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Abstract. We showed the existence of common fixed point theorems for four mappings involving rational type contrac-
tive conditions in Aj-metric spaces by extending and generalising previous work. Furthermore, we provide an instance

demonstrating the applicability of the obtained results, as well as applications to integral equations and homotopy.

1. INTRODUCTION

The traditional notion of Banach contraction [1] has been crucial in obtaining a distinct
resolution to approximation theory and fixed point theory outcomes. It is without a doubt a crucial
and well-liked method for resolving modern nonlinear analysis problems in various mathematical
domains. Since then, numerous generalizations of the Banach contraction principle in metric fixed
point theory have been achieved through improvements to the underlying contraction condition.
Then, rigorous research work was obtained and is soon to be used to support previously published
findings (see. [2]- [7]) by weakening its hypotheses on a wide range of spaces, including pseudo-
metric spaces, rectangular metric spaces, fuzzy metric spaces, quasi-semi-metric spaces, quasi-
metric spaces, probabilistic metric spaces, F-metric spaces, cone metric spaces D-metric spaces,
and G-metric spaces.

For certain rational type contractive conditions, Dass and Gupta [2] extended the Banach con-
traction principle in a metric space in 1975. In 1989, I.A. Bakhtin [8] has introduced b-metric space.
The introduction of b-metric space led to the development of numerous metric space generaliza-
tions. In 2015, M.Abbas et al. [9] introduced and studied the topological characteristics of the

n-tuple metric space. Ap-metric spaces are a generalized version of n-tuple metric spaces, as first
b
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proposed by M. Ughade et al. [10]. Then, in partially ordered Aj-metric spaces, N.Mlaiki et al. [11]
and K.Ravibabu et al. ( [12], [13]) obtained unique coupled common fixed point theorems. After-
wards, P. Naresh et al. [14] and N. Mangapathi et al. [15] used compatible and weakly compatible
mappings to develop the first linked common fixed point theorems.

By expanding and generalizing several findings from the literature, the current work aims
to provide common fixed point theorems for four mappings involving contractive conditions
of Rational type in A,-metric spaces. Furthermore, we could offer pertinent examples, integral

equations, and homotopy applications.

2. PRELIMINARIES

Definition 2.1. ([10]) Let 3 be a non-empty set, and 9 > 1 be a real number. An Ay-metric on 3 is defined
as a mapping Ay : 3" — [0, 00) that meets the following constraints for every ee,,8€ 3z =1,2,3,..n.

(Apl) Ap(eer, e, oo ,®py-1,%y) >0,
(Abz) Ab(&], I S YR , &n_l,%n) =0 @ =y = =@, = @y,
Ap (1,1, e , (@1)n-1,8)
Ap (a2, 2, e, 4,8
(Ap3) Ap(eer, @2, ... ,®py-1,%y) <9 +Ap (22, 22 (e2)n-1,B)
o + Ap (@4-1, 801, wererrry (20-1)n-1, B)

Then the pair (3, Ay) is called an Ay-metric space.

Remark 2.2. ([10]) It is worth noting that the class of Ay-metric spaces is significantly bigger than that
of A-metric spaces. Each A-metric space is a Ap-metric space, where 9 = 1. However, the opposite is not
always true. In addition, Ay-metric space is a n-dimensional Sy-metric space. Therefore, the Sy-metric are

special examples of a Ap-metric withn = 3.

The following example demonstrates that a A,-metric on J does not necessarily imply a A-metric

on J.

Example 2.3. ([10]) Let 3 = [0, +0), define Ay, : 3" — [0, +00)
as Ay (1,2, ... J®p1, ) = Yo Yool —@lP Ve, €3,z=12-,n Then (3,A) isa
Ap-metric space with § =2 > 1.

Definition 2.4. ([10]) A metric space (3,Ay) is said to be symmetric if

Ap (e, , ()p-1,08) = Ap (e, e, -+, ()y-1,8) Ve, e J.

Definition 2.5. ([10]) Let (3, Ay) denote a Ay-metric space. Then, for ee € 3, 6 > 0, we defined the open
ball Ba,(ae, 6) and closed ball B, [, 6] with centre ae and radius 6 as follows:

Ba,(ee,0) = {ce € T : Ap(ce, 08, -+, (C&)p-1,2) <0},

and
By, (e, 0] = {oe € T : Ap(ce,ce, -+, (&)1, 2) < O).
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Lemma 2.6. ([10]) In a Ap-metric space, we have
(1) Ab(&/ wl Tty (&)n—llm) S SAb((E/ (E/ Tty (m)n—llw)/‘
(2) Ap(ee,ae,-++,()n-1,B) < 3(n-1)Ap(ae, 2, -, ()1, ) + PAy(ce, 00, -+, ()41, B).

