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Abstract. In this study, a novel operation is introduced, which creates a local function of A regard toI and τ respectively

denoted as AD∗ (I, τ) = {y ∈ Y | V ∩A < I, for each V ∈ τD(y)} where τD(y) = {V ∈ τD
| y ∈ V}. We then look into some

of the fundamental characteristics and attributes of AD∗ (I, τ). Additionally, we look into an operator η : P(Y) → τ

provides η(E) = Y − [Y − E]D∗ for all E ∈ P(Y). Then the closure operator clD∗ (E) = ED∗ ∪ E which forms the topology

and the relation τD∗ = {V ⊆ Y | clD∗ (Y −V) = Y −V}.

1. Introduction and Preliminaries

Ideals in a topological space (Y, τ) were studied by Kuratowski in [5]. He had also defined

local function for each subset of Y with regards to an ideal I and τ. In [9], Vaidyanathaswamy

extended this study of ideals and local functions. In 1990, Jankovic and Hamlett [2] found more

characteristics of ideal topological spaces. Assume that, (Y, τ) is a space without separation axioms.

Then cl(E); int(E) indicate the closure and interior of E respectively, in an ideal space (Y, τ,I). A

nonempty set of Y that satisfies the given conditions in (Y, τ) is defined ideal [2];

(a) E ∈ I, F ⊆ E⇒ F ∈ I

(b) E ∈ I and F ∈ I ⇒ union of E and F belongs to I.

In 1960, Vaidyanathaswamy [9] gave the new local function which is defined by P(Y) of Y with a

set operator (.)∗: P(Y)→ P(Y). For a set A in Y, A∗(I, τ) = {y ∈ Y | V ∩A < I, where all V ∈ τ(y)}
where in τ(y) = {V ∈ τ | y ∈ V}. Moreover, we will just denote A∗(I, τ) by A∗ and τ∗(I, τ) by τ∗.

A Kuratowski closure operator [10] denoted by cl∗(E) for τ∗ finer than τ is defined as cl∗(E) =
E ∪ E∗(I, τ). In 2013, Ahmad Al-Omairi et. al [1] defined local closure functions in ideal spaces
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and studied their various properties. δ∗-local closure functions were analyzed and their various

characterizations were studied in 2020 by P.Periyasamy and P.Rock Ramesh [7]. In 1966 N. Velicko

[8] studied about θ-open sets and defined clθ(E) as clθ(E) = {y ∈ Y : cl(V) ∩ E = φ, for each

V ∈ τ(y)} also, a set E of Y is a θ-closed set if clθ(E) = E. Similarly, many authors have defined

local functions using various open sets and have studied them.

Analogous to that in this paper, we have defined local function using ∆-open sets which was

first introduced by M. Veera Kumar in [4]. If a set E of Y in (Y, τ) equals to (B−C)∪ (C−B), where

B and C are sets of Y which are open if so E is defined as ∆-open. All ∆-open set collection satisfies

the topology criterion and is given by τD for Y.

We generally, get ∆-closed sets from the complement of ∆-open sets. The set E of Y is said to be

∆-closed if E = clD(E) where clD(E) = {y ∈ Y : V ∩ E , φ, for every V ∈ τD(y)}.
In (Y, τ,I), τ is defined as compatible with I, expressed as τ ∼ I, if the axioms given below

is true for all E ⊆ Y, if for all y ∈ E, where V ∈ τ(y) in such a way that V ∩ E ∈ I, ⇒ E ∈ I. To

spaces were introduced by P.S. Alexandroff and H. Hopf in 1935. A space is a To space [3] if and

only if for two points that are not equal, precisely one will be contained in an open set. In 2007

M.N.Mukherjee et al. [6] introduced free ideal and defined it in the following way: Consider the

space (Y, cl∗) and y ∈ Y, Icl∗(y) = {A ⊆ Y : y < cl∗(A)} is an ideal on Y called a free ideal on (Y, cl∗).

2. D∗-Local Functions

In this section, we introduce one new tool namely, D∗-local function and analyze its nature in

ideal topological space.

