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Abstract. In this study, we introduce new types of m-quasi-ideals and m-bi-ideals in b-semirings and provide some

characterizations of these ideals. We use an algebraic method to express the fundamental properties of m-bi-ideals in b-

semirings. We also discuss the m-ideals in terms of their algebraic structures. Moreover, we examine the m-bi-ideals and

their generators and provide some characterizations regarding bi-ideals. We further discuss the m-bi-ideal generated

by a non-empty subset S, which is denoted by < S >m= S∪
∑

finiteBS
m
B, where B is the set of all bi-ideals.

1. Introduction

Vandiver [15] introduced the concept of a semiring in 1934. Regular rings have been extensively

studied for their own sake and connection to operator algebras. In 2009, Ronnason [2] proposed

the idea of b-semirings. In an article submitted for publication, Mohanraj et al. [8] established

the concepts of weak-1 ideals and weak-2 ideals in b-semirings. This study characterizes different

regular b-semirings using multiple weak ideals. Semigroups, which emerged as a generalization

of group theory in the early 20th century, are basic structures widely recognized in various areas

of science and mathematics, as noted by Munir and Habib [9]. Due to their inherent connection

to finite automata, they have numerous applications in theoretical computer science. Examples

include time-invariant processes, abstract evolution equations, and graph theory.

Semigroups are algebraic structures with an essential ideal similar to other ones. Steinfeld [12,13]

was one of the pioneers of the concept of semigroups and rings as quasi-ideals. Iséki [5] extended

this idea to semirings with no zero and explored significant semiring descriptions based on quasi-

ideals. Mathematicians have found it useful and fascinating to generalize the ideals found in
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algebraic structures. This generalization of values led to one-sided ideals and pseudo-ideals,

see [4].

Lajos developed the concept of bi-ideals as a more general version of quasi-ideals in associative

rings. Later, Lajos and Szasz [7] and other mathematicians applied these ideas to study various

semigroups. Kar and Maity [6] introduced generalized bi-ideals for ternary semigroups. In [11],

the study of semirings and ordered semirings through the hypothesis of an ordered b-semiring is

described. The paper attempts an in-depth analysis of Type-1 and Type-2 bi-ideals over ordered

b-semirings. Many mathematicians have used various ideals to prove significant results and

characterizations of algebraic structures, see [10]. They proved that the intersection of almost

hyperideals need not be an almost hyperideal, but the union of almost hyperideals is an almost

hyperideal. This is distinct from the classical concept of ideal theory.

In this paper, we delve into the significant classical results in bi-ideals, m-bi-ideals, and their

relationship with the elements and subsets of a b-semiring. We examine the conversion of bi-ideal

and quasi-ideal concepts into m-bi-ideal. The paper is divided into five sections. The first section

provides an overview of the topic, while the second section explores b-semirings and their relevant

definitions and results. In the third section, we cover m-bi-ideal and m-quasi-ideal generated by a

single element and subset with numerical examples. Finally, we conclude our study in the fourth

section. The primary objective of this paper is to establish the relationship between bi-ideals and m-

bi-ideals in b-semirings and demonstrate the relationship between m-quasi ideals and m-bi-ideals

in b-semirings. Next, we will characterize the generator of bi-ideal, weak-1 left ideal, weak-1 right

ideal, weak-2 left ideal, and weak-2 right ideal.

2. Preliminaries

In this section, we will introduce the concept of m-bi-ideals in b-semirings. We will provide an

overview of the key theories and concepts explained in [2,3] relevant to this topic. Here S denotes

a b-semiring unless otherwise mentioned. Also, ∗1 and ∗2 denote the MinMax-product and the

MaxMin-product, respectively.

Definition 2.1. [1] Let S be a non-empty set and ∗1 and ∗2 be binary operations on S. Then (S, ∗1, ∗2) is
called a b-semiring if (S, ∗1) and (S, ∗2) are semigroups and for all a, b, c ∈ S, a ∗1 (b ∗2 c) = (a ∗1 b) ∗2 (a ∗1
c), (b ∗2 c) ∗1 a = (b ∗1 a) ∗2 (c ∗1 a), a ∗2 (b ∗1 c) = (a ∗2 b) ∗1 (a ∗2 c), and (b ∗1 c) ∗2 a = (b ∗2 a) ∗1 (c ∗2 a).