Definition 2.7. ([10]) Let (3, Ap) be a metric space over Ap. A {ae;} sequence in 3 is defined as follows:
(1) If ngp € N exists such that Ap(ee;, a5, -+ (7)n-1,%,) < € for each 1,z > ny, then {ee,} is
Ap-Cauchy sequence.
(2) We denote Zh_)r£1o &, = @. Ap-convergent to a point e € 3 if, for each € > 0, there exists a positive
integer ng such that Ay (e, &, -+ (e;)n-1,) < € forall z > ny.
(3) An metric space Ay (3, Ap) if all Ay-Cauchy sequences in 3 are Ay-convergent, then Ay is said to
be complete.

Lemma 2.8. ([10]) Assuming that {aey} is a Ap-convergent to e and {oey} is a Ap-convergent to ce, and
(3,Ayp) is a Ap-metric space with § > 1, we have
(i)
1

@Ab(ae, e, (e)y-1,08) < lim inf Ap(aez, ey, -+, (8;)n-1,00z)
S zh—>rrc>lo sup Ab (&Z/ &Z/ Tty (&Z)Vl—ll (EZ)
< Ay(e, -, ()1, ce)

in particular, if ce, = oe is constant, then

(i)

1
@Ab(%/ X,y <£)1’l—1/ (E) < Zh—>n;> inf Ab(eeZ/ Xz, 0, (a‘:'z)n—lr (E>
< lim sup Ay (e, ez, -+, (22)n1, @)

IA

Ay (e, -, (2)n-1, )
Definition 2.9. [3]IfT : [0,00) — [0, co) satisfies the following conditions, it is referred to as a comparison
function.

(a) T is monotonically increasing;

(b) forall s € [0,00), the sequence {T"(s)} -, converges to zero, where "™ denotes the n'" iterate of T.
If T satisfie (a) and

(c) the sequence Y.!  T'(s) converges for all s € [0,00), then is referred to as the (c)-comparison
function.

Every comparison function is (c) comparison.
The comparison function prototype example is I'(s) = ds, where s € [0,0) and 6 € [0,1).

Lemma 2.10. [3] Assume that T : [0,c0) — [0, o) be a comparison function, then T'(s) < s for all s > 0,
andT(s) =0 & s=0.

The following factors must be taken into account in order to get our results.
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3. MaIN Resurts

In this segment, we examine the presence and singularity of a common fixed point for four
self-mappings and demonstrate it in Aj-metric spaces that incorporate rational type contractive
contraction.

Let F(T,f) = {ee € 3 : Tee = fee = e} be the set of common fixed points and C (T,f) = {ee € I :

T = fee = e} be the set of coincidence points.Then, the following definitions must be included
in the sequel.

Definition 3.1. Let (3, Ay) be a Ap-metric space. If Tfee = {Tae V e € I, then two self-maps T and § on
a nonempty set 3 are said to commute each other.

Definition 3.2. In (3,Ay), two self-maps T and § on a nonempty set 3 are considered w-compatible if they
commute at their coincidence points.

ielfee €T, Tjee = {Tae whenever Tee = fee .

Theorem 3.3. Consider (3,Ay) as a complete Ay-metric space with four mappings T, S,f,9 : § - I
satisfy the following conditions:

Ay (Te, T (Te) -1, Sce)

<al (A (o, g2, , (62)n-1, fe))

+ﬁr (max{ Ab (g%’ g, (g%)”—llfm) ’, }J

Ab (gwl gee, -, (g%)ﬂ—ll z%)

Ab (g£/ gee, -, (g&)n—llfm)

14 Ap (g2, g2, -+, (92e) -1, Toe)
b (g%/ gee, -, (g%)n—l/ z%)

+yT

(1+ Ap (22,92, -, (92) 1, Tee))°

foralle,cee 3, a,B,y 20witha+ p+y <1andT is a comparison function.
a) T(J) C§(I) and S(I) C g(I);

b) Either (T, g) or (S, ) are w-compatible;

c) one of F(3), g(I) is closed subset of I;

Then, T, S, f, and g have a unique common fixed point in 3.
Proof. Letig € J and from (a) we construct the sequences {zzp} and {z«tzp} inJ as

Tipp = fiopy1 = xop  Gigpy1 = Giopr2 = Hopyr forp =0,1,2,---.