Definition 2.1. Assume that Y be an ideal space, A ⊆ Y. The operator AD∗(I, τ) = {y ∈ Y | V ∩A < I,
∀ V ∈ τD(y)} where τD(y) = {V ∈ τD

| y ∈ V} is known as D∗-local function in A related to I, τ.

Lemma 2.1. AD∗(I,τ) ⊆ A∗(I,τ) always holds where Y is in ideal topological space.

Proof. Suppose y ∈ AD∗ . Then V ∩A < I ∀ V ∈ τD(y). However, we know that each open set is

∆-open which implies V ∩A < I ∀ V ∈ τ(y). Hence, y ∈ A∗.

Example 2.1. Consider, Y = {i, a, e, g},

τ = {φ, Y, {a}, {e}, {a, e}}

and

I = {φ, {i}}.

Consider, A = {a} ⇒ A∗ = {i, a} and AD∗ = {a}.

Remark 2.1. Generally, neither A ⊆ AD∗ nor AD∗ ⊆ A.

Example 2.2. Consider, Y = {k, i, e, f },

τ = {φ, Y, {k}, {i}, {k, i}, {k, e, f }}

and
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I = {φ, {k}, { f }, {k, f }}.

Take A = {k, e}. Then AD∗ = {e, f }.

Theorem 2.1. Suppose E and F are subsets of Y, an ideal space. If so the given conditions can be proved:

(1) If E ⊆ F,⇒ ED∗ ⊆ FD∗ .
(2) (ED∗)D∗ ⊆ ED∗ .
(3) ED∗ = clD(ED∗) ⊆ clθ(E) also ED∗ is closed.
(4) If E ∈ I, then ED∗ = φ.
(5) ED∗ ⊆ clD(E).

Proof. (1) Assume that, x < FD∗ . Then we can find a V ∈ τD(x) provided F∩V ∈ I. E is a subset of

F⇒ E ∩ V ⊆ F ∩ V, if so E ∩ V ∈ I. Therefore, x < ED∗ ⇒ ED∗ ⊆ FD∗ .

(2) Let x ∈ (ED∗)D∗ . Then for all V ∈ τD(x), V ∩ ED∗ < I ⇒ V ∩ ED∗ , φ. Assume z ∈ V ∩ ED∗ . In

this case, V ∈ τD(z) with z ∈ ED∗ . Thus, V ∩ E < I and x ∈ ED∗ . This brings out (ED∗)D∗ ⊆ AD∗ .

(3) We know ED∗ ⊆ clD(ED∗). We can find an element x ∈ clD(ED∗)⇒ ED∗ ∩V , φ for all V ∈ τD(x).
Then we can choose one t ∈ ED∗ ∩ V with V ∈ τD(t). Perhaps t ∈ ED∗ , E ∩ V < I ⇒ x ∈ ED∗ ⇒

clD(ED∗) ⊆ ED∗ and we get ED∗ = clD(ED∗). Again, let x ∈ ED∗ , then E∩V < I for all V belongs to

τD(x). Then for all V belonging to τD(x) we get E∩V , φ. Hence E∩ cl(V) is non-empty for all

open set V. Hence, x ∈ clθ(E). This proves that ED∗ = cl(ED∗) ⊆ clθ(E).

(4) Choose x ∈ ED∗ . Then we can find any V ∈ τD(x), E ∩ V does not belong to I. But we have E
belongs to I⇒ E ∩ V ∈ I ∀ V ∈ τD(x) which is absurd. Therefore, ED∗ = φ.

(5) Let x ∈ ED∗ . Consequently, for each V ∈ τD(x), V ∩ E < I with ∀ V ∈ τD(x), V ∩ E , φ. Thus,

x ∈ clD(E). �

Theorem 2.2. The ideal space Y containing ideals J1, J2 as well as and C ⊆ Y. If so the following conditions
are true:

(1) If J1 is a subset of J2 then CD∗(J2) is a subset of CD∗(J1).
(2) CD∗ (J1 ∩ J2) equals to CD∗ (J1)∪CD∗ (J2).

Proof. (1) Let x ∈ CD∗(J2) and J1 ⊆ J2. For each C ∩U < J2 follows so does C ∩U < J1. Therefore

x ∈ CD∗(J1).