Definition 2.2. Let A and B be subsets of (S, ∗1, ∗2). Then the ∗1-product and ∗2-product of A and B,
denoted by A ∗1 B and A ∗2 B, respectively; are defined as follows:

A ∗1 B =
{
a ∗1 b | a ∈ A and b ∈ B

}
and A ∗2 B =

{
a ∗2 b | a ∈ A and b ∈ B

}
.

Definition 2.3. A sub b-semiringQ of S is called an m1-quasi ideal (resp.,m2-quasi ideal) of S ifQ ∗2 Sm
∩

S
m
∗2 Q ⊆ Q (resp., Q ∗1 Sm

∩S
m
∗1 Q ⊆ Q).

Definition 2.4. A subset B of S is called an m1-bi-ideal (resp., m2-bi-ideal) of S if B is a sub b-semiring of
S and B ∗2 Sm

∗2 B ⊆ B (resp., B ∗1 Sm
∗1 B ⊆ B), where m is a positive integer.
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Definition 2.5. A subset B of S is called an m-bi-ideal of S if it satisfies both m1-bi-ideal and m2-bi-ideal
of S.

For a subset A of S and i = 1, 2, 3, ..., n,
∑

A = {(a1 ∗1 a2 ∗1 ... ∗1 an) | ai ∈ A} and
∏

A =

{(a1 ∗2 a2 ∗2 ... ∗2 an) | ai ∈ A}.

3. m1-Bi-Ideals of b-Semirings

This section introduces m1-bi-ideals of b-semirings and their generalizations. Examples are

provided to illustrate the results.

Note 3.1. The binary operations∧, ∨, and ∗1 are defined as follows: x∧ y = min
{
x, y

}
, x∨ y = max

{
x, y

}
and

0 0 0 0 0 0
a1 0 0 0 0 0
a2 a3 0 0 0 0
a4 a5 a6 0 0 0
a7 a8 a9 a10 0 0
a11 a12 a13 a14 a15 0

 ∗1


0 0 0 0 0 0
b1 0 0 0 0 0
b2 b3 0 0 0 0
b4 b5 b6 0 0 0
b7 b8 b9 b10 0 0
b11 b12 b13 b14 b15 0

 =


0 0 0 0 0 0
c1 0 0 0 0 0
c2 c3 0 0 0 0
c4 c5 c6 0 0 0
c7 c8 c9 c10 0 0
c11 c12 c13 c14 c15 0

, where

c1 = a1 ∧ b1 ∧ b2 ∧ b4 ∧ b7 ∧ b11; c2 = a2 ∧ (a3 ∨ b1) ∧ b2 ∧ b4 ∧ b7 ∧ b11; c3 = a2 ∧ a3 ∧ b3 ∧ b5 ∧

b8 ∧ b12; c4 = a4 ∧ (a5 ∨ b1) ∧ (a6 ∨ b2) ∧ b4 ∧ b7 ∧ b11; c5 = a4 ∧ a5 ∧ (a6 ∨ b3) ∧ b5 ∧ b8 ∧ b12;
c6 = a4 ∧ a5 ∧ a6 ∧ b6 ∧ b9 ∧ b13; c7 = a7 ∧ (a8 ∨ b1) ∧ (a9 ∨ b2) ∧ (a10 ∨ b4) ∧ b7 ∧ b11; c8 =

a7 ∧ a8 ∧ (a9 ∨ b3) ∧ (a10 ∨ b5) ∧ b8 ∧ b12; c9 = a7 ∧ a8 ∧ a9 ∧ (a10 ∨ b6) ∧ b9 ∧ b13; c10 = a7 ∧

a8 ∧ a9 ∧ a10 ∧ b10 ∧ b14; c11 = a11 ∧ (a12 ∨ b1) ∧ (a13 ∨ b2) ∧ (a14 ∨ b4) ∧ (a15 ∨ b7) ∧ b11; c12 =

a11 ∧ a12 ∧ (a13 ∨ b3) ∧ (a14 ∨ b5) ∧ (a15 ∨ b8) ∧ b12; c13 = a11 ∧ a12 ∧ a13 ∧ (a14 ∨ b6) ∧ (a15 ∨ b9) ∧ b13;
c14 = a11 ∧ a12 ∧ a13 ∧ a14 ∧ (a15 ∨ b10)∧ b14; c15 = a11 ∧ a12 ∧ a13 ∧ a14 ∧ a15 ∧ b15.