Then from (3.1), we can get

Ap (%2p, Uz, 5 (M2p)n-t, %2p+1) =Ap (Ilzp, Ty, -+, (Tizp )1, 612p+1)
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< al (4 (gzzp, Giap, *++ , (812p) -1, f12p+1))

Ap a2y, 812y, -+, (812p ) -1, T2 ,
max{ b(gzp at2p (gz;g)nlfzpﬂ) }]

+pT
Ap (912;7/ 8i2p, -, (gZZp)n—lz 3:12;7)

2

Ab (912;9, 912p/ Tty (912p)n—1, f12p+1)

14 Ay (glzp,glzp,"' , (912p)n—1,f12p+1)
Ap (912;7/ 8l2p, -, (912p)n—1/ lep)

+yT

(1 + Ay (glzp, Qi+, (912p)n—1r f12p+1))2

< al (Ab (%2p—1,%2p—1,“' , (%2p—1)n—1,%2p))

max{ Ayp (%2p—1,%2p—1,"' ’ (%2;1—1)11—1/%2;9)/ }]

+pT
Ap (%2p—1, Uop-1," , (H2p-1)n-1, %2p)

2

Ab(}tz”_l'}%_l'.“ '%2}7) Ab(%z 1, A2p—1,""" %2)
p—Lr 7ap—Lls rohep

1+¢ Ap (%2;;—1,%2;:—1,"' ,%2p) ]

+yT

(1 + A (%Zp—lr Hop=1,""" %Zp))z

< ol (Ab (%2;9—11 Hop—1, , (H2p-1)n-1, %2p)) +pr (Ab (%2p—1, Hop1, , (Hop-1)u-1, %2p))

+yT (Ab (%2p—1, Hop-1, , (Hop-1)u-1, %2p)) :
Since I'(s) < s for all s > 0, then we obtain
Ap (%2;9, Hop, e, (Hop)n—t, %2p+1) <(a+p+y)A (%2;;—1, HUop-1, , (M2p-1)n-1, %2;9) .
Put x = a 4+ y, then we have 0 < x < 1. So that

Ap (%zp, Hop,+ , (Hop)n-1, %2p+1) < KAy (%2;7—1, Hop-1,+ , (H2p-1)n-1, %2p)

IA

2
KAy (%2p—2, Hop-2,""", (%2p—2)n—1,%2p—1)

IA

KZPAb (%o, o, , (%o)n_1,%1) — 0as p — oo.

Thus
lim Ab (%zp, op,ey (%2p)n—1/ %2P+1) =0.

p—00

Likewise, we can demonstrate that

r}i_{{}o Ap (%2p+1,%2p+1, e, (%2p+1)n—1,%2p) = 0.
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Now we can show {x,,} is a Cauchy sequence in J. Now, using (A4,3), we have for g > p

Ay (%zp, Ty s (*2p)n-1, %2p+1)
+Ayp (}QP, Hpy eveeens , (%2p)n—1/ %2p+1)
+---+ A (%zp, Hpy weeeee , (%Zp)n—l/ %2p+1)
+Ayp (}th, N2y eenene , (%Zq)n—lz %2P+1)

Ap (%2p/ Hop, -+, (%2p)n—1,%2q) <9

IA

9(1’1 - 1)Ab (}tzp, Hpyeeeennns ’ (%2;7)71—1/ %2!7-1-1)

+9A, (%217/ N2y eeeneene , (KZq)n—l/}thJrl)

IA

\9(1’1 - 1>Ab (%zp, %zp, ........ , (%2;7)11—1/ %2p+1)

2
+9 Ab (%Zp-‘rl/ %2p+1r """" ’ (%2;7—1-1)71—1/ %Zq)

IA

\9(1’1 - 1)Ab (%zp, %zp, ........ , (%Qp)n_l,%zp_H)
+8%(n-1)A, (%2p+1, Hopt1s evenene , (H2ps1)n-1, %2p+2)

4
+9%A, (%2p+2, Hp 42y eeenen , (M2p12)n-1, %2q)

IA

S(n-1)A, (}tzp, Ty s (*2p)n-1, %2p+1)
+93(n = 1) Ap (Hap 11, Xap 1, oy (Kapi1 )1, X2p12)
+98°(n—-1)A, (%2p+2, Hp 2y venens , (H2ps2)n-1, %2p+3)
+S7(n -1)A, (%zp+3, Hp 13y eeveene , (H2p43)n-1, %2p+4)
+ . B3 (n-1)A, (xzq_z, H2g-2, ceveeens , (H2g-2)u-1, %26,_1)
492172724, (%2q_1, Y , (H2g-1)n-1, xzq)

(n=1) (9% + 9+ 4 952 4 99N 2) Ay (0, %0, , (X0)u-1, 1)
+ 9272735207V Ay (%0, %0, -, (%0) n-1, 1)

(n—1)9x% (1 + P+ b+ .+ bzq_2p_4x2‘7_2”_2)Ab (%0, %0, -+, (%0) -1, #1)
+ 92 2NAY (%0, %0, 5 (%0)n-1, %1)

(n=1)91 (14 9% + 9412 + 93 +..) Ay (0, 0, , (%0)u-1, 1)

(n—1)9x%
1- 9%k

IA

IA

IA

Ay (%0, %0, -+, (%0)n-1,#1) = 0asp,q — oo.