(2) We know CD∗(J1) is a subset of CD∗(J1 ∩ J2) and CD∗(J2) ⊆ CD∗(J1 ∩ J2) by (1). Hence, union of

CD∗(J1) and CD∗(J2) is a subset of CD∗(J1 ∩ J2). We take x ∈ CD∗(J1 ∩ J2), for each ∆-open U, U∩C <
J1 ∩ J2⇒ U ∩C < J1 or U ∩C < J2. Then x ∈ CD∗(J1) or x ∈ CD∗(J2). So x ∈ CD∗(J1)∪CD∗(J2). �
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Lemma 2.2. Assume Y be of (Y, τ,I) with ∆-open set V, If so V ∩ CD∗ = V ∩ (V ∩ C)D∗ ⊆ (V ∩ C)D∗ for
each subset C of Y.

Proof. Lets assume that when V is ∆-open set with y ∈ V ∩ CD∗ ⇒ y ∈ V and y ∈ CD∗ then V ∩ C
< I for each ∆-open set containing y. Assume W to be any ∆-open set comprising y that is W ∈
τD(y). So W ∩ V ∈ τD(y) and W ∩ (V ∩ C) = (W ∩ V) ∩ C < I. This expresses that y ∈ (V ∩ C)D∗

which leads to the conclusion that V ∩ CD∗ is a subset of (V ∩ C)D∗ . Additionally, V ∩ CD∗ ⊆ V ∩
(V ∩ C)D∗ and by Theorem [2.2] (V ∩ C)D∗ ⊆ CD∗ and V ∩ (V ∩ C)D∗ ⊆ V ∩ CD∗ . Hence, V ∩ CD∗ =

V ∩ (V ∩ C)D∗ . �

Theorem 2.3. Assume that Y is an ideal space with E, G are any two sets of Y. If so, the given observations
are true:

(1) φD∗ = φ.
(2) ED∗ ∪ GD∗ = (E ∪ G)D∗ .
(3) (E ∩ G)D∗ ⊆ ED∗ ∩ GD∗ .

Proof. (1) It is obvious.

(2) From Theorem [2.2] it is evident that (E ∪ G)D∗ ⊇ ED∗ ∪ GD∗ . To get the reverse part,

assume y ∈ (E ∪ G)D∗ . Then for all ∆-open set containing y, V ∩ (E ∪ G) < I. From this (V ∩
E) <I or (V ∩G) <I for each ∆-open set containing y. Hence y ∈ ED∗ ∪GD∗⇒ (E∪G)D∗ ⊆ ED∗ ∪GD∗ .

(3) E ∩G is a subset of E ⇒ (E ∩G)D∗ ⊆ ED∗ . Similarly, (E ∩G)D∗ is a subset of GD∗ by Theorem

[2.2]. So (E∩G)D∗ is a set of ED∗ ∩GD∗ . �

Remark 2.2. The reverse implication of Theorem [2.5] (3) doesn’t always apply, as may be seen by an
example.

Example 2.3. Consider, Y = {l, c, e, g},

τ = {φ, Y, {l, c}}

and

I = {φ, {l}, {c}, {l, c}}.

Suppose C = {e} and D = {c, g}. Then CD∗ ∩DD∗ = {e, g} and (C∩D)D∗ = φ.

Lemma 2.3. Suppose Y be an ideal space with E, H ⊆ Y. If so ED∗ −HD∗ equals to (E −H)D∗ −HD∗ is a
set of (E−H)D∗ .

Proof. We have by Theorem [2.5], ED∗ = [(E −H) ∪ (E ∩H)]D∗ = (E −H)D∗ ∪ (E ∩H)D∗ ⊆ (E −
H)D∗ ∪ HD∗ . Thus ED∗ − HD∗ ⊆ (E − H)D∗ − HD∗ .We have by Theorem [2.2], (E − H)D∗ ⊆ ED∗ it

follows (E −H)D∗ −HD∗ is a subset of ED∗ −HD∗ . Henceforth, ED∗ −HD∗ equals (E −H)D∗ −HD∗ ⊆

(E−H)D∗ . �
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Corollary 2.1. Assuming Y is an ideal topological space with two subsets G and H in Y, H ∈ I. Then
(G∪H)D∗ = GD∗ = (G−H)D∗ holds.