Note 3.2. The binary operation ∗2 is defined as follows:
0 a1 a2 a3 a4 a5
0 0 a6 a7 a8 a9
0 0 0 a10 a11 a12
0 0 0 0 a13 a14
0 0 0 0 0 a15
0 0 0 0 0 0

 ∗2


0 b1 b2 b3 b4 b5
0 0 b6 b7 b8 b9
0 0 0 b10 b11 b12
0 0 0 0 b13 b14
0 0 0 0 0 b15
0 0 0 0 0 0

 =


0 0 c1 c2 c3 c4
0 0 0 c5 c6 c7
0 0 0 0 c8 c9
0 0 0 0 0 c10
0 0 0 0 0 0
0 0 0 0 0 0

, where

c1 = b6 ∧ a1; c2 = (b7 ∧ a1) ∨ (b10 ∧ a2); c3 = (b8 ∧ a1) ∨ (b11 ∧ a2) ∨ (b13 ∧ a3); c4 = (b9 ∧ a1) ∨

(b12 ∧ a2) ∨ (b14 ∧ a3) ∨ (b15 ∧ a4); c5 = b10 ∧ a6; c6 = (b11 ∧ a6) ∨ (b13 ∧ a7); c7 = (b12 ∧ a6) ∨

(b14 ∧ a7)∨ (b15 ∧ a8); c8 = b13 ∧ a10; c9 = (b14 ∧ a10)∨ (b15 ∧ a11); c10 = b15 ∧ a13.

Theorem 3.1. Every bi-ideal of S is an m1-bi-ideal.

Proof. Let B be a bi-ideal of S. Then B ∗2 S ∗2 B ⊆ B. Now, it is also true that B ∗2 S1
∗2 B ⊆ B.

Similarly, we can see thatB∗2 S2
∗2B ⊆ B ∗2 S

1
∗2B ⊆ B. In general,B∗2 Sm

∗2B ⊆ B ∗2 S
m−1
∗2B ⊆

B. Hence, B is an m1-bi-ideal of S. �

Remark 3.1. The reverse implication of the Theorem 3.1 does not satisfy; see Example 3.1.



4 Int. J. Anal. Appl. (2024), 22:89

Example 3.1. Consider the b-semiring (S1, ∗1, ∗2), where ∗1 and ∗2 are defined in the above Note 3.1. Let

S1 =





0 s1 s2 s3

0 0 s4 s5

0 0 0 s6

0 0 0 0


∣∣∣∣∣∣∣s′si ∈ Z∗


,

B =





0 b1 0 0

0 0 0 0

0 0 0 b2

0 0 0 0


∣∣∣∣∣∣∣b′si ∈ Z∗


.

Then B is a sub b-semiring of S1. Now,

B ∗2 S
2
1 ∗2 B =





0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




⊆ B.

Thus, B is an 2-bi-ideal of S1 but it may not necessarily be a bi-ideal of S1 by

(B ∗2 S1 ∗2 B) =





0 0 0 m1

0 0 0 0

0 0 0 0

0 0 0 0


∣∣∣∣∣∣∣m1 ∈ Z∗


* B.

Theorem 3.2. The product of any two m1-bi-ideal and m1
′

-bi-ideal of S with the identity element e is a
max{m1, m1

′

}-bi-ideal of S.

