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Abstract. In this article, we study the nature of different types of functions, namely, cliquish, lower semi-continuous, and

upper semi-continuous functions in generalized Gδ-submaximal, generalized submaximal, and hyperconnected spaces.

It also includes a cursory discussion about the properties for generalized Gδ-submaximal, generalized submaximal, and

hyperconnected spaces in generalized metric spaces.

1. Introduction

In [7], generalized topological space were introduced by Császár. In topological and gener-

alized topological spaces, different types of continuity were analyzed in [3]- [19]. In topological

space, Baire spaces are characterized by using semi-continuous functions [12]. In continuation,

cliquish functions have been analyzed in Baire space using sequences by Ewert [11], and the cor-

responding functions have been introduced by H. P. Thielman [22] whose importance is discussed

in [10]- [20].

Using this aspects, Korczak - Kubiak, et. al, [16] redefined the spaces and defined two types

of nowhere dense sets along with the lower and upper semi-continuous functions. Finally, they

have carried out various properties for cliquish functions in Baire spaces. In [24, 25], we discuss

some of the properties for nowhere dense and dense sets in both generalized and bigeneralized

topological spaces.

Inspired by these last references, the topic is of impetus to contribute to an improvement of

topological theory and authors have been motivated to discuss sections 3 & 4 with new results on

generalized topological space. In Section 3, µ, η, ζ will denote generalized topologies.
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2. Preliminaries

First, we recall the well-known definitions namely, nowhere dense, dense, and codense sets

in GTS.

Let µ be a family of subsets of a non-null set X. Then µ is said to be a generalized topology [7] in X
if it contains the null set and is closed under arbitrary union so that (X,µ) is called as generalized
topological space (GTS). The pair (X,µ) is called strong generalized topological space (sGTS) [7] if X ∈ µ.

In [7], if K ∈ µ, then K is called µ-open and if X−K ∈ µ, then K is called µ-closed. And the interior
of L [17] notated by iL, is the union of all µ-open sets contained in L; the closure of L notated by cL,

is the intersection of all µ-closed sets containing L.

In [16],

µ̃ = {Q ∈ µ | Q , ∅};

µ(x) = {Q ∈ µ | x ∈ Q}.

For W ⊆ X, the subspace generalized topology is defined by, µW = {H ∩W | H ∈ µ}. Then (W,µW)

is called the subspace GTS [2]. Let P ⊂W. Then interior of P is denoted by iWP and the closure of P is

denoted by cWP.

Definition 2.1. In [16], In a GTS (X,µ), a subset Q of X is said to be;

• µ-nowhere dense if ic(Q) = ∅.

• µ-dense if c(Q) = X.

• µ-strongly nowhere dense if for any E ∈ µ̃, there is F ∈ µ̃ such that F ⊂ E and F∩Q = ∅.

• µ-codense [17] if c(X −Q) = X.

Moreover,

N(µ) = {K ⊂ X | K is a µ-nowhere dense set}

[17] and we notated

S(µ) = {K ⊂ X | K is a µ-strongly nowhere dense set}.

Definition 2.2. [16] A subset L of a GTS (X,µ) is said to be;

• µ-meager if L =
⋃

n∈N
Ln for each Ln ∈ N(µ).

• µ-s-meager if L =
⋃

n∈N
Ln for each Ln ∈ S(µ) where N is the set of all natural numbers.

In [17],

M(η) = {D ⊂ X | D is η-meager}

and we notated

M(η) = {K ⊂ X | K is µ-s-meager}.

Definition 2.3. [16] In a generalized topological space (X, η), a subset H is called as;

• η-second category (η-II category) if H <M(η).

• η-s-second category (η-s-II category) if H <M(η).
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• η-residual if X −H ∈ M(η).

• η-s-residual if X −H ∈M(η).

Some other notations are defined by

C(ζ) = {K ⊂ X | K is of ζ-II category}

and

D(ζ) = {H ⊂ X | H is of ζ-s-II category}

ζ is a GT on X.

Also, Korczak - Kubiak, et. al, [16] defined two new branch of generalized topologies on (X,µ)

defined by

µ∗ = {
⋃

t(Ht
1 ∩Ht

2 ∩Ht
3 ∩ ...∩Ht

nt
) | Ht

1, Ht
2, ..., Ht

nt
∈ µ}

and

µ∗∗ = {Q ⊂ X | Q ∈ C(µ)} ∪ {∅}.

Definition 2.4. [16] A space (X, η) is said to be a ;

• weak Baire space (wBS) if η̃ ⊂ D(η).

• Baire space (BS) if η̃ ⊂ C(η).

• strong Baire Space (sBS) if F1 ∩ F2 ∩ ...∩ Fn ∈ η∗∗ for all F1, F2, ..., Fn ∈ η with F1 ∩ F2 ∩ ....∩ Fn , ∅.

In [17], Li et. al gave some other definitions for Baire space using dense sets. That is, (X, ζ) is

said to be Baire if c(
⋂

n∈N
Hn) = X where each Hn ∈ ζ̃; c(Hn) = X.

In generally, [16],

• η∗ is closed under finite intersection.

• η ⊂ η∗.

• η∗∗ ⊃ η if X is Baire.

• η∗ is a topology if η is a sGT.

Definition 2.5. A generalized topological space (X, η) is called as ;

• hyperconnected space [10] if η̃ ⊂ D(η).

• generalized submaximal [9] ifD(η) ⊂ η whereD(η) = {J ⊂ X | cη(J) = X}.

Definition 2.6. [16] A map h : (X, η)→ R is said to be ;

• η-lower semi-continuous at p0 ∈ X ⇔ for any β ∈ R; β < h(p0), there is K ∈ η(p0) such that

h(K) ⊂ (β,∞).

• η-upper semi-continuous at p0 ∈ X ⇔ for any β ∈ R; β > h(p0)), there is K ∈ η(p0) such that

h(K) ⊂ (−∞, β) where R is the set of all real numbers.

Equivalently, a function h : X→ R is µ-lower semi-continuous (resp. µ-upper semi-continuous)

⇔ h−1((β,∞)) ∈ µ (resp. h−1((−∞, β)) ∈ µ) for any β ∈ R [16].
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Definition 2.7. [16] Let η, ξ be two GT in X. A function g : X→ R is said to be ;

• (η, ξ)-lower semi-continuous at p0 ∈ X if for any β ∈ R; β < g(p0), there is K ∈ ξ(p0) being a

η-residual set such that g(K) ⊂ (β,∞).