Proof. Though H ∈ I, by Theorem [2.2], we get HD∗ = φ. By Previous Lemma 2.3, GD∗ = (G−H)D∗

and by Theorem [2.5], we get (G∪H)D∗ = GD∗ ∪HD∗ = GD∗ . �

Theorem 2.4. ED∗ ⊆ Γ(E)

Proof. By lemma 2.1, ED∗ ⊆ E∗ and we know that, E∗ ⊆ Γ(E) [1]. Therefore, ED∗ ⊆ Γ(E). �

Theorem 2.5. ED∗ ⊆ Eδ∗

Proof. By lemma 2.1, ED∗ ⊆ E∗ and we know that, E∗ ⊆ Eδ∗ [7]. Therefore, ED∗ ⊆ Eδ∗ . �

3. The Open Sets of τD∗

A closure operator clD∗(E) = E ∪ ED∗ is defined in this section and we prove the Kuratowski

closure operator.

Theorem 3.1. Assume Y be an ideal space, clD∗(B)=B∪ BD∗ where B and C are sets of Y. If so the given
observations hold:

(1) clD∗(φ) = φ and clD∗(Y) = Y.

(2) B ⊆ clD∗(B).
(3) clD∗(B∪C) = clD∗(B)∪ clD∗(C).
(4) clD∗(clD∗(B)) = clD∗(B).

Proof. (1) Since φ ∈ Y clD∗(φ) = φD∗ ∪φ = φ, clD∗(Y) = YD∗ ∪Y = Y.

(2) We know that B ⊆ B∪ BD∗ = clD∗(B).

(3) As a result of Theorem [2.5], clD∗(B ∪ C) = (B ∪ C)D∗ ∪ (B ∪ C) = (BD∗ ∪ CD∗) ∪ (B ∪ C) =

(BD∗ ∪ B)∪ (CD∗ ∪C) = clD∗(B)∪ clD∗(C).

(4) clD∗(clD∗(B)) = clD∗(BD∗ ∪ B) = (BD∗ ∪ B)D∗ ∪ (BD∗ ∪ B) = ((BD∗)D∗ ∪ BD∗)∪ (BD∗ ∪ B) = BD∗ ∪

(BD∗ ∪ B) = BD∗ ∪ B = clD∗(B), by Theorem [2.5]. �

Remark 3.1. According to Theorem [3.1], clD∗(E) = E∪ ED∗ is a Kuratoswski closure operator. The open
sets in ∆ are referred to as τD∗-open sets while its complement is referred to as τD∗-closed sets. This topology
is represented by τD∗ and defined as τD∗ = {V ⊆ Y/clD∗(Y −V) = Y −V}.

Theorem 3.2. Suppose Y is an ideal space with R, C as sets of Y. If so the given observations are true:

(1) If R is a set of C⇒ clD∗(R) ⊆ clD∗(C).
(2) clD∗(R∩C) ⊆ clD∗(R)∩ClD∗(C).
(3) clD∗(R) ⊆ cl∗(R).
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Proof. (1) Assume R is a set of C where clD∗(R) = R∪RD∗ ⊆ C∪CD∗ = clD∗(C) by Theorem [2.2].

(2) We had, R ∩ C is a set of R and R ∩ C ⊆ C then by (1), clD∗(R ∩ C) ⊆ clD∗(R) and

clD∗(R∩C) ⊆ clD∗(C)⇒ clD∗(R∩C) ⊆ clD∗(R)∩ClD∗(C).

(3) clD∗(R) = R∪RD∗ ⊆ R∪R∗ = cl∗(R) since RD∗ ⊆ R∗. �

Definition 3.1. Consider, the space (Y, clD∗) and for y ∈ Y, IclD∗ (y) = {E ⊆ Y : y < clD∗(E)} is an ideal
on Y called a free ideal on (Y, clD∗)

Theorem 3.3. A space (Y, clD∗) is a To space ⇐⇒ for any two points w, z of Y and w , z, IclD∗ (w) ,

IclD∗ (z).