Proof. LetB1 andB2 be an m1-bi-ideal and an m1
′

-bi-ideal ofS, respectively. Now,B1 ∗2S
m1 ∗2B1 ⊆

B1 andB2 ∗2S
m1 ∗2B2 ⊆ B2. From Note 3.2, (B1 ∗2B2)2 = (B1 ∗2B2) ∗2 (B1 ∗2B2) ⊆ (B1 ∗2S∗2B1) ∗2

B2 ⊆ (B1 ∗2 S ∗2 e ∗2 ... ∗2 e ∗2 B1 ∗2 B2) ⊆ (B1 ∗2 S ∗2 S ∗2 ... ∗2 S ∗2 B1) ∗2 B2 ⊆ (B1 ∗2 S
m
∗2 B1) ∗2 B2 ⊆

B1 ∗2 B2. Also, (B1 ∗2 B2) ∗2 Smax{m1,m1
′
}
∗2 (B1 ∗2 B2) ⊆ B1 ∗2 S ∗2 S

max{m1,m1
′
}
∗2 B1 ∗2 B2 ⊆ B1 ∗2 B2.

Therefore, B1 ∗2 B2 is a max{m1, m1
′

}-bi-ideal of S. �

Theorem 3.3. If B is a ∗1 closure of S, R is a subset of S, and B is an m1-bi-ideal of S, then B ∗2 R and
R ∗2 B are m1-bi-ideals of S.

Proof. Now, (B∗2R)2=(B∗2R) ∗2 (B∗2R)=(B∗2R∗2B) ∗2R ⊆ (B∗2R∗2S) ∗2B ⊆ (B∗2 (Sm) ∗2B) ∗2

R ⊆ B ∗2 R. Also, (B ∗2 R) ∗2 Sm
∗2 (B ∗2 R)∗2 ⊆ B ∗2 S ∗2 Sm

∗2 (B ∗2 R) ⊆ B ∗2 Sm
∗2 B ∗2 R ⊆ B ∗2 R.

Therefore, B ∗2 R is an m1-bi-ideal of S. Similarly, we can demonstrate that R ∗2 B is an m1-bi-ideal

of S. �
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Theorem 3.4. If B is an intersection of all bi-ideals with bipotencies m1, m2..., then B is also bi-ideal with
bipotency max{m1, m2, ...}.

Proof. Let {Bζ | ζ ∈ ∧} be a family of mζ-bi-ideals of S. ThenB =
⋂
Bζ. Thus,B is a sub b-semiring

of S. SinceBζ ∗2 Smζ ∗2Bζ ⊆ Bζ ⊆ B for all ζ ∈ ∧, we haveB ∗2 Smax{mζ|ζ∈∧} ∗2B ⊆ BζS
mζ ∗2Bζ ⊆ Bζ

for all ζ ∈ ∧. This implies that B ∗2 Smax{mζ|ζ∈∧} ∗2 B ⊆ B. Therefore, B is an m1-bi-ideal of S with

bipotency max{m1, m2, ....}. �

Theorem 3.5. Every m1-quasi ideal of S is an m1-bi-ideal.

Proof. Let Q be an m1-quasi ideal of S. Clearly, Q is a sub b-semiring of S. Now, Q ∗2 Sm
∗2 Q ⊆

Q ∗2 S
m
∗2 S = Q ∗2 Sm+1

⊆ Q ∗2 S
m. Similarly, Q ∗2 Sm

∗2 Q ⊆ S
m
∗2 Q. We get Q ∗2 Sm

∗2 Q ⊆

(Q ∗2 Sm)∩ (Sm
∗2 Q) ⊆ Q. Hence, Q is an m1-bi-ideal of S. �

Remark 3.2. The reverse implication of the Theorem 3.5 does not hold, see Example 3.2.

Example 3.2. Let S1 be a b-semiring and B be a sub b-semiring as in Example 3.1. Then

B ∗2 S
2
1 ∗2 B =





0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




⊆ B.

Thus, B is a 21-bi-ideal of S1 but it may not be a m1-quasi ideal by

(B ∗2 S
2
1)∩ (S

2
1 ∗2 B) =





0 0 0 r1

0 0 0 0

0 0 0 0

0 0 0 0


∣∣∣∣∣∣∣r1 ∈ Z∗


* B.

Theorem 3.6. If Q is a ∗2 product of any (m1, m2)-quasi ideal and (n1, n2)-quasi ideal of S, then S has a
max{m1, m2, n1, n2}-bi-ideal of S with the identity element.