• (η, ξ)-upper semi-continuous at p0 ∈ X if for any β ∈ R; β > g(p0), there is K ∈ ξ(p0) being a

η-residual set such that g(K) ⊂ (−∞, β).

We introduce some new notations as follows;

• L(η) = {g | g is η-lower semi-continuous};

• L(η, ζ) = {g | g is (η, ζ)-lower semi-continuous};

• U(η) = {g | g is η-upper semi-continuous};

• U(η, ζ) = {g | g is (η, ζ)-upper semi-continuous}where g is a map from X to R

In [16], (ζ, η)-l.(u.)s.c. ⇒ η-l.(u.)s.c. and also,

(ζ∗, ζ) − l.(u.)s.c. ζ− l.(u.)s.c.

ζ∗ − l.(u.)s.c.

Now, Cη(h) is the family of η-continuity points of h : X → R and Dη(h) is collection of

η-discontinuity points of h.

In [16], if cη(Cζ(g)) = X, then g : X → R is (η, ζ)-cliquish. Equivalently, g is (ζ, η)-cliquish [16],

if (X, ζ) is Baire andDη(g) is ζ-meager.

Lemma 2.1. [16] Let K and L be two subsets of a GTS (X, η) with K ⊂ L. Then

(a) If L ∈ M(η) (resp. L ∈ N(η)), then K ∈ M(η) (resp. K ∈ N(η)).

(b) If K ∈ C(η), then L ∈ C(η).

Lemma 2.2. [Lemma 2.3, [17]] Let W be a subset of a GTS (X,µ) and Q ⊂W. Then cWQ = cQ∩W
where cWQ denote the closure of Q with respect to the subspace GTS (W,µW).

Lemma 2.3. [Lemma 3.2, [17]] Let (X,µ) be a GTS and Q, K be two subsets of X. If K ∈ µ̃ and

K ∩Q = ∅, then K ∩ cQ = ∅.

Lemma 2.4. [Proposition 4.7, [17]] In a generalized topological space (X,µ), arbitrary union of a

µ-meager set is µ-meager.

Lemma 2.5. [Theorem 3.11, [23]] In a GTS (X, η),

(a) K ∈ N(η∗)⇔ K ∈ S(η∗).
(b) K ∈ M(η∗)⇔ K ∈M(η∗).

(c) K is η∗-residual⇔ K is η∗-s-residual.

(d) K ∈ C(η∗)⇔ K ∈ D(η∗).
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Lemma 2.6. [Theorem 5.1, [23]] In a GTS (X, ζ), the followings are equivalent.

(a) X is a weak Baire Space.

(b) If Q is ζ-s-residual, then Q ∈ D(ζ).

(c) If P ∈M(ζ), then P is ζ-codense.

3. Subsets in generalized topological spaces

In this section, it is established that every µ-meager set is not µ-residual in a µ-II category

GTS. Also, this section is devoted to the proof of the most important results concerning the

generalized topology µ∗∗.

Observation 3.1 follows from the definition of a strongly nowhere dense set and the essay proof

of which is omitted.

Observation 3.1. In a GTS (X,µ), the only µ-open set which is µ-strongly nowhere dense is it the empty
set.

Theorem 3.1 and Example 3.1 are described in the below diagram.

X is Baire µ∗∗ , {∅}

/

Theorem 3.1. Let (X,µ) be a GTS. Then
(a) µ∗∗ , {∅} ⇔ (X,µ∗∗) is a sGTS.
(b) If X is Baire, then µ∗∗ , {∅}.

Proof. (a) Suppose µ∗∗ , {∅}. If X < µ∗∗, then we get X ∈ M(µ) so that every subset of X is

µ-meager, by Lemma 2.1(a). For that, µ∗∗ = {∅} which is impossible. Therefore, X ∈ C(µ)

so that µ∗∗ is a sGT. The Converse part is obvious.

(b) Given X is Baire so it result that µ̃ ⊂ µ∗∗ thus X is a µ-II category set, by Lemma 2.1(b).

Therefore, X ∈ C(µ) and hence µ∗∗ , {∅}.

�

The reverse implication of Theorem 3.1 (b) is not to be realistic as described in Example 3.1.

Example 3.1. Take X = {p, q, r, s} and

µ = {∅, {p, s}, {q, r}, {p, q, r}, {q, r, s}, X}.

Here

µ∗∗ = {∅} ∪ {P, K ⊆ X | {q} ⊆ P, {r} ⊆ K}.

But Q = {p, s} ∈ µ̃ is µ-meager which implies (X,µ) is not a BS.

Theorem 3.2. If X is a µ-II category space, then the below results are true.
(a) If Q ∈ M(µ), then Q is not µ-residual.
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(b) Every µ-residual set is of µ-II category set.
(c) If J ∈ N(µ), then X − J ∈ C(µ).

Proof. (a) Let Q ∈ M(µ). If Q is µ-residual, then Q, X −Q ∈ M(µ). Also, Q∪ (X −Q) = X. By
Lemma 2.4, X ∈ M(µ) which is not possible. Therefore, Q is not a µ-residual set in X.

(b) If P is a µ-residual set, then P <M(µ), by (a) so that P ∈ C(µ).
(c) Suppose J ∈ N(µ) we get J ∈ M(µ) it turns out X − J is µ-residual and hence X − J ∈ C(µ),

by (b).

�

Example 3.2 explains that the condition “X is of µ-II category” is necessary in Theorem 3.2.

Example 3.2. Take X = [0, 3] and

µ = {∅, [0, 2), (1, 3], [0, 1)∪ (2, 3], [0, 3]}.

Here X < C(µ). Let Q = [0, 2]. Then Q ∈ M(µ). Also, X −Q = (2, 3] ∈ M(µ).

Example 3.3. Consider the GTS (R, η). Then R is of η-II category if η is any one of the following GT.
(a) η is the co-singleton GT, that is, η = {∅} ∪ {K ⊂ R | K − {x} ⊂ K for some x ∈ R}.

(b) η is the Z forbidden GT on R, that is, η = {K ⊂ R | K ⊂ R−Z}, Z is the set of all integers.

