International Journal of Analysis and Applications

D*-Local Functions in Ideal Spaces

Yasser Farhat¹, Rock Ramesh^{2,*}, Alphymol Varghese², Vadakasi Subramanian³

¹Academic Support Department, Abu Dhabi Polytechnic, P. O. Box 111499, Abu Dhabi, UAE
²Department of Mathematics, St Joseph's University, Bangalore, India
³Department of Mathematics, A.K.D. Dharma Raja Women's College, Rajapalayam, Tamil Nadu, India

*Corresponding author: rock.ramesh@sju.edu.in

Abstract. In this study, a novel operation is introduced, which creates a local function of *A* regard to *I* and τ respectively denoted as $A_{D^*}(I, \tau) = \{y \in Y \mid V \cap A \notin I, \text{ for each } V \in \tau^D(y)\}$ where $\tau^D(y) = \{V \in \tau^D \mid y \in V\}$. We then look into some of the fundamental characteristics and attributes of $A_{D^*}(I, \tau)$. Additionally, we look into an operator $\eta : P(Y) \to \tau$ provides $\eta(E) = Y - [Y - E]_{D^*}$ for all $E \in P(Y)$. Then the closure operator $cl_{D^*}(E) = E_{D^*} \cup E$ which forms the topology and the relation $\tau_{D^*} = \{V \subseteq Y \mid cl_{D^*}(Y - V) = Y - V\}$.

1. INTRODUCTION AND PRELIMINARIES

Ideals in a topological space (Y, τ) were studied by Kuratowski in [5]. He had also defined local function for each subset of Y with regards to an ideal I and τ . In [9], Vaidyanathaswamy extended this study of ideals and local functions. In 1990, Jankovic and Hamlett [2] found more characteristics of ideal topological spaces. Assume that, (Y, τ) is a space without separation axioms. Then cl(E); int(E) indicate the closure and interior of *E* respectively, in an ideal space (Y, τ, I) . A nonempty set of Y that satisfies the given conditions in (Y, τ) is defined ideal [2];

(a)
$$E \in I, F \subseteq E \Rightarrow F \in I$$

(b) $E \in I$ and $F \in I \Rightarrow$ union of *E* and *F* belongs to *I*.

In 1960, Vaidyanathaswamy [9] gave the new local function which is defined by P(Y) of Y with a set operator $(.)^*$: $P(Y) \rightarrow P(Y)$. For a set A in $Y, A^*(\mathcal{I}, \tau) = \{y \in Y \mid V \cap A \notin \mathcal{I}, where all <math>V \in \tau(y)\}$ where in $\tau(y) = \{V \in \tau \mid y \in V\}$. Moreover, we will just denote $A^*(\mathcal{I}, \tau)$ by A^* and $\tau^*(\mathcal{I}, \tau)$ by τ^* .

A Kuratowski closure operator [10] denoted by $cl^*(E)$ for τ^* finer than τ is defined as $cl^*(E) = E \cup E^*(I, \tau)$. In 2013, Ahmad Al-Omairi et. al [1] defined local closure functions in ideal spaces

Received: Apr. 18, 2024.

²⁰²⁰ Mathematics Subject Classification. 54A05, 54A10.

Key words and phrases. ideal topology; local function; Kuratowski closure operator; Δ -open set; D^* -local function.

and studied their various properties. δ^* -local closure functions were analyzed and their various characterizations were studied in 2020 by P.Periyasamy and P.Rock Ramesh [7]. In 1966 N. Velicko [8] studied about θ -open sets and defined $cl_{\theta}(E)$ as $cl_{\theta}(E) = \{y \in Y : cl(V) \cap E = \phi, \text{ for each } V \in \tau(y)\}$ also, a set *E* of *Y* is a θ -closed set if $cl_{\theta}(E) = E$. Similarly, many authors have defined local functions using various open sets and have studied them.

Analogous to that in this paper, we have defined local function using Δ -open sets which was first introduced by M. Veera Kumar in [4]. If a set *E* of *Y* in (*Y*, τ) equals to $(B - C) \cup (C - B)$, where *B* and *C* are sets of *Y* which are open if so *E* is defined as Δ -open. All Δ -open set collection satisfies the topology criterion and is given by τ^D for *Y*.