Proof. Assume (Y, clD∗) is a To space. Suppose w < clD∗(E) then z ∈ clD∗(E). But if w < clD∗(E)
⇒ E ∈ IclD∗ (w). Also z ∈ clD∗(E) ⇒ E < IclD∗ (z). Therefore, IclD∗ (w) , IclD∗ (z). Conversely, let

IclD∗ (w) , IclD∗ (z). Suppose E ⊆ Y such that E ∈ IclD∗ (w) but E < IclD∗ (z). Implies w < clD∗(E)
and z ∈ clD∗(E) for some E ⊆ Y. Therefore, w ∈ Y − clD∗(E) but z < Y − clD∗(E) ⇒ (Y, clD∗) is a To

space. �

Remark 3.2. Icl∗(y) ⊆ IclD∗ (y)

Example 3.1. Consider, Y = {p, b, s, d} and

τ = {φ, Y, {p}, {s}, {d}, {p, s}, {p, d}, {s, d}, {p, s, d}}.

Then Icl∗(b) = {φ, {p}} and IclD∗ (b) = {φ, {s}, {d}, {p, s}, {p, d}, {s, d}, {p, s, d}}.

4. D∗-Compatibility

Definition 4.1. Assume Y is an ideal space. If the given conditions are true for all F ⊆ Y then F ∈ I. If for
each y ∈ F,then ∃ a ∆-open set in a way that V ∩ F ∈ I then τ is D∗-compatible with the ideal I, indicated
by τ ∼D I.

Theorem 4.1. Suppose Y be an ideal space, if so the observations given below can be equivalent:

(1) τ ∼D I,

(2) E ∈ I, if E a set of Y has a ∆-open cover, which intersects E is in I,
(3) For all E set of Y, ED∗ ∩ E = φ⇒ E belongs to I,
(4) For each E ⊆ Y, E− ED∗ ∈ I,
(5) For all E ⊆ Y does not contains nonempty subset D with D ⊆ DD∗ , then E ∈ I.

Proof. (1)⇒ (2): The result is true obviously.

(2) ⇒ (3): Suppose, y ∈ E with E ⊆ Y. If y < ED∗ , we can find V ∈ τD(y) provided V ∩ E ∈ I.

Hence E ∈ I since we have E ⊆ ∪{Vy : y ∈ E} for Vy is in τD(x) containing y.
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(3) ⇒ (4): For each E which is a set of Y, E − ED∗ is a set of E if so, (E − ED∗) ∩ (E − ED∗)D∗ set of

(E− ED∗)∩ ED∗ = φ, since E− ED∗ ∈ I.

(4) ⇒ (5): For each E ⊆ Y, E − ED∗ ∈ I by (4). Consider E − ED∗ = J ∈ I, then E = J ∪ (E ∩ ED∗)

and according to Theorem [2.5] and [2.2], ED∗ = JD∗ ∪ (E ∩ ED∗)D∗ = (E ∩ ED∗)D∗ . Then, we have

E ∩ ED∗ = E ∩ (E ∩ ED∗)D∗ is a subset of (E ∩ ED∗)D∗ and E ∩ ED∗ is a set of E. On the basis of the

assumption E∩ ED∗ = φ and hence E = E− ED∗ ∈ I.

(5) ⇒ (1): Let E ⊆ Y with each y ∈ E, ∃ V ∈ τD(y) in such a way that V∩ E ∈ I ⇒ E∩ ED∗ = φ.

Also assume that E contains D such that D ⊆ DD∗ . Then D = D ∩DD∗ ⊆ E ∩ ED∗ = φ. Hence, E
does not contains nonempty subset D with D ⊆ DD∗ . Hence, E ∈ I. �

Theorem 4.2. The given statements can be equivalent for an ideal space Y and if τ is D∗ compatible in I.

(1) If for all E ⊆ Y, E∩ ED∗ = φ⇒ ED∗ = φ,

(2) If every E ⊆ Y, then (E− ED∗)D∗ = φ,

(3) If every E ⊆ Y, then (E∩ ED∗)D∗ = ED∗ .