Corollary 3.1. Let E, F be two subsets of a η-II category space X with F ⊆ E. Then the following hold and
also they are equivalent.
(a) If E ∈ M(η), then F is not η-residual.
(b) If F is η-residual, then E ∈ C(η).
(c) If E ∈ M(η), then X − F ∈ C(η).

4. Generalized Gδ-submaximal spaces

Here, we discuss the significance of three kinds of functions namely, cliquish, lower semi-

continuous and upper semi-continuous functions in generalized Gδ-submaximal and generalized

submaximal spaces. Finally, we prove various properties of generalized Gδ-submaximal and

generalized submaximal spaces in a generalized metric space.

Lemma 4.1. [1, Proposition 2.12] ζ is a sGT if (X, ζ) is generalized submaximal.

Lemma 4.2. [1, Lemma 3.7] ζ is a sGT if (X, ζ) is generalized Gδ-submaximal.

Observation 4.1. Let (X, ζ) be a GTS. Then X ∈ ζ∗ and hence ζ∗ is a topology space for the case of anyone
as follows as true.
(a) X is a generalized submaximal space.
(b) X is a generalized Gδ-submaximal space.

X is generalized submaximal X ∈ µ∗

X is generalized Gδ − submaximal
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From the above Observation 4.1 we get the above diagram.

In a generalized Gδ-submaximal space, the below relations are true.

ζ− dense ζ− residual

ζ∗ − dense

Diagram (a).

ζ∗∗ ⊃ D(ζ) X ∈ C(ζ)

ζ∗∗ ⊃ D(ζ∗)

Diagram (b).

Theorem 4.1 describes the above diagrams (a) & (b). Also, this theorem is an easy way to explore

whether the given set is residual or not in a generalized Gδ-submaximal space.

Theorem 4.1. Let (X,µ) be a generalized Gδ-submaximal space. Then
(a) If K ⊂ X is µ-dense, then it is µ-residual.
(b) If L ⊂ X is µ∗-dense, then it is µ-residual.
(c) If X ∈ C(µ), then µ∗∗ ⊃ D(µ).

(d) µ∗∗ ⊃ D(µ∗) if X ∈ C(µ).

Proof. (a) If K ∈ D(µ), then K is µ-Gδ-set, by hypothesis. Here K =
∞⋂

n=1
Kn where Kn ∈ µ̃

for every n ∈ N. Since K ⊂ Kn and K ∈ D(µ) we have each Kn ∈ D(µ) so it result that

iµ(X − Kn) = ∅ and X − Kn is µ-closed for each n ∈ N, since each Kn ∈ µ̃. For that, each

X −Kn ∈ N(µ). Hence X −K ∈ M(µ) so that K is µ-residual.

(b) It is trivial.

(c) If G ∈ D(µ), then G is µ-residual, by (a) and so G ∈ µ∗∗, by Theorem 3.2(b).

(d) Follows from (a) and the fact that µ ⊂ µ∗.

�

Example 4.1. Take X = [0, 6] and

µ = {∅, [0, 2), (1, 3], [2, 3], [0, 3]}.

Choose Q = [1, 2] then we get Q ∈ D(µ). But Q is not a Gδ-set it turns out (X,µ) is not generalized

Gδ-submaximal.

(a) Choose K = [0, 2] we have K ∈ D(µ) and X − K = (2, 6]. Take Q = [3, 6] then Q ∈ µ̃∗∗. By

Lemma 2.1(b), X −K <M(µ). Thus, K is not µ-residual.

(b) Here
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µ∗ = {∅, [0, 2), (1, 2), (1, 3], [2, 3], [0, 3]}.

Let H = (1, 2]. Then H ∈ D(µ∗) and X −H = [0, 1] ∪ (2, 6]. Take B = [3, 6]. Then B ∈ C(µ). By

Lemma 2.1(b), X −H <M(µ) so that H is not µ-residual.

Here X is of µ-II category. So we take

µ = {∅, [0, 2), (1, 3], [0, 3], [0, 1)∪ (2, 4], [0, 2)∪ (2, 4], [0, 1)∪ (1, 4], [0, 4]}.

Choose L = [0, 4) e get L ∈ D(µ). But L is not a Gδ-set for that (X,µ) is not generalized

Gδ-submaximal. Now iµcµ([0, 1]) = iµ([0, 1] ∪ (3, 6]) = ∅, iµcµ[1, 2] = iµ([1, 2] ∪ (4, 6]) = ∅ and

iµcµ([2, 6]) = iµ([2, 6]) = ∅. Therefore, [0, 1], [1, 2], [2, 6] ∈ N(µ). Hence X ∈ M(µ).

(c) Take Q = [0, 3). Then Q ∈ D(µ). Since Q ⊂ X we have Q ∈ M(µ), by Lemma 2.1(a). Therefore,

Q < µ∗∗.

(d) Here

µ∗ = {∅, [0, 2), (1, 2), (1, 3], [0, 3], [0, 1)∪ (2, 4], [0, 2)∪ (2, 4], [0, 1)∪ (1, 4],

[0, 1)∪ (1, 2)∪ (2, 4], [0, 1), [0, 1)∪ (2, 3], (2, 3], [0, 1)∪ (1, 2), (1, 2)∪ (2, 3],

[0, 2)∪ (2, 3], [0, 1)∪ (1, 3], [0, 1)∪ (1, 2)∪ (2, 3], [0, 4]}.

Let W = [0, 5). Then W ∈ D(µ∗). Since W ⊂ X we have W ∈ M(µ), by Lemma 2.1(a). Therefore,

V < µ∗∗.

Theorem 4.2. Let ζ, η be two GT on a non-null set X with η ⊂ ζ. Then
(a) Every (ζ, η)-cliquish function is a (η, η)-cliquish function.
(b) Every (ζ, ζ)-cliquish function is a (η, ζ)-cliquish function.

Theorem 4.3. Let (X,µ) be a GTS, h : X → R be a function. If (X,µ∗) is a wBS, Dη(h) ∈ M(µ∗) for
η ∈ {µ,µ∗,µ∗∗}, then h is a (µ∗, η)-cliquish function.