We generally, get Δ -closed sets from the complement of Δ -open sets. The set *E* of *Y* is said to be Δ -closed if $E = cl_D(E)$ where $cl_D(E) = \{y \in Y : V \cap E \neq \phi, \text{ for every } V \in \tau^D(y)\}.$

In (Y, τ, I) , τ is defined as compatible with I, expressed as $\tau \sim I$, if the axioms given below is true for all $E \subseteq Y$, if for all $y \in E$, where $V \in \tau(y)$ in such a way that $V \cap E \in I$, $\Rightarrow E \in I$. T_o spaces were introduced by P.S. Alexandroff and H. Hopf in 1935. A space is a T_o space [3] if and only if for two points that are not equal, precisely one will be contained in an open set. In 2007 M.N.Mukherjee et al. [6] introduced free ideal and defined it in the following way: Consider the space (Y, cl^*) and $y \in Y$, $I_{cl^*}(y) = \{A \subseteq Y : y \notin cl^*(A)\}$ is an ideal on Y called a free ideal on (Y, cl^*) .

2. D^* -Local Functions

In this section, we introduce one new tool namely, *D**-local function and analyze its nature in ideal topological space.

Definition 2.1. Assume that Y be an ideal space, $A \subseteq Y$. The operator $A_{D^*}(I, \tau) = \{y \in Y \mid V \cap A \notin I, \forall V \in \tau^D(y)\}$ where $\tau^D(y) = \{V \in \tau^D \mid y \in V\}$ is known as D^* -local function in A related to I, τ .

Lemma 2.1. $A_{D^*}(\mathcal{I},\tau) \subseteq A^*(\mathcal{I},\tau)$ always holds where Y is in ideal topological space.

Proof. Suppose $y \in A_{D^*}$. Then $V \cap A \notin I \forall V \in \tau^D(y)$. However, we know that each open set is Δ -open which implies $V \cap A \notin I \forall V \in \tau(y)$. Hence, $y \in A^*$.

Example 2.1. Consider, $Y = \{i, a, e, g\}$,

$$\tau = \{\phi, Y, \{a\}, \{e\}, \{a, e\}\}$$

and

$$\mathcal{I} = \{\phi, \{i\}\}.$$

Consider, $A = \{a\} \Rightarrow A^* = \{i, a\}$ and $A_{D^*} = \{a\}$.

Remark 2.1. *Generally, neither* $A \subseteq A_{D^*}$ *nor* $A_{D^*} \subseteq A$.

Example 2.2. Consider, $Y = \{k, i, e, f\}$,

 $\tau = \{\phi, Y, \{k\}, \{i\}, \{k, i\}, \{k, e, f\}\}$

and

$$\mathcal{I} = \{\phi, \{k\}, \{f\}, \{k, f\}\}.$$

Take $A = \{k, e\}$. Then $A_{D^*} = \{e, f\}$.

Theorem 2.1. Suppose *E* and *F* are subsets of *Y*, an ideal space. If so the given conditions can be proved:

- (1) If $E \subseteq F$, $\Rightarrow E_{D^*} \subseteq F_{D^*}$. (2) $(E_{D^*})_{D^*} \subseteq E_{D^*}$.
- (3) $E_{D^*} = cl_D(E_{D^*}) \subseteq cl_\theta(E)$ also E_{D^*} is closed.
- (4) If $E \in I$, then $E_{D^*} = \phi$.
- (5) $E_{D^*} \subseteq cl_D(E)$.

Proof. (1) Assume that, $x \notin F_{D^*}$. Then we can find a $V \in \tau^D(x)$ provided $F \cap V \in I$. *E* is a subset of $F \Rightarrow E \cap V \subseteq F \cap V$, if so $E \cap V \in I$. Therefore, $x \notin E_{D^*} \Rightarrow E_{D^*} \subseteq F_{D^*}$.

