We have the following lemma.
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Lemma 2.5. Assume that the conditions (2.17) and (2.21) hold. Then, there exist a positive constant κ
independent of ε, such that the following inequalities hold:∣∣∣∣∣ ∂∂t

θ̃ε(t,
1− x
ε

, y)
∣∣∣∣∣ ≤ κ exp(−

1− x
ε

)(1 + exp(−
y

2
√
ε
) + exp(−

1− y

2
√
ε
)),

∣∣∣∣∣∣ ∂i+m

∂xi∂ym θ̃
ε(t,

1− x
ε

, y)

∣∣∣∣∣∣≤κ ε−i exp(−
1− x
ε

)(1 + ε−m/2 exp(−
y

2
√
ε
) + ε−m/2 exp(−

1− y

2
√
ε
)).

for i, m ∈N and 0 ≤ i + m ≤ 1.

Proof. Using the estimates mentioned in Lemma 2.3 and Remark 2.2, we find that∣∣∣∣∣ ∂∂t
θ̃ε(t,

1− x
ε

, y)
∣∣∣∣∣ ≤

∣∣∣∣∣∣ ∂∂t
(u0(t, 1, y) + ϕ̃ε0(t, 1,

y
√
ε
) + ϕ̃ε1(t, 1,

1− y
√
ε
)) exp(−

1− x
ε

)

∣∣∣∣∣∣
≤ κ exp(−

1− x
ε

)
(
1 + exp(−

y

2
√
ε
) + exp(−

1− y

2
√
ε
)
)
.

Furthermore,∣∣∣∣∣∣∂i+mθ̃ε

∂xi∂ym (t,
1− x
ε

, y)

∣∣∣∣∣∣=
∣∣∣∣∣∣ ∂i+m

∂xi∂ym (u0(t, 1, y)+ϕ̃ε0(t, 1,
y
√
ε
)+ϕ̃ε1(t, 1,

1− y
√
ε
) exp(−

1− x
ε

))

∣∣∣∣∣∣
≤κ ε−i exp(−

1− x
ε

)(1+ε−m/2 exp(−
y

2
√
ε
)+ε−m/2 exp(−

1− y

2
√
ε
).

•

The following norm estimate is deduced immediately from Lemma 2.5.

Lemma 2.6. For 0 ≤ σ1, σ2 < 1, we define

Ωσ1,σ2 = (0, 1− σ1) × (σ2, 1− σ2).

Assume that the conditions (2.17) and (2.21) hold. Then, there exists a positive constant κ independent of
ε such that the following estimates hold:∥∥∥∥∂θ̃ε∂t

∥∥∥∥
L2(Ωσ1,σ2 )

≤ κ ε1/2 exp(−
σ1

ε
)(1 + ε1/4 exp(

−σ2

4
√
ε
),

∥∥∥∥∂i+mθ̃ε

∂xi∂ym

∥∥∥∥
L2(Ωσ1,σ2 )

≤ κ ε−i+1/2(1 + ε−m/2+1/4 exp(−
σ2
√
ε
)) exp(−

σ1

ε
).

In particular, as σ1, σ2 → 0, we obtain∥∥∥∥∂θ̃ε∂t

∥∥∥∥
L2(Ω)

≤ κ ε1/2(1 + ε1/4),

∥∥∥∥∂i+mθ̃ε

∂xi∂ym

∥∥∥∥
L2(Ω)

≤ κ ε−i+1/2(1 + ε−m/2+1/4),

∥∥∥∥∂i+mθ̃ε

∂xi∂ym

∥∥∥∥
L∞(0,T;L2(Ω)

≤ κ ε−i+1/2(1 + ε−m/2+1/4),
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for i, m ∈N, with 0 ≤ i + m ≤ 1.

In the next section, we state and prove the convergence results for the solution of the system

(2.1).

2.3. Convergence result. We conclude this study stating and proving the following theorem which

provides the asymptotic approximation for which we will justify later on the validity of our choice

of the boundary layer correctors.