Proof. By hypothesis and Lemma 2.5 (b), Dη(h) ∈ M(µ∗) which implies Dη(h) is µ∗-codense, by

Lemma 2.6. So that Cη(h) ∈ D(µ∗) which implies h is (µ∗, η)-cliquish. �

The below Theorem 4.4 gives a shortcut for finding the significance of a given map, reducing

the computational complexity.

Theorem 4.4. Let (X,µ) be a generalized submaximal space. If (X,µ∗) is a wBS, then the below results
are said to be true.
(a) h−1((−∞,ϑ]) ∈ M(µ∗) for every ϑ ∈ R⇒ h ∈ L(µ).
(b) h−1([ϑ,∞)) ∈ M(µ∗) for every ϑ ∈ R⇒ h ∈ U(µ).

Proof. (a) Given h−1((−∞,ϑ]) ∈ M(µ∗) for all ϑ ∈ R. By Lemma 2.5 (b) and Lemma 2.6,
h−1((−∞,ϑ]) is µ∗-codense for all ϑ ∈ R. Then X − h−1((−∞,ϑ]) = h−1(R − (−∞,ϑ]) =

h−1((ϑ,∞)) is a µ∗-dense set so that h−1((ϑ,∞)) ∈ D(µ) for all ϑ ∈ R, since µ ⊂ µ∗. By
hypothesis, h−1((ϑ,∞)) ∈ µ for all ϑ ∈ R. Therefore, h ∈ L(µ).
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(b) By similar arguments in (a), we get this result.

�

Now let us examine the significance of cliquish functions in generalized submaximal and gen-

eralized Gδ-submaximal spaces.

(µ, η) − cliquish (µ∗∗, η) − cliquish

(µ∗, η) − cliquish
where, η ∈ {µ,µ∗,µ∗∗}

Theorem 4.5 describes the above diagram also, which gives an easy way to check whether a

function is (µ∗∗, η)-cliquish or not.

Theorem 4.5. Let (X,µ) be a generalized submaximal space, η ∈ {µ,µ∗,µ∗∗} and h : X → R be a map.
Then the below results are true.
(a)D(µ) ⊂ D(µ∗∗).

(b) h is (µ∗∗, η)-cliquish if h is (µ, η)-cliquish.
(c) h is (µ∗∗, η)-cliquish if h is (µ∗, η)-cliquish.

Proof. We will present the elaborate proof for (a) only. Choose

Q ∈ D(µ). (4.1)

Then by hypothesis, Q ∈ µ. Take

H ∈ µ̃∗∗ (4.2)

From equation (4.2), H < M(µ). Thus, H < N(µ) and hence iµcµ(H) , ∅. Thus, iµcµ(H) ∈ µ̃.

By equation (4.1), we have Q ∩ iµcµ(H) , ∅ and hence Q ∩ cµH , ∅. By Lemma 2.3, Q ∩H , ∅.
Therefore, Q ∈ D(µ∗∗). �

Theorem 4.6. Let (X,µ) is a generalized Gδ-submaximal space. If h : X→ R is a (µ, η)-cliquish function
for η is a GT on X, thenDη(h) ∈ M(µ).

Proof. Suppose h is (µ, η)-cliquish. Then Cη(h) ∈ D(µ) so that Cη(h) is µ-residual, by Theorem

4.1(a). Therefore,Dη(h) ∈ M(µ). �

The below Theorem 4.7 describes the below diagram.

h is (µ, η) − cliquish Cη(h) ∈ µ∗∗

h is (µ∗, η) − cliquish
where, η ∈ {µ,µ∗,µ∗∗}

Theorem 4.7 provides some tricks to find the character of the collection of all continuity points

using the cliquish function.
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Theorem 4.7. In a generalized Gδ-submaximal space (X,µ), if η ∈ {µ,µ∗,µ∗∗} and X ∈ µ∗∗, then the below
results are true.
(a) Cη(h) ∈ µ∗∗ if h is (µ, η)-cliquish;
(b) Cη(h) ∈ µ∗∗ if h is (µ∗, η)-cliquish for h : X→ R.

Theorem 4.8. Let (X,µ) be a generalized Gδ-submaximal space. If η ∈ {µ,µ∗,µ∗∗} and (X,µ) is a BS, then
(a)D(µ∗∗) ⊂ µ∗∗.

(b) Cη(h) ∈ µ∗∗ if h is (µ∗∗, η)-cliquish where h : X→ R.

Proof. (a) By Lemma 4.2, X in µ. Also,

µ ⊂ µ∗∗ (4.3)

so that X ∈ µ∗∗. Let Q ∈ D(µ∗∗). Then Q ∈ D(µ), by equation (4.3). Therefore, Q ∈ µ∗∗, by

Theorem 4.1 (c).

(b) Given that h is (µ∗∗, η)-cliquish. Then Cη(h) ∈ D(µ∗∗) and hence Cη(h) ∈ µ∗∗, by (a).

�

In the rest of this section, we study the significance of generalized Gδ-submaximal and

generalized submaximal spaces in generalized metric spaces.

The pair (X, Ω) is called as a generalized metric space [16] (GMS) where X is a non-null set and Ω

ia a family of all metric σ defined on a subset X.

Moreover, ΩX is the family of all the metrics defined on X [16]. Also, if σ ∈ ΩX and Q ⊂ X is a

non-null set, then σ|Q [16] for the restriction of the metric σ to Q×Q.

Put Ω|Q = {σ|Q | σ ∈ Ω} for any Ω ⊂ ΩX.

In a GMS (X, Ω), the collection of all Ω-open sets [16] in (X, Ω) is notated by µΩ, more

precisely, L ∈ µΩ ⇔ for any p ∈ L, there is σ ∈ Ω and δ > 0 such that Bσ(p, δ) ⊂ L for

Bσ(p, δ) = {t ∈ dom(σ) | σ(p, t) < δ}.

Remark 4.1. [16] (a) If (X, ΩX) is a GMS, Ω ⊂ ΩX and Q , ∅, then (Q, Ω|Q) is a GMS.

(b) (X,µΩ) is a generalized topological space.

Lemma 4.3. [16] In a GMS (X, Ω), Bσ|Q(p, ε) = Bσ(p, ε)∩Q where p ∈ Q ⊂ X, ε > 0.

Definition 4.1. [16] In a GMS (X, Ω), a finite collection Ω0 ⊂ Ω is said to be a ;

• kernel if for every D ∈ µ̃Ω = µΩ − {∅}, there is σ ∈ Ω0 such that iσ(D) , ∅.