(2) Let $x \in (E_{D^*})_{D^*}$. Then for all $V \in \tau^D(x)$, $V \cap E_{D^*} \notin I \Rightarrow V \cap E_{D^*} \neq \phi$. Assume $z \in V \cap E_{D^*}$. In this case, $V \in \tau^D(z)$ with $z \in E_{D^*}$. Thus, $V \cap E \notin I$ and $x \in E_{D^*}$. This brings out $(E_{D^*})_{D^*} \subseteq A_{D^*}$.

(3) We know $E_{D^*} \subseteq cl_D(E_{D^*})$. We can find an element $x \in cl_D(E_{D^*}) \Rightarrow E_{D^*} \cap V \neq \phi$ for all $V \in \tau^D(x)$. Then we can choose one $t \in E_{D^*} \cap V$ with $V \in \tau^D(t)$. Perhaps $t \in E_{D^*}, E \cap V \notin I \Rightarrow x \in E_{D^*} \Rightarrow cl_D(E_{D^*}) \subseteq E_{D^*}$ and we get $E_{D^*} = cl_D(E_{D^*})$. Again, let $x \in E_{D^*}$, then $E \cap V \notin I$ for all V belongs to $\tau^D(x)$. Then for all V belonging to $\tau^D(x)$ we get $E \cap V \neq \phi$. Hence $E \cap cl(V)$ is non-empty for all open set V. Hence, $x \in cl_{\theta}(E)$. This proves that $E_{D^*} = cl(E_{D^*}) \subseteq cl_{\theta}(E)$.

(4) Choose $x \in E_{D^*}$. Then we can find any $V \in \tau^D(x)$, $E \cap V$ does not belong to I. But we have E belongs to $I \Rightarrow E \cap V \in I \forall V \in \tau^D(x)$ which is absurd. Therefore, $E_{D^*} = \phi$.

(5) Let $x \in E_{D^*}$. Consequently, for each $V \in \tau^D(x)$, $V \cap E \notin I$ with $\forall V \in \tau^D(x)$, $V \cap E \neq \phi$. Thus, $x \in cl_D(E)$.

Theorem 2.2. *The ideal space* Y *containing ideals* J_1 , J_2 *as well as and* $C \subseteq Y$. *If so the following conditions are true:*

- (1) If J_1 is a subset of J_2 then $C_{D^*}(J_2)$ is a subset of $C_{D^*}(J_1)$.
- (2) $C_{D^*}(J_1 \cap J_2)$ equals to $C_{D^*}(J_1) \cup C_{D^*}(J_2)$.

Proof. (1) Let $x \in C_{D^*}(J_2)$ and $J_1 \subseteq J_2$. For each $C \cap U \notin J_2$ follows so does $C \cap U \notin J_1$. Therefore $x \in C_{D^*}(J_1)$.

(2) We know $C_{D^*}(J_1)$ is a subset of $C_{D^*}(J_1 \cap J_2)$ and $C_{D^*}(J_2) \subseteq C_{D^*}(J_1 \cap J_2)$ by (1). Hence, union of $C_{D^*}(J_1)$ and $C_{D^*}(J_2)$ is a subset of $C_{D^*}(J_1 \cap J_2)$. We take $x \in C_{D^*}(J_1 \cap J_2)$, for each Δ -open $U, U \cap C \notin J_1 \cap J_2 \Rightarrow U \cap C \notin J_1$ or $U \cap C \notin J_2$. Then $x \in C_{D^*}(J_1)$ or $x \in C_{D^*}(J_2)$. So $x \in C_{D^*}(J_1) \cup C_{D^*}(J_2)$.

Lemma 2.2. Assume Y be of (Y, τ, I) with Δ -open set V, If so $V \cap C_{D^*} = V \cap (V \cap C)_{D^*} \subseteq (V \cap C)_{D^*}$ for each subset C of Y.