Theorem 2.1. For the Dirichlet boundary value problem (2.1), let f be any smooth function and assume
that the conditions (2.17) and (2.21) hold. Then,

||uε − (u0 + θ̃ε + ϕ̃ε0 + ϕ̃ε1)||L∞(0,T;L2(Ω)) ≤ κ ε
3/4, (2.24)

||uε − (u0 + θ̃ε + ϕ̃ε0 + ϕ̃ε1)||L2(0,T;H1(Ω) ≤ κ ε
1/4, (2.25)

where κ is a positive constant independent of ε.

Proof. We set

Rε = uε − (u0 + θ̃ε + ϕ̃ε0 + ϕ̃ε1),

which verifies
∂Rε

∂t
− ε∆Rε + Rεx = ε∆u0 + ε(

∂2ϕ̃ε0
∂x2 +

∂2ϕ̃ε1
∂x2 +

∂2θ̃ε

∂y2 ) +
∂θ̃ε

∂t
.

The boundary conditions satisfied Rε are given as follows

Rε
|x=0

= 0, Rε
|x=1

= 0,

Rε
|y=0

= −(ϕ̃ε1 + θ̃ε), Rε
|y=1

= −(ϕ̃ε0 + θ̃ε).

Since Rε has nonhomogeneous boundary values, we introduce a supplementary corrector

vε(t; x, y) = (1− y)Rε(t, x, 0) + yRε(t, x, 1)

and we define

ψε(t; x, y) = Rε − (1− y)Rε(t, x, 0) − yRε(t, x, 1) (2.26)

= Rε(t, x, y) − vε(t, x, y).

Thus, ψε = 0 on ∂Ω, and satisfies the following system:
∂ψε

∂t
− ε∆ψε +ψεx = Rε0 + Rε1 + Rε2 in (0, T) ×Ω,

ψε = 0, on ∂Ω ,

ψε
|t=0

= 0,

(2.27)
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where

Lε =
∂
∂t
− ε∆ +

∂
∂x

,

Rε0 = ε∆u0,

Rε1 = ε(
∂2ϕ̃ε0
∂x2 +

∂2ϕ̃ε1
∂x2 +

∂2θ̃ε

∂y2 + ε−1Lεvε),

Rε2 =
∂θ̃ε

∂t
.

Here, we can easily verify that vε is exponentially small. Indeed, we find that for i, m ∈ N with

0 ≤ i + m ≤ 1:∣∣∣∣∣∣ ∂i+m

∂xi∂ym vε(t, x, y)

∣∣∣∣∣∣ ≤
{
|
∂i

∂xi ϕ̃
ε
1(t, x, y = 0)|+ |

∂i

∂xi ϕ̃
ε
0(t, x, y = 1)|

+
(
|ϕ̃ε1(t, 0, y = 0)|+ |ϕ̃ε0(t, 0, y = 1)|

)
|
∂i

∂xi e−
1−x
ε

}
≤ κ(c) exp(−

c
2
√
ε
), ∀c > 0, ∀(t; x, y) ∈ (0, T) ×Ω

which yields ∥∥∥∥∂i+mvε

∂xi∂yi

∥∥∥∥
L∞(0,T;L2(Ω)

≤ κ e−1/2
√
ε. (2.28)

Moreover, we have∣∣∣∣∣ ∂∂t
vε(t, x, y)

∣∣∣∣∣ ≤ κ

∣∣∣∣∣∣∂ϕ̃ε0∂t
(t, x, y = 1)

∣∣∣∣∣∣+
∣∣∣∣∣∣∂ϕ̃ε1∂t

(t, x, y = 0)

∣∣∣∣∣∣
+

∣∣∣∣∣ ∂∂t
{ϕ̃ε0(t, 0, y = 1) + ϕ̃ε1(t, 0, y = 0)}e−(1−x)/ε

∣∣∣∣∣
≤ κ e−1/2

√
ε.

Hence, we deduce that ∥∥∥∥∂vε

∂t

∥∥∥∥
L∞(0,T;L2(Ω))

≤ κ e−1/2
√
ε. (2.29)

We conclude from (2.28) and (2.29) that Lεvε is exponentially small; and this can be absorbed in

other L2-term or H1-term.