Proof. By Theorem 3.5, we have (Q1 ∗2 Q2)2 = (Q1 ∗2 Q2) ∗2 (Q1 ∗2 Q2) ⊆ Q1 ∗2 (Q2 ∗2 S ∗2 Q2) ⊆

Q1 ∗2 Q2. Therefore, Q1 ∗2 Q2 is closed under ∗2. Now, (Q1 ∗2 Q2) ∗2 Smax{m1,m2,n1,n2} ∗2 (Q1 ∗2 Q2) ⊆

(Q1 ∗2 Q2) ∗2Smax{m1,m2,n1,n2} ∗2 (S∗2Q2) ⊆ Q1 ∗2 (Q2 ∗2S
max{m1,m2,n1,n2}+1

∗2Q2) ⊆ Q1 ∗2Q2. Therefore,

Q1 ∗2 Q2 is a max{m1, m2, n1, n2} bi-ideal of S. �

Theorem 3.7. Every m1-left ideal of S is an m1-bi-ideal.

Proof. Assume that G is an m1-left ideal of S. Then G ∗2 Sm
∗2 G ⊆ G ∗2 G ⊆ G. This implies that G

is an m1-bi-ideal of S. �

Theorem 3.8. Every m1-right ideal of S is an m1-bi-ideal.
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Proof. The proof is similar to Theorem 3.7. �

Theorem 3.9. If G is a q1-left ideal andH is an r1-right ideal of S, then G∩H is a k1-bi-ideal of S with
k = max{q, r}.

Proof. Let G be a q1-left ideal and H is an r1-right ideal of S. Then G and H are q1-bi and

r1-bi-ideals of S. By Theorem 3.4, the intersection is a max{q, r}1-bi-ideal of S. Also, G ∩H ∗2
S

max{q,r}
∗2 G∩H ⊆ G ∗2 S

max{q,r}
∗2 G ⊆ S

max{q,r}+1
∗2 G ⊆ S

q
∗2 G ⊆ G. Similarly, we can prove that

G ∩H ∗2 S
max{q,r}

∗2 G ∩H ⊆ H . Consequently, G ∩H ∗2 Smax{q,r}
∗2 G ∩H ⊆ G ∩H . Therefore,

G∩H is a k1-bi-ideal of Swith k = max{q, r}. �

Theorem 3.10. Let a ∈ S, then the m1-bi-ideal ofS generated by a is< a >m1b= {na}∪ {n
′

a2
}∪ a ∗2 Sm

∗2 a.