Proof. (1) ⇒ (2): For each E ⊆ Y, E ∩ ED∗ = φ ⇒ ED∗ = φ. Let F = E − ED∗ , so

F ∩ FD∗ = (E ∩ (Y − ED∗)) ∩ (E ∩ (Y − ED∗))D∗ ⊆ [E ∩ (Y − ED∗)] ∩ [ED∗ ∩ (Y − ED∗)D∗ ] = φ.

By (1), we have FD∗ = φ⇒ (E− ED∗)D∗ = φ.

(2)⇒ (3): For each E ⊆ Y, E = (E−ED∗)∪ (E∩ED∗). ED∗ = (E−ED∗)D∗ ∪ (E∩ED∗)D∗ = (E∩ED∗)D∗ .

(3)⇒ (1): For all E ⊆ Y, E∩ ED∗ = φ and (E∩ ED∗)D∗ = ED∗ ⇒ φ = φD∗ = ED∗ . �

Corollary 4.1. Suppose Y be an ideal space with E set of Y and τ is D∗-compatible in ideal I ⇒ ED∗ =

(ED∗)D∗ .

Proof. Assume E ⊆ Y, using Theorem [4.2] and the result in Theorem [2.2], we get ED∗ = (E ∩
ED∗)D∗ ⊆ ED∗ ∩ (ED∗)D∗ = (ED∗)D∗ . Hence we could have ED∗ ⊆ (ED∗)D∗ . Then by the result of

Theorem [2.3], (ED∗)D∗ is a subset of ED∗ ⇒ ED∗ = (ED∗)D∗ . �

Theorem 4.3. The results can be equivalent to an ideal space Y

(1) τD(y)∩I = φ, such that τD(y) = {V ∈ τD/y ∈ V},
(2) When J ∈ I ⇒ intθ(J) = φ,

(3) F ⊆ FD∗ , For each clopen F,
(4) Y = YD∗ .

Proof. (1)⇒ (2): Assume J ∈ I and τD(y)∩I = φ. Also, assume y ∈ intθ(I). Then ∃W belongs to

τD(y) in such a way that y ∈ W ⊆ cl(W) ⊆ I. Since J ∈ I ⇒ φ , {y} ⊆ cl(W) ∈ τD(y) ∩I. This is a

contradiction to τD(y)∩I = φ. Hence, intθ(J) = φ.
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(2)⇒ (3): Let y ∈ F. Assume y < FD∗ , such that V ∈ τD(y) in a way that F∩V ∈ I. As F is clopen,

by [1], y ∈ F ∩ V = int (F∩V) = intθ (F∩ (V)) = φ. This becomes a contradiction ⇒ y ∈ FD∗ ,

Hence F ⊆ FD∗ .

(3)⇒ (4): When Y is clopen⇒ Y ⊆ YD∗ then by (3) Y = YD∗ .

(4)⇒ (1): Assume Y = YD∗ = {y ∈ Y | V ∩Y = V < Iwhere V ∈ τD(y)}. So τD(y)∩I = φ. �

Theorem 4.4. Let Y be in (Y, τ,I) and τ is of D∗-compatible of I. If so for each S ∈ τD, any set T of Y,
(S∩ T)D∗ = (S∩ TD∗)D∗ = clD(S∩ TD∗).

Proof. Let S ∈ τD. Then by Lemma [2.4] and by Theorem[2.2] (S ∩ TD∗)D∗ ⊆ ((S ∩ T)D∗)D∗ ⊆

(S ∩ T)D∗ . Also, (S ∩ (T − TD∗))D∗ ⊆ SD∗ ∩ (T − TD∗)D∗ = SD∗ ∩ φ = φ by Theorem [2.2] and [4.2].

Moreover, (S∩T)D∗ − (S∩TD∗)D∗ ⊆ ((S∩T)− (S∩TD∗))D∗ = (S∩ (T −TD∗))D∗ = φ⇒ (S∩T)D∗ ⊆

(S ∩ TD∗)D∗ . Hence, (S ∩ T)D∗ = (S ∩ TD∗)D∗ . Also, (S ∩ T)D∗ = (S ∩ TD∗)D∗ ⊆ clD(S ∩ TD∗), by

Theorem [2.2]. By Lemma [2.4], S∩ TD∗ ⊆ (S∩ T)D∗ ⇒ clD(S∩ TD∗) ⊆ clD((S∩ T)D∗) = (S∩ T)D∗ .