Therefore The Cauchy sequence {%zp} is in J. Assuming that g(J) is a complete subspace of
(3,Ap), A is the convergence point of the sequence {}tzp} in g(J). As a result, plim Uy = A = gee
exists for every @ € g(J).

Now we show that Tae = A. By using (3.1), we have

Ay (Tee, Tee - (Tae)po1, 2ops1) = Ap (Tee, Tee - (Tae)1, Stz

<l (A, (o, e, -, (922)1, iaps1))
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max{ Ay (g%, gee, -, (ga)n_l,flzp_H) , }]

Ab (g&/ gae/ Tty (gae)n—lz zee)

BT

2

Ab g&/ g&,"' ’ 986 _1,f12 1
Ap (gae, gae, - ,(gae)n_1,‘f12p+1) 1+ J ( (92)n p+ )

Ab (g%/ gee, -, (g%)l’l—ll z%)

+T

(1 + A (gae, gee, -, (9e)n-1, fZZP“))Z

< al (Ab (gae, g, -, (92)n-1, “Zp))

+ﬁr max Ab (g£/ gal Tty (g£>n—1/ %Zp) 4
Ab (g%/ gee, -, (g&)n—ll z&)
2
Ab (g%/ gee, .-, (g&)n—ll %ZP)
Ap (g, g2, -+, (g2) -1, x2p ) |1 +
( ! p) Ab (g£/ gee, -, (g£)1’l—ll 3:%)
+yT 5
(1 + Ab (g%/ gee, -, (g%)n—l/ %2;7))
If we allow p — oo in the inequality above, we obtain
Ay (Tee,Tee - (Tae),-1,A) < al (Ap (0o, g2, -+, (92)5-1,A))
A 7 7 -1, A 7
g max] (g2, gee (g)n-1,A)
Ab (g&/ gee, -, (g%)ﬂ—ll z%)
2

Ap (g2e, gee, - -+, (82) -1, A
Ap (92, g2, -+, (02) -1, A) 1+¢ ( " |

(9
Ab (g%/ gee, -, (g%)i’l—ll I%)

(1 + Ab (g&/ gee, .-, (g&)n—llA))z

Since Tee = gee and I'(s) < s for all s > 0, then
Ap (Tee, Tee--- (Tee)-1,A) < (a+ B+ 7)Ap (Tee, Te- -+ (Tee) -1, A) .

Since 0 < k¥ = a + f + y < 1, the above inequality is possible if
Ap (Tee, Tee- - (Tae),-1,A) = 0. implies that Tee = A. Thus, Tee = A = gee. By the w-compatibility
of T and g, we have Tgee = gT¥e. Then TA = Tgee = gTee = gA. Which implies that A is a

coincidence point of T and g. Now we prove that TA = A, then from (3.1), we have
Ay (TA,TA - (TA)u1, xap 1) = Ap (TA, TA-++ (TA)1, Sigpi1)

< al(Ap (9,84, -+, (8A)u-1, %2p))

17 [ max { Ay (88,98, , (98)s 1, 23p), }]

Ab (gA/ gA/ Tty (gA)Vl—ll zA)




8 Int. . Anal. Appl. (2024), 22:126

2

Ap (gA, aA, -+, (aA) 1, %2;7) 1+ J Ap (QA; aA, -+, (8A) -1, %Zp)

Ab (QA, gA/ Tty (gA)l’l—l/ zA)

+yT

(1 + A (gA, A, -+, (8A)n-1, }‘ZP))Z

By allowing p — oo in the previous inequality and applying the property I'(s) < s for all s > 0, we

obtain
Ap (XA, TA--- (IA)H_L A) < (OL + B+ )/)Ab (IA, TA--- (iZA)n_l,A)

Since 0 < ¥ = a4+ B + ) < 1,50 which is possible if A, (TA, TA--- (TA),-1,A) = 0 implies TA = A.
Hence TA = A = gA. Therefore, A is a common fixed point of T and g. Since T(J) € f(IJ) so there
exist Y € J such that TA = A = fY. Then from (3.1), we have