Proof. Let x, y ∈< a >m1b, x = n1a∪m1a2
∪ (a ∗2 sm

∗2 a), and y = n2a∪m2a2
∪ (a ∗2 sm

∗2 a). Then

x ∗1 y = {n1a ∪m1a2
∪ (a ∗2 sm

∗2 a)} ∗1 {n2a ∪m2a2
∪ (a ∗2 sm

∗2 a)} = {n1a ∗1 (n2a ∪m2a2) ∪ (a ∗2
sm
∗2 a) ∪ (m1a2

∗1 (n2a ∪ m2a2
∪ (a ∗2 sm

∗2 a))) ∪ ((a ∗2 sm
∗2 a) ∗1 (n2a ∪ m2a2

∪ (a ∗2 sm
∗2 a)))} =

{(n1a ∗1 n2a)∪ (n1a ∗1 m2a2)∪ (n1a ∗1 a ∗2 sm
∗2 a)∪ (m1a2

∗1 n2a)∪ (m1a2
∗1 m2a2)∪ (m1a2

∗1 (a ∗2 sm
∗2

a))∪ ((a ∗2 sm
∗2 a) ∗1 (a ∗2 sm

∗2 a))} ∈< a >m1b,

x ∗2 y = {n1a∪m1a2
∪ (a ∗2 sm

∗2 a)} ∗2 {n2a∪m2a2
∪ (a ∗2 sm

∗2 a)} = {(n1a ∗2 n2a) ∪ (n1a ∗2 m2a2) ∪

(n1a ∗2 a ∗2 sm
∗2 a)∪ (m1a2

∗2 n2a)∪ (m1a2
∗2 m2a2)∪ (m1a2

∗2 (a ∗2 sm
∗2 a))∪ ((a ∗2 sm

∗2 a) ∗2 (a ∗2 sm
∗2

a))} ∈< a >m1b, and

x ∗2 s
′

∗2 x = (n1a ∪m1a2
∪ (a ∗2 sm

∗2 a) ∗2 s
′

∗2 (n1a ∪m1a2
∪ (a ∗2 sm

∗2 a)) = ((n1a ∪m1a2
∪ (a ∗2

sm
∗2 a) ∗2 s

′

) ∗2 (n1a∪m1a2
∪ (a ∗2 sm

∗2 a)) = (n1a ∗2 s
′

)∪ (m1a2
∗2 s

′

)∪ (a ∗2 s ∗2 a) ∗2 s
′

∗2 (n1a∪m1a2
∪

(a ∗2 sm
∗2 a)) = {(n1a ∗2 s

′

) ∗2 (n1a∪m1a2
∪ (a ∗2 sm

∗2 a) ∪ (m1a2
∗2 s

′

) ∗2 (n1a∪m1a2
∪ (a ∗2 sm

∗2 a) ∪
(a ∗2 sm

∗2 a ∗2 s
′

) ∗2 (n1a∪m1a2
∪ (a ∗2 sm

∗2 a)} ∈< a >m1b.

Therefore, < a >m1b is an m1-bi-ideal of S generated by a. If B is an m1-bi-ideal of S such that

a ∈ B, then < a >mb⊆ B. Thus, < a >mb is the smallest m1-bi-ideal of S generated by a. �

Theorem 3.11. Let P be a non-empty subset of S. Then m1-bi-ideal generated by P is

< P >mb=
∑
P∪

[∑
P ∗2 P

]
∪

[∑
P ∗2 S

m
∗2 P

]
.

4. m2-Bi-Ideals of b-Semirings

We introduce m2-bi-ideals of b-semirings and their generalizations. Examples are provided to

illustrate our results.

Theorem 4.1. Every bi-ideal of S is an m2-bi-ideal.

Proof. The proof is similar to Theorem 3.1. �

Remark 4.1. The reverse implication of the Theorem 4.1 does not satisfy; see Example 4.1.
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Example 4.1. Consider the b-semiring (S1, ∗1, ∗2), where ∗2 and ∗1 are defined in the above Note 3.1. Let

S1 =





s1 s2 s3 s4

s5 s6 s7 0

s8 s9 s10 s11

s12 0 0 0


∣∣∣∣∣∣∣s′si ∈ Z∗


,

B =





0 0 0 0

0 b1 0 0

0 0 b2 b3

b4 0 0 0


∣∣∣∣∣∣∣b′si ∈ Z∗


Then B is a sub b-semiring of S1. Now,

B ∗1 S1
2
∗1 B =





n1 0 0 0

n2 0 0 0

n3 0 0 0

n4 0 0 0


∣∣∣∣∣∣∣n′si ∈ Z∗


⊆ B.

As a result, B is not a bi-ideal but 22-bi-ideal of S1 by

B ∗1 S1 ∗1 B =





m1 m2 m3 m4

m5 0 0 0

m6 m7 m8 m9

0 0 0 0


∣∣∣∣∣∣∣m′s

i ∈ Z∗


* B.

Theorem 4.2. The product of any two m2-bi-ideal and m2
′

-bi-ideal of S with the identity element e is a
max{m2, m2

′

}-bi-ideal of S.

Proof. The proof is similar to Theorem 3.2. �

Theorem 4.3. IfB is a ∗2 closure of S, R is a subset of S, andB be m2-bi-ideal of S, thenB ∗1 R and R ∗1B
are m2-bi-ideals of S.

Proof. The proof is similar to Theorem 3.3. �

Theorem 4.4. Every m2-quasi ideal of S is an m2-bi-ideal.

Proof. The proof is similar to Theorem 3.5. �

Remark 4.2. The reverse implication of Theorem 4.4 is not true, as shown in Example 4.2.
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Example 4.2. Let S1 be a b-semiring and B be a sub b-semiring as shown in Example 3.1. Let

S1 =





s1 s2 s3 s4

s5 s6 s7 0

s8 s9 s10 s11

s12 0 0 0


∣∣∣∣∣∣∣s′si ∈ Z∗


,

B =





0 0 0 0

0 b1 0 0

0 0 b2 b3

b4 0 0 0


∣∣∣∣∣∣∣b′si ∈ Z∗


.