• perfect kernel if for any finite number of elements K1, K2, . . . ., Kn in µΩ with K1 ∩K2 ∩ . . . .∩Kn , ∅,

there is σ ∈ Ω0 such that iσ(∩n
i=1Ki) , ∅.
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In [16], generally, in a generalized metric space,

per f ect kernel kernel

/

Lemma 4.4. [Lemma 4.3, [16]] If the GMS (X, Ω) has a perfect kernel Ω0 and W ∈ µ̃Ω, then Ω0|W

is a perfect kernel of (W, Ω|W).

Definition 4.2. Let (X, Ω) be a generalized metric space. Then Ω is said to satisfy V-property if

σ1, σ2 ∈ Ω and r, s ∈ X, then σ(r, s) = max{σ1(r, s), σ2(r, s)} is a metric and hence σ ∈ Ω.

Theorem 4.9. Let (X, ΩX) be a GMS, ΩX satisfy theV-property. If (W, ΩX|W) is an open subspace of X,

then the below results are true.
(a) If Q ⊂W is µΩX |W -open in W, then Q ∈ µΩX .

(b) If (W,µΩX |W ) is generalized submaximal, then (X,µΩX) is generalized submaximal.
(c) If (W,µΩX |W ) is generalized Gδ-submaximal, then (X,µΩX) is generalized Gδ-submaximal.
(d) (X,µΩX |W ) is generalized Gδ-submaximal if (W,µΩX |W ) is generalized submaximal.

Proof. (a) Given that Q is µΩX |W -open in W. Let r ∈ Q. Then there is σ1|W ∈ ΩX|W and ε1 > 0

such that Bσ1|W (r, ε1) ⊂ Q and so Bσ1(r, ε1)∩W ⊂ Q, by Lemma 4.3. Since r ∈W and W is a

µΩX -open subset of X, there exists σ2 ∈ ΩX and ε2 > 0 such that Bσ2(r, ε2) ⊂ W. For s ∈ X,

take σ3(r, s) = max{σ1(r, s), σ2(r, s)}. Then σ3 ∈ ΩX, by hypothesis. Also,

Bσ3(r, ε1) ⊂ Bσ1(r, ε1) (4.4)

and

Bσ3(r, ε2) ⊂ Bσ2(r, ε2). (4.5)

Take ε = min{ε1, ε2}. Then from equations (4.4) & (4.5), Bσ3(r, ε) ⊂ Bσ1(r, ε1)∩Bσ2(r, ε2) and

so Bσ3(r, ε) ⊂ Q. Thus, there exists σ3 ∈ ΩX and ε > 0 such that Bσ3(r, ε) ⊂ Q. Therefore,

Q ∈ µ̃ΩX .

(b) Let (W,µΩX |W ) be a generalized submaximal space and L ∈ D(µΩX). By Lemma 2.2, cWL =

cL∩W = X ∩W = W. Thus, L is µΩX |W -dense in W. By assumption, L is µΩX |W -open in W

and so L ∈ µΩX , by (a). Therefore, (X,µΩX) is generalized submaximal.

(c) Given that (W,µΩX |W ) is a generalized Gδ-submaximal space. Let K ∈ D(µΩX). Then

cWK = cK ∩W = X ∩W = W, by Lemma 2.2. Thus, K is a µΩX |W -dense set in W and

hence K is µΩX |W - Gδ-set which implies that K is µΩX -Gδ in X, by (a). Therefore, (X,µΩX) is

generalized Gδ-submaximal.

(d) Trivial proof is omitted.

�
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Theorem 4.10. Let (X, ΩX) be a generalized metric space, ΩX satisfy the V-property. Then the below
results are true.
(a) µΩX = µ∗ΩX

.

(b) µΩX is closed under finite intersection.

Proof. (a) By Remark 4.1, (X,µΩX) is a GTS and hence µΩX ⊂ µ
∗

ΩX
. Let L ∈ ˜µ∗ΩX

and x ∈ L. Then

L =
⋃
t
(Lt

1 ∩ Lt
2 ∩ . . . .∩ Lt

nt
) where Lt

i ∈ µΩX and i = 1 to nt. Take Pk = Lk
1 ∩ Lk

2 ∩ . . . .∩ Lk
nk

for

some k with Pk , ∅ and x ∈ Pk. Then x ∈ Lk
i for all i = 1 to nk and so there exist σi ∈ ΩX

and εi > 0 such that Bσi(x, εi) ⊂ Lk
i for all i = 1 to nk. Consider Bσ1(x, ε1) and Bσ2(x, ε2). For

y ∈ X, take d1(r, s) = max{σ1(r, s), σ2(r, s)}. Then d1 ∈ ΩX, by hypothesis. Also,

Bd1(x, ε1) ⊂ Bσ1(x, ε1) (4.6)

and

Bd1(x, ε2) ⊂ Bσ2(x, ε2) (4.7)

Let δ1 = min{ε1, ε2}. From equations (4.6) & (4.7), Bd1(x, δ1) ⊂ Bσ1(x, ε1) ∩ Bσ2(x, ε2) and so

Bd1(x, δ1) ⊂ Lk
1 ∩ Lk

2. Consider Bd1(x, δ1) and Bσ3(x, ε3). Take d2(r, s) = max{d1(r, s), σ3(r, s)}.

Then d2 ∈ ΩX, by hypothesis. Also,

Bd2(x, δ1) ⊂ Bd1(x, δ1) (4.8)

and

Bd2(x, ε3) ⊂ Bσ3(x, ε3) (4.9)

Take δ2 = min{δ1, ε3}. By equations (4.8) & (4.9), Bd2(x, δ2) ⊂ Bd1(x, δ1) ∩ Bσ3(x, ε3) and

so Bd2(x, δ2) ⊂ Lk
1 ∩ Lk

2 ∩ Lk
3. Proceeding like this, we get a metric dnk−1 ∈ Ω and δnk−1 >

0 such that Bdnk−1(x, δnk−1) ⊂ Lk
1 ∩ Lk

2 ∩ Lk
3 ∩ . . . . ∩ Lk

nk
. Then Bdnk−1(x, δnk−1) ⊂ Pk and so

Bdnk−1(x, δnk−1) ⊂ L. Therefore, L ∈ µ̃ΩX and so µΩX = µ∗ΩX
.