Ay <%2p+1, Hops1 - (Hop41)n-1s ST) =Ap (Zl2p+1, Tiopi1 - (Tigps1)n-1, ST)
< al (Ab (912p+1/ Qlopi1, <912p+1)n—1rfT))

max{ Ayp (912p+11912p+l/"' , (912p+1)n—1,ﬂf), }

+pI
b (912p+1, 812p11,* , (812p41)n-1, zlzp+1)

Ap (912P+1, Ql2p+1,° " ,fT) 1+ J A (gZZP“’ Q2p+1,77° ,TY)

Ap (912p+1, Glop41,° ", 312p+1)

+yT

(1 + Ap (912p+1, 812p11,* , (812p41)n-1, TY))Z

< al (Ab (}tzp, Hop, fY))

Ay (%2, x2p, -+, (% Y
max{ b( 2ps A2p (2p)nlf) }

+pI
Ab %2]71%2;71 : /(K n— 1/%2P+1)

A %2pl %2]]/ Tty (%ZP)I’I—ll TY)

Ab Hop, Kop, "+ ,(%2p)n—1,%2p+1)

(14 A0 Geap -+ Gz, PO

Ap (%2;7/ A2p, (%2;7 n— 1/TY

Taking p — oo in the preceding inequality, we find that
0<Apy(AA, (A)y—1,CY) < (a+B+Y)T (Ap (A A+, (A)p-1,TY))

Since k = a + f + y < 1 and using the property I'(s) = 0, iff s = 0, which implies Y = A. Since
{S, f} weakly compatible pair, we have SfY = {SY. Then GA = SfY = &Y = fA. Which implies
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that A is a coincidence point of S and f. Now we prove that A = A, then from (3.1), we have

Ap (%2p+1, Hopi1- (Hopt1)n-1, gﬂ) =Ap (iﬁzpﬂ, Tiopi1 (Tipy1)n-1, 661)

IA

al’ (Ab (912p+1, 812p1, 5 (812p41)n-1, fa))
—’—ﬁr (max { Ab (912;9-',-1, 912p+1, cee, (912p+1 )1’!—1/ fa) , }]

Ayp (912p+1, 8lopt1, 5 (812p41)n-1, iz12p+1)
2

Ap (912p+1/ Slop41,° ", ftl)

14 J Ap (912p+1,912p+1,”' ,fﬂ) }

Ayp (912p+1, Qlop+1,°7 ", i'lzpﬂ)

+yT >
(1 + Ap (9241, 9241, (812p11) 01, fﬂ))

IA

al’ (A;j (%2,,, Hop, fa))
o] Ao ),
Ayp (%2p, Hop,+ , (Hop)n-1, %2p+1)

1 I J Ab (%2}7/ %2p/ cee, (}(ZP)H_l,Ta) ]

Ap (%2;;, Hop,++ , (H2p)n-1, %2p+1)

2

Ab (%2;)/ %2p/ oy (%2]0)11—1/ fﬂ)

+yT 5
(1 + Ay (%2]0/ op,-y (%2;))11—1/ TY))

Letting p — oo in the above inequality and using the property I'(s) <s, for all s > 0, we get
0<Ap (AA-(A)y1,GA) S (@4 B+Y)Ap (A A+ (A)yo1, GA).

Since 0 < k = a+ B+ y < 1, whichis possibleif A, (A, A, -+, (A)—1, SA) = 0implies that SA = A.
Hence SA = A = jA. Thus, A is a common fixed point between & and f. As a result, A is the
common fixed point of T, S, {, and g in J.

The following will demonstrate the uniqueness of the common fixed point in 3. Consider
another fixed point a* of T, G, {, and g in J. Based on (3.1), we have g in J.

In the following we will show the uniqueness of common fixed point in J. For this purpose,

assume that there is another fixed point A* of T, S, f and g in J. Then from (3.1), we have

Ay (A A (A)yo1, A) = Ap (TA, TA -+ (TA) -1, GA™)
< al (Ab (gA/ gA/ /(gA)n—l/TA*))

+pI | max Ap (QA/ gA, -, (gA)n_l, fA*) ,
Ap (QA, gA, -+, (gA)n—lr ZA)
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2

Ap (gA, gA, -+ TA*
Ab(gA,gA,--~,fA*) 1_1_4 b(g g T )

Ab (gA/ gA/ Tty zA)

+yT 5
(1 + Ab (gA/ gA/ Tty (gA)I’l—llfA*))

< (a+p+ )l (Ap (A A (A)n-1,A7)).