Thus (S∩ T)D∗ = (S∩ TD∗)D∗ = clD(S∩ TD∗). �

5. η-Operator

Definition 5.1. An operator η: P(Y)→ τ in an ideal space Y is given by the following; for each E belongs
to Y, η(E) = {y ∈ Y: ∃ a ∆-open set V in a way that V − E ∈ I} and also we have η(E) = Y − (Y − E)D∗ .

Theorem 5.1. Suppose Y is an ideal space. If so then the given statements are true:

(1) If M ⊆ Y, then η(M) is open.
(2) If M is a subset of E⇒ η(M) ⊆ η(E).
(3) If M, E ∈ P(Y), then η(M∩ E) equals η(M)∩ η(E).
(4) If M ⊆ Y, then η(M) equals η (η(M)) if and only if (Y −M)D∗ = ((Y −M)D∗)D∗ .
(5) If M ∈ I, then η(M) equals Y −YD∗ .
(6) If M ⊆ YandJ ∈ I ⇒ η(M− J) = η(M).
(7) If M set of Y, J ∈ I ⇒ η(M∪ J) = η(M).
(8) If (M− E)∪ (E−M) ∈ I, then η(M) = η(E).

Proof. (1) By Theorem [2.2], MD∗ is closed⇒ (Y −M)D∗ is closed⇒ η(M) is open.

(2) If M ⊆ E in such a way that (Y − E) is a set of (Y −M) ⇒ (Y − E)D∗ ⊆ (Y −M)D∗ . Hence

Y − (Y −M)D∗ is a set of Y − (Y − E)D∗ , that is η(M) ⊆ η(E).

(3) η(M∩ E) = Y − (Y − (M∩ E))D∗ = Y − [(Y −M) ∪ (Y − E)]D∗ = Y − [(Y −M)D∗ ∪ (Y − E)D∗ ] =

[Y − (Y −M)D∗ ] ∩ [Y − (Y − E)D∗ ] = η(M)∩ η(E).
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(4) If (Y −M)D∗ = ((Y −M)D∗)D∗ Then, η(η(M)) = η(Y − (Y −M)D∗) = Y − (Y − (Y − (Y −
M)D∗))D∗ = Y − ((Y −M)D∗)D∗ = Y − (Y −M)D∗ = η(M).

(5) By Corollary [2.6.1], we get (Y −M)D∗ = YD∗ . Therefore, η(M) = Y −YD∗ .

(6) η(M − J) = Y − [Y − (M − J)]D∗ = Y − [(Y −M) − J]D∗ = Y − (Y −M)D∗ = η(M), by using

Corollary [2.6.1].

(7) η(M ∪ J) = Y − [Y − (M ∪ J)]D∗ = Y − [(Y −M) ∩ (Y − J)]D∗ = Y − [(Y −M) − J]D∗ =

Y − (Y −M)D∗ = η(M), by using Corollary [2.6.1].

(8) Assume that, union of (M − E) and (E −M) belongs to I. Let M − E = I and E −M = J. We

observed that I, J belongs to I by the property heredity. Also, we can have E = (M− I) ∪ J. Thus,

η(M) = η(M− I) = η[(M− I)∪ J] = η(E) by (6) and (7). �

Corollary 5.1. Suppose Y is in (Y, τ,I). For each θ-open W set of Y, W ⊆ η(W).

Proof. We have η(W) = Y − (Y −W)D∗ . Then (Y −W)D∗ ⊆ clθ(Y −W) = Y −W, though Y −W is

θ-closed. We can have W = Y − (Y −W) ⊆ Y − (Y −W)D∗ = η(W). �

6. Conclusion

In this paper, we have defined the local function using ∆-open sets and studied its various

properties in ideal topological space. We defined a closure operator and determined whether it

was a Kuratowski closure operator. Also, the compatibility property of the topology with the ideal

was verified. We then defined a new operator η and its characterizations were studied. Future

work in this topic would be to generalize the ∆-closed set, compare it with the already existing

generalized closed sets, and verify some of its properties.
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