Then B is a sub b-semiring of S1. Now,

B ∗1 S1
2
∗1 B =





0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




⊆ B.

As a result, B is a not a quasi-ideal but an m2-bi-ideal of S1 by

B ∗1 S1 ∗1 B =





r1 0 0 0

r2 0 0 0

r3 r4 r5 0

0 0 0 0


∣∣∣∣∣∣∣r′si ∈ Z∗


* B.

Theorem 4.5. If Q is a ∗1-product of any (m2, m1)-quasi ideal and (n1, n2)-quasi ideal of S, then S has a
max{m2, m1, n1, n2}-bi-ideal with the identity element.

Proof. The proof is similar to Theorem 3.6. �

Theorem 4.6. Every m2-left ideal of S is an m2-bi-ideal.

Proof. The proof is similar to Theorem 3.7. �

Theorem 4.7. Every m2-right ideal of S is an m2-bi-ideal.

Proof. The proof is similar to Theorem 4.6. �

Theorem 4.8. If G is a q2-left ideal andH is an r2-right ideal of S, then G∩H is a k2-bi-ideal of S with
k = max{q, r}.

Proof. The proof is similar to Theorem 3.9. �

Theorem 4.9. Let a ∈ S, then m2-bi-ideal of S generated by a is < a >mb= {na} ∪ {n
′

a2
} ∪ a ∗1 Sm

∗1 a.
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Proof. The proof is similar to Theorem 3.10. �

Theorem 4.10. Let P be a non-empty subset of S. Then m2-bi-ideal generated by P is

< P >mb=
∑
P∪

[∑
P ∗1 P

]
∪

[∑
P ∗1 S

m
∗1 P

]
.

5. m-Bi-Ideals of b-Semirings

This section presents m-bi-ideals of b-semirings and their generalizations.

Theorem 5.1. Every bi-ideal of S is an m-bi-ideal.

Proof. The proof follows from Theorems 3.1 and 4.1. �

Theorem 5.2. The product of any two m1-bi-ideal and m2-bi-ideal of S with the identity element e is a
max{m1, m2}-bi-ideal of S.

Proof. The proof follows from Theorems 3.2 and 4.2. �

Theorem 5.3. Every m-quasi ideal of S is an m-bi-ideal.

Proof. The proof follows from Theorems 3.5 and 4.4. �

Theorem 5.4. If G is a q-left ideal and H is an r-right ideal of S, then G ∩H is a k-bi-ideal of S with
k = max{q, r}.

Proof. The proof follows from Theorems 3.9 and 4.8. �

Theorem 5.5. For a ∈ S, m-bi-ideal of S generated by a is < a >mb= {na} ∪ {n
′

a2
} ∪ a ∗2 Sm

∗2 a.

Proof. The proof follows from Theorems 3.10 and 4.9. �

Theorem 5.6. Let P be a non-empty subset of S. Then the m-bi-ideal generated by P is

< P >m=
∑
P∪

[∑
P ∗P

]
∪

[∑
P ∗ S

m
∗ P

]
,

where ∗ ∈ {∗1, ∗2}.

Proof. The proof follows from Theorems 3.11 and 4.10. �

6. Conclusion

During our study, we established the concepts of m-quasi ideals and m-bi-ideals in b-semirings,

generalisations of bi-ideals. We examined some important characteristics and used their m-bi-

ideals to explain them. We also looked at the structures of m-b-semiring ideals formed when a

subset of the b-semiring was provided.

We plan to use m-bi-ideals to characterise various forms of semirings, such as regular, irregular,

and weakly regular semirings. We will also investigate additional classes of m-bi-ideals, such as

prime, maximum, minimal, and main m-bi-ideals. Towards the end of our discussion, we explored

the relationship between m-quasi ideals and m-bi-ideals. Our study will examine their research on

hyper b-semirings using m-bi-ideals and m-bi-quasi ideals.
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