(b) Since µ∗ΩX
is closed under finite intersection, µΩX is closed under finite intersection, by (a).

�

5. Hyperconnected spaces

Now, we deal with the most well-studied space, hyperconnected space. First, we discuss

the nature of cliquish, lower, and upper semi-continuous functions in a hyperconnected space

and give some properties of this space in GMSs.

First, we prove a few properties about hyperconnected spaces in a GTS.

Theorem 5.1. Let (X,µ) be a hyperconnected space. If X ∈ µ∗∗, then
(a) Every non-null µ∗-open set is µ-dense.

(b) Every subset of X in µ̃∗ is µ-residual.
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Proof. Let P ∈ µ̃∗. Then P =
⋃
t
(Pt

1 ∩ Pt
2 ∩ . . . .∩ Pt

nt
) where Pt

i ∈ µ for i = 1 to nt. Take

Qk = Pk
1 ∩ Pk

2 ∩ . . . .∩ Pk
nk

(5.1)

with Qk , ∅ for some k. Since Pk
i ∈ µ̃ for i = 1 to nk and by hypothesis, each Pk

i ∈ D(µ). Since X is

Baire we have
⋂

n∈N
Pn ∈ D(µ) where each Pn ∈ µ; Pn ∈ D(µ). Therefore, Qk ∈ D(µ).

(a) From (5.1), Qk ⊂ P so that P ∈ D(µ).

(b) By (5.1), Qk is a µ-Gδ-set. Then Qk =
∞⋂

n=1
Hn where Hn ∈ µ̃ for every n ∈ N. Since Qk ⊂ Hn

and Qk ∈ D(µ), each Hn ∈ D(µ). Thus, iµ(X−Hn) = ∅ and X−Hn is µ-closed for all n ∈N,

since each Hn ∈ µ̃. Therefore, each X−Hn ∈ N(µ) which implies X−Qk ∈ M(µ). Hence Qk

is a µ-residual set. Since Qk ⊂ P we have P is µ-residual.

�

Theorem 5.1 is also true if we replace “(X,µ) is a hyperconnected and X is of µ-II category” by

the condition “(X,µ∗) is a hyperconnected space”, since µ∗ ⊃ µ.

Theorem 5.2 provides an interesting property for dense sets in a hyperconnected space.

Theorem 5.2. In a hyperconnected space (X,µ), µ̃∗∗ ⊂ D(µ).

Proof. Let Q ∈ µ̃∗∗. Then Q < M(µ) and so Q < N(µ). So that, iµcµ(Q) , ∅. By hypothesis,

iµcµ(Q) ∈ D(µ) which implies cµA ∈ D(µ). Take K ∈ µ̃ we get K ∩ cµQ , ∅ and so K ∩Q , ∅, by

Lemma 2.3. Therefore, Q ∈ D(µ). �

Corollary 5.1. Let (X, ζ) be a hyperconnected space, η ∈ {ζ, ζ∗, ζ∗∗}. IfCη(h) ∈ ζ∗∗, then h is a (ζ, η)-cliquish
function in X.

Proof. Suppose that Cη(h) ∈ ζ∗∗. Then Cη(h) is ζ-II category. By hypothesis and Theorem 5.2,

Cη(h) ∈ D(µ). Hence h is (µ, η)-cliquish. �

The below Theorem 5.3 provides an easy way to prove a given space is a strong Baire space.

Theorem 5.3. If X ∈ µ∗∗ and if (X,µ∗) is hyperconnected, then (X,µ) is a sBS.

Proof. Let L1, L2, . . . ., Ln ∈ µ with L1 ∩ L2 ∩ . . . .∩ Ln , ∅. Take Q = L1 ∩ L2 ∩ . . . .∩ Ln. Then Q ∈ µ̃∗

and also Q is µ-Gδ-set. By hypothesis, Q ∈ D(µ∗) and so Q ∈ D(µ), since µ ⊂ µ∗. Therefore, Q
is a µ-residual set. Hence Q ∈ µ∗∗, by Theorem 3.2(b) which states that (X,µ) is a strong Baire

Space. �

Theorem 5.3 is true if we replace “(X,µ∗) is a hyperconnected space” by the condition “(X,µ) is

a hyperconnected space”, since µ∗ ⊃ µ.

The Converse part of Theorem 5.3 need not be true as shown by Example 5.1.

Example 5.1. Take X = [0, 5] and

µ = {∅, [0, 2), [2, 4], [0, 3), [0, 4]}.
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clearly, (X,µ) is a strong Baire space. Now

µ∗ = {∅, [0, 2), [2, 4], [0, 3), [2, 3), [0, 4]}.

Choose H = [2, 3). Then H ∈ µ̃∗. But cµ∗H = [2, 5] , X. Thus, (X,µ∗) is not hyperconnected.

Proposition 5.1. In a GTS (X,µ), the below results are true.
(a) h ∈ L(η)⇐⇒ h−1((β,∞)) ∈ η for all β ∈ R.

(b) h ∈ U(η)⇐⇒ h−1((−∞, β)) ∈ η for every β ∈ R; η ∈ {µ∗,µ∗∗}.

Proof. (a) Assume that, h ∈ L(η). Take t ∈ h−1((β,∞)) we get β < h(t). By hypothesis, there is

L ∈ η(t) such that h(L) ⊂ (β,∞). This implies L ⊂ h−1(h(L)) ⊂ h−1((β,∞)) which in turn

implies that h−1((β,∞)) ∈ η for any β ∈ R. Conversely, suppose that h−1((β,∞)) ∈ η for any

β ∈ R. Let r ∈ X and β < h(r). Then h(r) ∈ (β,∞) and so r ∈ h−1((β,∞)). By hypothesis,

there is P ∈ η(r) such that P ⊂ h−1((β,∞)). This implies h(P) ⊂ h(h−1((β,∞))) ⊂ (β,∞)

which implies that h ∈ L(η).

(b) Use the same argument in (a) for the upper semi-continuous function.

�

Theorem 5.4. In a hyperconnected space (X,µ), the below results are true.
(a) If h ∈ L(µ), then h−1((β,∞)) is µ-residual for any β < h(t0) where β ∈ R and t0 ∈ X.