Since 0 < k = a + B+ y < 1 and using the property I'(s) <'s, for all s > 0, so which is possible if
Ay (AA, -+, (A)y-1,A*) = 0 implies A = A*. Thus A is UCFP of T, S, fand g in J. O
Corollary 3.4. Let (3, Ayp) be a complete Ay-metric space with two mappings

T,i: 3 — I that meet the following conditions:

Ap (Tee, Tee- - (Te) -1, Tee) < al (A (fx, fee, - -+, (fee) -1, fee))
Ay (fee, fee, -+, (f)y-1, fee),

max
Ab (T£/ f£/ Tty <f%>n_1, z&)

Ay (Tee, foe, -+, (fe)p-1, fee)
_|_
Ay (T, fee, -+, (fe) -1, Tee)

(1+ Ay (T, fae, -+, (fee) 1, Fee) )

+pT

Ab (T£/ f&?‘/ Tty (T£)n—l/ f@) 1

+yI

forallee,ce€ 3, a,p,y > 0witha+ p+y <1andT is a comparison function.
a) T(J) Ci(9);

b) The pair (T, ) has w-compatibility, and §(3) is a closed subset of J.

Then, T and § have a UCFP in 3.

Corollary 3.5. Let (3, Ap) be a complete Ay-metric space. The self-mapping T : 3 — 3 is such that
Ap (Tee,Tee- - (Te) 1, Tee) < al (Ap (e, 2, , () -1, ®))
forallee,ce€ 3, a € (0,1) and T is a comparison function.Then there is a UFP of T in J.

Example 3.6. Let 3 = [0,4], define A, : 3" — [0, +0)

as Ay (ael,aez, ........ @, 1,8,) = |, — max{eer, e, @3, - e, )P Ve €3,
i=1,2,---n. Then (3,Ay) is an complete Ay-metric space with § = 2.

0 for 0<ae<3

Leti:ﬁeﬁbyz(%): 6n5 fO?’ 3<ae<4

= 0<e<3
and §: 3 — T be given by f(ee o for Osz <
o, for 3<ae<4
if choose « = % B = =1 and T : [0,00) — [0,00) be as T(s) = £ Vs € [0,00). Then

obviously,T0 =0 =0 1mplzes that 0 is a coincidence point of T and §. Moreover, {(J) = [0,4] U (0,1] and
T(J) ={0}u (0,1]. Hence, T(J) C f(T) and also TO = Tf0 = §I0 = f0 = O,then (T, {) is w-compatible.
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Case (i): Suppose e, ce € [0, 3] then
Ap(Tee, T, -, (Tae)y-1, Toe) = Ap(0,0,---(0),,-1,0) = 0.

4 4dee 4z 4ce
Ab (T%/ T&/ Tty (f%)n—llf@) - Ab (3_7’[’ 3_nl Tty (3_n)l’l—1/ 3_7’1)

4o de, 16 5
= I3 T T gl =
and
\ B 4 4e 4ee
Ab (far f£/ Tty (fa)n—ll z%) - b ( 31 s 3n ’ s ( 3n )1’1—11 0)
16 »
ﬁkﬂ

Then by contractive condition of Corollary 3.4 we have

Ay (Tee,Tee - (Tae) -1, Tee) < al (A (fee, fae, - -+, (fe) -1, fee))

. { Ay (e, e, -, (fee)u_1, fce), })

+pI
ﬁ Ab (f£/ f£/ Tty (T£>n—1/ z£)

Ay (i e+, (), fee) [ 1+ J o 120 T (122 )

Ay (fee, fee, -+, (fee) -1, Tae)

+yI 2
(1 + Ab (fae, fee,---, (fee)n—lr f(E))

16 ,, 16 ) o
=0 < wkﬁ—&l +@max{ |(E—%|,|%| }
2
16 2
16 2 gz |e — |
o,z lce — el |1+ nﬁ|ae|2
+i 9n?
1 2
6 (1+%|oe—ael2)
16 2 16 2 1 2
< WKE—%l +@max{ |(E-8€|,|8€| }+@|(E—%| .

This is always true for all e, ce € [0, 3].

Case (ii): Suppose e, ce € (3,4], then the hypothesis of corollary 3.4 trivially holds. Case (iii): if e € [0, 3]
and ce € (3,4] then

Ap(Tee, Tee, -+, (Tee)y—1, Tee) = Ap(0,0,- -+ (0)-1, L=2) = |EL312,

2n—-4 4
Ay (e, () ) = 1252 = 5P
and
Ab (T£/ f£/ Tty (f%)n_l, Zae) = |%|

9n2
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Then clearly,
6n->5, 132n-4 4de, 1 ot de )
e L +Zmax{|3’§n =, 16 | |
3 |32n 4 48e|
16" 32n 3n
7 32n-4 de, 1 ot dmid ,
= 16| 32n 3n 3 +Zmax{ | 31;71 |19n2|39| }

which is true for all e € [0, 3] and ce € (3,4]
Case (iv): if e € (3,4] and ce € [0, 3] then
Ab(z£/ Ezj%/ 7 (EI%)n—l/zm) == Ab(Gn_5 n=s ... (611—5)” 1, ) |6 |2

6n 7 6n ’/ 6n
Ay (e e, ()i fee) = Io = S22
and
R S S i
Then clearly,
520 < fo1%5 - Bt o+ fmax{ 1Bt - 2P IG5 )

truefor all & € (3,4] and e € [0,3]. Putn = 2,9 = 2since a + B+ y < 1,from cases (i)-(iv) all the
conditions of Corollary 3.4 are satisfied and 0 is the UCFP of T and f.