Now, we multiply (2.27) by ψε and integrate over Ω, we obtain∫
Ω

∂ψε

∂t
ψε dΩ + ε

∫
Ω
|∇ψε|2 dΩ +

∫
Ω
ψεxψ

ε dΩ =

∫
Ω

Rε0ψ
ε dΩ +

∫
Ω

Rε1ψ
ε dΩ

+

∫
Ω

Rε2ψ
ε dΩ. (2.30)

Using (2.27)2, we infer that ∫
Ω
ψεxψ

ε dΩ = 0. (2.31)
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By applying the Cauchy-Schwartz inequality for the first term in the right hand side in the energy

equality (2.30), we find ∫
Ω

Rε0ψ
ε dΩ ≤ ||Rε0||L2(Ω)||ψ

ε
||L2(Ω) (2.32)

≤ κ ε2 +
1
2
||ψε||2L2(Ω)

.

Thanks to Lemma 2.4, Remark 2.2 and Lemma 2.6, we have∫
Ω

Rε1ψ
ε dΩ = ε (||

∂ϕ̃ε0
∂x
||

2
L2(Ω)

+ ||
∂ϕ̃ε1
∂x
||

2
L2(Ω)

+ ||
∂θ̃ε

∂y
||

2
L2(Ω)

+ (2.33)

+||ε−1Lεvε||2L2(Ω)
) +

ε
8
||∇ψε||2L2(Ω)

≤ κ ε3/2 +
ε
4
||∇ψε||2L2(Ω)

.

To estimate
∫

Ω Rε2ψ
ε dΩ, we observe that have∣∣∣∣∣ ∂∂t

θ̃ε(t; x, y)
∣∣∣∣∣ ≤ κ exp(−

1− x
ε

)(1 + exp(−
y

2
√
ε
) + exp(−

1− y

2
√
ε
)), ∀ (t; x, y) ∈ (0, T) ×Ω.

Hence, we have ∫
Ω
|
∂θ̃ε

∂t
ψε| dΩ =

∫
Ω
|(1− x)

∂θ̃ε

∂t
ψε

(1− x)
| dΩ

≤

∥∥∥∥∥∥(1− x)
∂θ̃ε

∂t

∥∥∥∥∥∥
L2(Ω)

∥∥∥∥∥∥ ψε

(1− x)

∥∥∥∥∥∥
L2(Ω)

≤ (using Hardy’s inequality)

≤ k

∥∥∥∥∥∥(1− x)
∂θ̃ε

∂t

∥∥∥∥∥∥
L2(Ω)

∥∥∥∇ψε∥∥∥L2(Ω)
.

Yet,

||(1− x)
∂θ̃ε

∂t
||

2
L2(Ω)

≤ k
∫ 1

0

∫ 1

0
(1 + exp(−

y
√
ε
) + exp(−

1− y
√
ε
))(1− x)2 exp(−

2(1− x)
ε

) dydx

≤ k (1 +
√
ε)

∫ 1

0
(1− x)2 exp(−

2(1− x)
ε

) dx

≤ k ε3.

Then, we have: ∫
Ω
|
∂
∂t
θ̃εψε| dΩ ≤ k ε

3
2 ||∇ψε||L2(Ω) (2.34)

≤ k ε2 +
ε
4
||∇ψε||2L2(Ω)

.
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We conclude from (2.32), (2.33) and (2.34) that

1
2

d
dt
||ψε||2L2(Ω)

+ ε||∇ψε(t)||2L2(Ω)
≤ k ε2 +

1
2
||ψε||2L2(Ω)

+ kε3/2 +
ε
4
||∇ψε||2L2(Ω)

+ k ε2 +
ε
4
||∇ψε||2L2(Ω)

≤
1
2
||ψε||2L2(Ω)

+
ε
2
||∇ψε||2L2(Ω)

+ k (ε2 + ε3/2),

which yields
1
2

d
dt
||ψε(t)||2L2(Ω)

+
ε
2
||∇ψε(t)||2L2(Ω)

≤
1
2
||ψε||2L2(Ω)

+ k ε3/2.

We now apply the Gronwall inequality and obtain:

||ψε||L∞(0,T;L2(Ω)) ≤ k ε3/4,

||ψε||L2(0,T;H1(Ω) ≤ k ε1/4.

This ends the proof of Theorem 2.1. •
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