(b) If h ∈ U(µ), then h−1((−∞, β)) is µ-residual for any β > h(t0) where β ∈ R and t0 ∈ X.

Proof. (a) Let β < h(t0) where β ∈ R and t0 ∈ X. We get some K ∈ µ(t0) such that h(K) ⊂ (β,∞).

Thus, h−1((β,∞)) , ∅. Also, h−1((β,∞)) ∈ µ implies that h−1((β,∞)) ∈ µ̃. by hypothesis,

h−1((β,∞)) ∈ D(µ). Also, h−1((β,∞)) is µ-Gδ-set. Therefore, h−1((β,∞)) is µ-residual.

(b) By the same arguments in (a), we get the proof.

�

Theorem 5.5. Let (X,µ) be a hyperconnected space. If X ∈ µ∗∗, then the below results are true.
(a) h−1((β,∞)) is µ-residual for any β < h(t0) where β ∈ R and t0 ∈ X, if h ∈ L(µ∗).
(b) h−1((−∞, β)) is µ-residual for any β > h(t0) where β ∈ R and t0 ∈ X, if h ∈ U(µ∗).

Proof. (a) If h ∈ L(µ∗) and β < h(t0) where β ∈ R, t0 ∈ X, then there exists K ∈ µ∗(t0) such

that h(K) ⊂ (β,∞) and so h−1((β,∞)) , ∅. Thus, h−1((β,∞)) ∈ µ∗, by Proposition 5.1.

Hence h−1((β,∞)) ∈ µ̃∗. By Theorem 5.1, h−1((β,∞)) is µ-residual for any β < h(t0) where

β ∈ R, t0 ∈ X.

(b) It follows from the similar considerations in (a).

�

Theorem 5.6. If X ∈ µ∗∗ and η ∈ {µ,µ∗}, then
(a) If h ∈ L(µ, η), then η∩ µ∗∗ , ∅ and h−1((β,∞)) ∈ µ∗∗ for any β < h(t0) where β ∈ R and t0 ∈ X.

(b) If h ∈ U(µ, η), then η∩ µ∗∗ , ∅ and h−1((−∞, β)) ∈ µ∗∗ for any β > h(t0) where β ∈ R and t0 ∈ X.
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Proof. (a) Given h ∈ L(µ, η). Let β < h(t0) where β ∈ R and t0 ∈ X. Then there exists E ∈ η(t0)

being a µ-residual set such that h(E) ⊂ (β,∞). By Theorem 3.2(b), E ∈ µ∗∗ so that η∩µ∗∗ , ∅.

Since E ⊂ h−1((β,∞)) and E isµ-residual, h−1((β,∞)) is inµ∗∗, by Corollary 3.1(b). Therefore,

h−1((β,∞)) ∈ µ∗∗ for any β < h(t0) where β ∈ R, t0 ∈ X.

(b) By the same arguments in (a), we get the proof.

�

Theorem 5.7 is a special case of the result: if η ⊂ ζ and Q is η-dense, then Q is ζ-dense.

Theorem 5.7. Let (X, ΩX) be a generalized metric space, Ω0 ⊂ ΩX. Then the below results are true.
(a) µΩ0 ⊂ µΩX .

(b) If Ω0 is the kernel, then Q ∈ D(µΩ0) if and only if Q ∈ D(µΩX).

Proof. (a) Let G ∈ µΩ0 and r ∈ G. Then there is σ ∈ Ω0 and ε > 0 such that Bσ(r, ε) ⊂ G. By

hypothesis, σ ∈ ΩX. Thus, there is σ ∈ ΩX, ε > 0 such that Bσ(x, ε) ⊂ G. Therefore, G ∈ µΩX .

Hence µΩ0 ⊂ µΩX .

(b) Given that Q ∈ D(µΩ0). Let G ∈ µ̃ΩX . Since Ω0 is a kernel, there exists σ0 ∈ Ω0 such that

iσ0G , ∅ and so iσ0G ∈ µ̃Ω0 . This implies that Q ∩ iσ0G , ∅ which in turn implies that

Q∩G , ∅. Hence Q ∈ D(µΩX). Converse part is trivial.

�

Theorem 5.8. Let (X, ΩX) be a GMS with kernel Ω0 ⊂ ΩX. Then (X,µΩ0) is hyperconnected⇔ (X,µΩX)

is hyperconnected.

Proof. Suppose that, (X,µΩ0) is hyperconnected. Let G ∈ µ̃ΩX . Since Ω0 is a kernel, there exist σ0 ∈

Ω0 such that iσ0G , ∅ and hence iσ0G ∈ µ̃Ω0 . By hypothesis, iσ0G ∈ D(µΩ0) and so iσ0G ∈ D(µΩX), by

Theorem 5.7 (b). Therefore, G ∈ D(µΩX). Hence (X,µΩX) is hyperconnected. Conversely, assume

that (X,µΩX) is hyperconnected. Let G ∈ µ̃Ω0 . Then G ∈ µ̃ΩX , by Theorem 5.7 (a). Therefore,

G ∈ D(µΩX). By Theorem 5.7 (b), G ∈ D(µΩ0). Hence (X,µΩ0) is hyperconnected. �

Theorem 5.9. Let (X, ΩX) be a GMS and (W, ΩX|W) is an open subspace of X. If ΩX satisfy theV-property
and (X,µΩX) is hyperconnected, then (W,µΩX |W ) is hyperconnected.

Proof. Assume that (X,µΩX) is hyperconnected. Let G ∈ µ̃ΩX |W . By Theorem 4.9 (a), G ∈ µ̃ΩX . Also,

by hypothesis, G ∈ D(µΩX). By Lemma 2.2, cWG = cG∩W = X∩W = W. Thus, G is a µΩX |W -dense

in W. Therefore, (W,µΩX |W ) is a hyperconnected space. �

Theorem 5.10. Let (X, ΩX) be a generalized metric space with a perfect kernel Ω0 ⊂ ΩX. Then the below
results are true.
(a) If Q ∈ D(µΩX), then Q ∈ D(µ∗ΩX

).