4. ArprrLicATION TO INTEGRAL EQUATIONS

In this part, we explore the existence of a unique solution to an initial value problem and apply
it to Corollary 3.5.

Theorem 4.1. Consider the initial value problem
&' (t) = T(t,ee(t)), tel=10,1], &(0) = e, 4.1)
T:IXR — R, with aeg € R. The initial value problem (4.1) has a unique solution in C (I, R).

Proof. In the case of the initial value problem (4.1), the integral equation is
t
o(t) =2 +2(n-1)2 fz(s,ae(s))ds.
0
Let 3 = C(ILR) and Ay (a1, ........ ,®n_1,8n) = L ij lee; — aejl2 for all @& € J,i =
1,2,-+- ,nand T : [0,00) — [0,00) beas I(s) = 2 Vs € [0,0) define R : I — I by
t

ES)

R(e)(t) = m%—f‘i(s,ae(s))ds.
0

Clearly, for all e, ce € J, we have
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Ay (R() (1), R(a@)(t), -+, R(ce)(t)) = (n=1)IR(ee)(t) - R(ce) ()P

t

+ fi?i(s, (ce)(s))dsl?

0

X0
2(n—-1)2

0

= (n-1) m

—i—fl(s, (2)(s))ds —
0

= gle() () < = Dlee(t) ~ () < 5 (SAu(ae e, o))

al (Ap (e, e, , (@)y-1,0))

IA

Corollary 3.5 leads us to the conclusion that there is only one fixed point for R in J.

5. ArrrLicaTiON TO HOMOTOPY

We examine the existence of a singular solution to homotopy theory in this section.

Theorem 5.1. With 8 > 1, W and U representing open and closed subsets of I such that W C U, let
(3, Ap) be the complete Ay-metric space. Assume that $ : W x [0,1] — I is an operator with the following
requirements:

1) For each ae € W and « € |0, 1], we have & # H(ee, k), (here W is boundary of Win J);

1) for all &, ce € Wand « € [0,1] such that

Ap (D(ae, 1), H(e, 1), -+, (D(e, «))n-1, H(ce, 1)) < él’ (Ap (22, )

where T : [0,00) — [0, 00) is a comparison function.

TZ) AM=>0> Ab(g(%/ K)/ S5(%/ K)/ Tty (55(£/ K))I’l—ll 55(£/ C)) < MlK - Cl
for every ee € Wand «,C € [0,1].

There is then a fixed point in H(.,0). &= There is a fixed point in H(.,1).

Proof. Let the set § = { k€ 0,1] : H(ee, k) = e for some e € U }

Given a fixed pointin U for $(.,0), we have 0 € &, for § to be anon-empty set. We now demonstrate
that, given the connectedness 3 = [0, 1], & is both closed and open in [0, 1]. Consequently, there is
a fixed point for H(.,1) in . Initially, we demonstrate that & closed in [0,1]. In order to observe

00
=1

this, let {Kp}p C J, where p — oo and x, — « € [0, 1]. To prove that k € &, we must. Since k, € §

forp =0,1,2,3,---, there exists sequences {aep} C Uwith e, = H(eep, xp).
Consider
Ab (&p/ &p, Tty (&p)n—ll &p+1>
= Ab(g(aep/ Kp)/ 55(%;)/ Kp)/ ttty (55(&;71 Kp))n—lr 55<a3p+1z Kp+1))

\9(7’1 - 1)Ab ( 55(£p1 Kp)r S5(£p/ Kp)/ Tty 5(%p+l/ Kp) )
+‘92Ab ( $(£P+ll KP)/ S5(£p-‘y—1/ Kp)/ Tty .6(%;74,_1, Kp-‘rl) )
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19(7’1 - 1)Ab ( 55(&171 Kp)/ 55(3ep/ Kp)/ Tty 5<£p+1/ Kp) )
+92Mlxy — Kp1l '

Given p — oo, we obtain

pli_l}o}o ml‘lb(%p,a@p,"' ,®p1) < ;}i—{?oAb (55(3@sz;7)155(8€;7, Kp) o ,55(8ep+1,1<p))
.1
< lim T (A (2, 2p01))

Using the property I'(s) <s, for all s > 0, we get

. 1
(S ~ g el ) <0
So that

lim Ay (eep, @y, -+ ,@p41) = 0.

p—)OO
We now demonstrate that {ae,} in (I, A4;) is a Ay-Cauchy sequence. Conversely, let us assume that
{eep} is not A-Cauchy. The natural numbers {p,} and {g;} have monotonic rising sequences such

that gx > pk, and there exists € > 0.