(b) (X,µ∗ΩX
) is hyperconnected if (X,µΩX) is hyperconnected.
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Proof. (a) Given Q in D(µΩX). Let K in µ̃∗ΩX
. Then D =

⋃
t
(Dt

1 ∩Dt
2 ∩ . . . . ∩Dt

nt
) where Dt

i ∈

µ, i = 1 to nt. Take Bk = Dk
1 ∩Dk

2 ∩ . . . . ∩Dk
nk

with Bk , ∅ where Dk
i ∈ µ, i = i to nk. By

hypothesis, there exists σ ∈ Ω0 such that iσBk , ∅ and so iσBk ∈ µ̃ΩX . This implies that

Q∩ iσBk , ∅ for that Q∩ Bk , ∅. Thus, Q∩G , ∅. Therefore, Q ∈ D(µ∗ΩX
).

(b) Assume that, (X,µΩX) is a hyperconnected space. Let H ∈ µ̃∗ΩX
. Then H =

⋃
t
(Ht

1 ∩Ht
2 ∩

. . . .∩Ht
nt
) where Ht

i ∈ µ, i = 1 to nt. Choose Dk = Hk
1 ∩Hk

2 ∩ . . . .∩Hk
nk

with Dk , ∅. Since

Ω0 is a perfect kernel, there exists a metric σ0 ∈ Ω0 such that iσ0Dk , ∅. By hypothesis,

iσ0Dk ∈ D(µΩX). Since iσ0Dk ⊂ H, H ∈ D(µΩX). Therefore, H ∈ D(µ∗ΩX
), by (a). Hence

(X,µ∗ΩX
) is hyperconnected.

�

Example 5.2 describes that the condition “Ω0 is a perfect kernel" is necessary in Theorem 5.10.

Example 5.2. Consider the GMS (X, Ω), X = [0, 1], Q = [0, 1
2 ], K = [ 1

2 , 1] and Ω = {σQ, σK, σE}

where σE is the Euclidean metric for R,

σQ =

 σE(r, s) if r, s ∈ Q or [0, 1] −Q,

1 otherwise.

σK =

 σE(r, s) if r, s ∈ K or [0, 1] −K,

1 otherwise.

Then Q, K ∈ µΩ such that Q∩ K , ∅. But iµΩ(Q∩ K) = ∅. Therefore, (X, Ω) has no perfect kernel.

Choose G = [0, 1
2 )∪ (

1
2 , 1]. Then G ∈ D(µΩ). Take Q = {2}. Then {2} ∈ µ̃∗Ω. But G∩A = ∅. Therefore,

G < D(µ∗Ω).

(µΩX , η) − cliquish (µ∗ΩX
, η) − cliquish

Theorem 5.11 describes the above diagram.

Theorem 5.11. Let (X, ΩX) be a GMS with perfect kernel Ω0 ⊂ ΩX. If η ∈ {µΩX ,µ∗ΩX
,µ∗∗ΩX

}, then h is a
(µΩX , η)-cliquish function⇔ h is (µ∗ΩX

, η)-cliquish for h : X→ R.

Proof. If h is (µΩX , η)-cliquish, then Cη(h) ∈ D(µΩX). By Theorem 5.10(a), Cη(h) ∈ D(µ∗ΩX
). There-

fore, h is (µ∗ΩX
, η)-cliquish. Conversely, suppose that h is (µ∗ΩX

, η)-cliquish. Then Cη(h) ∈ D(µ∗ΩX
).

Since µΩX ⊂ µ
∗

ΩX
, Cη(h) ∈ D(µΩX). Therefore, h is (µΩX , η)-cliquish. �

A map h : (X,µ) → (W, ζ) is said to be feebly (µ, ζ)-continuous [21] if iµh−1(B) , ∅ for every

B ⊂W with iζB , ∅. h is called (µ, η)-open (resp. feebly (µ, η)-open, (µ, η)-closed) if h(K) ∈ η for each

K ∈ µ (resp. iηh(K) , ∅ for each K ∈ µ̃, h(K) is η-closed for each K is µ-closed) [17].
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Lemma 5.1. [23, Theorem 4.4] If h : (X,µ)→ (W, η) is a feebly (µ, η)-continuous, injective mapping

and if Q is µ-codense, then h(Q) is η-codense.

Lemma 5.2. [23, Theorem 4.6] If h : (X,µ) → (W, η) is a feebly (µ, η)-open map and if Q is

η-codense, then h−1(Q) is µ-codense.

Theorem 5.12. Let (X,µ) be a generalized submaximal space and (W, η) be a hyperconnected space. Then
every feebly (µ, η)-open map from X to W is (µ, η)-continuous.

Proof. Let Q ∈ η̃. Since (W, η) is a hyperconnected space, Q is a η-dense set in W. Then W −Q
is a η-codense set in W. By Lemma 5.2, h−1(W −Q) = X − h−1(Q) is µ-codense which implies

h−1(Q) ∈ D(µ). Therefore, h−1(Q) ∈ µ. Hence h is a (µ, η)-continuous function. �

(µ, η) − open map f eebly (µ, η) − continuous, bi jective map

(µ, η) − closed map

The following Theorem 5.13 establishes the above diagram.

Theorem 5.13. Let (X,µ) be a hyperconnected space and (W, η) be a generalized submaximal space. Then
every feebly (µ, η)-continuous, bijective map from X to W is both (µ, η)-closed and (µ, η)-open.

Proof. Given that h is a feebly (µ, η)-continuous, bijective map from X to W. Assume that,

(X,µ) is a hyperconnected space (5.2)

and

(W, η) is a generalized submaximal space (5.3)

Let cµ(K) = K. If X − K = ∅, then K = X and so h(K) = W. Thus, h(K) is η-closed. If X − K , ∅,
then X−K ∈ D(µ), by equation (5.2) so that K is µ-codense. Thus, h(K) is a η-codense set in W, by

Lemma 5.1 and so W − h(K) ∈ D(η). By equation (5.3), W − h(K) ∈ η. Therefore, h(K) is η-closed.

Hence h is (µ, η)-closed.

Let M ∈ µ. If M = ∅, then there is nothing to prove. If M , ∅, then M ∈ D(µ), by equation

(5.2) so that X −M is µ-codense. By Lemma 5.1, h(X −M) is η-codense in W. Now h(X −M) =

h(X) − h(M) = W − h(M), since h is bijective. Thus, W − h(M) is η-codense in W and hence

h(M) ∈ D(η). From equation (5.3), h(M) ∈ η. Therefore, h is a (µ, η)-open map. �
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