Ay (aepk,aepk e, (aepk)n_l,aeqk) >e€ (5.1)
and
Ay (aepk,aepk e, (aepk)n_l,aeqk_l) <e (5.2)

From (5.1) and (5.1), we have

IA

€ Ap (aepkf &p, -, (®p)n-1, 3%)

IA

(Tl - 1)8Ab (%Pk’ £Pk Tty (Eepk)lfl—lr apk—&-l) + SzAb (&pk-l-l/ apk-‘rl/ Tty (EEpk-I-l)l’l—l/ &qk)

If we allow k — oo, we get

€ .
§ = f}l—l;lc}o Ab (EEpk-i-l/ £pk+1l Tty (£pk+l)n—1/ £qk) (53)

But we have

lim Ab (apk—i-l/ %pk—&-l/ Tty (apk—i-l)n—l/ %qk)

p—oo
< plglc;lo Ab (Sj(apk-i-l/ ka-‘rl)/ Sj(%pk-ﬁ—l/ ka—i-l)/ Tty (‘5(£pk+l/ ka+1))n—1l 55(%111(/ qu))
. 1
< ph—I)lc;lo @F (Ab (&PkJrl/ e (&pqul)n—l/ qu)) (54)
It follows that .
(1 - ?) pll—I)lgo Ab (&pk—}—l/ apk—i-l/ Tty (%pkﬁ—l)n—l/ &qk) <0.

Thus

lim A (aepk+1,aepk+1, Ty (8€pk+1)n—1raeqk) =0

p—o0
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Therefore, € < 0, which is contradictory, follows from (5.3). Therefore Given the completeness of
(8,Ayp) and the Aj-Cauchy sequence {a,} in (I, A;), there exists x € U with
lim &, 11 = % = lim e).

p—00 p—00

From Lemma (2.8), we have

1

A (S04, 506 ), 20 < Timinf Ay (504, 1), 904,10, , 52y, )
< pli_r}iloinfal"(Ab(%,%,m,aep))
= 0.

u = 9H(x, «) is the ensuing result. x € § as a result. Thus, in [0, 1], & is closed.

Let kg € &. Then, aep = H(eep, ko) exists for ap € L. Given that i is open,

Ba,(aep,r) C U for every r > 0. Select k € (ko — €, kg + €) such that

[ — x| < A% < 5. Next, foree € By, (e, 1) = {ae € F/Ap(ae, e, - @) <7+ 92Ap(eep, e, - ,aeo)}.

Now we have

Ap (D(e, 1), O(ee, ), -+ a0) = Ap (9(e,x), H(a,x), -+, H(ao, ko))

< (n=1)84; (9(ee ), H(e, 1), -+, H(e, K0))

+8%A, (9(2e, 0), (2, k0), -+, H(e0, %0))
< 3(n—1)Milk - xol + 9%Ap (H(, x0), H(ee, x0), -+, H(ee0, ko))
< d(n-1) + 9244 (H(2e, k), H(ee, x0), -+, H(ae0,%0)) -

Mpr-1

Letting p — oo, we obtain

1
@Ah (5(£1 K)/ Sj(£/ K)I e /%0) < Ab (55(£1 KO)/ S5(%1 KO)/ e /55(%0/ KO))
1
< gf (Ap(ee, e, - ,e)) .
Utilizing I"’s property, we have
Ap (D( k), H(e,K), - @) < Ap(ee,e,--, )

< 1’+\92Ab(&0, X, /%0)

Therefore, $(., k) : Ba,(aeo,7) — Ba,(aeo,r) holds for every fixed x € (ko —¢€,x9 +€). Then,
Theorem 5.1 is satisfied in all its conditions. As a result, we deduce that U has a fixed point for
9(., ). Therefore, since (7¢) holds, this mustbe in 2. For any « € (ko —€, ko + €), k € &. Therefore,
(k0 +€,k0—€) C &. &isobviously openin [0, 1]. We employ the identical method for the opposite

inference.
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CONCLUSION

In this paper, we use rational contractive type fixed point theorems in the set up of A,-metric
spaces to conclude certain applications to integral equations and homotopy theory.
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