Proof. Lets assume that when *V* is Δ-open set with $y \in V \cap C_{D^*} \Rightarrow y \in V$ and $y \in C_{D^*}$ then $V \cap C \notin I$ for each Δ-open set containing *y*. Assume *W* to be any Δ-open set comprising *y* that is $W \in \tau^D(y)$. So $W \cap V \in \tau^D(y)$ and $W \cap (V \cap C) = (W \cap V) \cap C \notin I$. This expresses that $y \in (V \cap C)_{D^*}$ which leads to the conclusion that $V \cap C_{D^*}$ is a subset of $(V \cap C)_{D^*}$. Additionally, $V \cap C_{D^*} \subseteq V \cap (V \cap C)_{D^*}$ and by Theorem [2.2] $(V \cap C)_{D^*} \subseteq C_{D^*}$ and $V \cap (V \cap C)_{D^*} \subseteq V \cap C_{D^*}$. Hence, $V \cap C_{D^*} = V \cap (V \cap C)_{D^*}$.

Theorem 2.3. *Assume that Y is an ideal space with E*, *G are any two sets of Y*. *If so, the given observations are true:*

- (1) $\phi_{D^*} = \phi$.
- (2) $E_{D^*} \cup G_{D^*} = (E \cup G)_{D^*}$.
- (3) $(E \cap G)_{D^*} \subseteq E_{D^*} \cap G_{D^*}$.

Proof. (1) It is obvious.

(2) From Theorem [2.2] it is evident that $(E \cup G)_{D^*} \supseteq E_{D^*} \cup G_{D^*}$. To get the reverse part, assume $y \in (E \cup G)_{D^*}$. Then for all Δ -open set containing $y, V \cap (E \cup G) \notin I$. From this $(V \cap E) \notin I$ or $(V \cap G) \notin I$ for each Δ -open set containing y. Hence $y \in E_{D^*} \cup G_{D^*} \Rightarrow (E \cup G)_{D^*} \subseteq E_{D^*} \cup G_{D^*}$.

(3) $E \cap G$ is a subset of $E \Rightarrow (E \cap G)_{D^*} \subseteq E_{D^*}$. Similarly, $(E \cap G)_{D^*}$ is a subset of G_{D^*} by Theorem [2.2]. So $(E \cap G)_{D^*}$ is a set of $E_{D^*} \cap G_{D^*}$.

Remark 2.2. The reverse implication of Theorem [2.5] (3) doesn't always apply, as may be seen by an example.

Example 2.3. *Consider,* $Y = \{l, c, e, g\}$ *,*

$$\tau = \{\phi, Y, \{l, c\}\}$$

and

$$\mathcal{I} = \{\phi, \{l\}, \{c\}, \{l, c\}\}.$$

Suppose $C = \{e\}$ *and* $D = \{c, g\}$ *. Then* $C_{D^*} \cap D_{D^*} = \{e, g\}$ *and* $(C \cap D)_{D^*} = \phi$ *.*

Lemma 2.3. Suppose Y be an ideal space with $E, H \subseteq Y$. If so $E_{D^*} - H_{D^*}$ equals to $(E - H)_{D^*} - H_{D^*}$ is a set of $(E - H)_{D^*}$.

Proof. We have by Theorem [2.5], $E_{D^*} = [(E - H) \cup (E \cap H)]_{D^*} = (E - H)_{D^*} \cup (E \cap H)_{D^*} \subseteq (E - H)_{D^*} \cup H_{D^*}$. Thus $E_{D^*} - H_{D^*} \subseteq (E - H)_{D^*} - H_{D^*}$. We have by Theorem [2.2], $(E - H)_{D^*} \subseteq E_{D^*}$ it follows $(E - H)_{D^*} - H_{D^*}$ is a subset of $E_{D^*} - H_{D^*}$. Henceforth, $E_{D^*} - H_{D^*}$ equals $(E - H)_{D^*} - H_{D^*} \subseteq (E - H)_{D^*}$. □

Corollary 2.1. Assuming Y is an ideal topological space with two subsets G and H in Y, $H \in I$. Then $(G \cup H)_{D^*} = G_{D^*} = (G - H)_{D^*}$ holds.

Proof. Though $H \in I$, by Theorem [2.2], we get $H_{D^*} = \phi$. By Previous Lemma 2.3, $G_{D^*} = (G - H)_{D^*}$ and by Theorem [2.5], we get $(G \cup H)_{D^*} = G_{D^*} \cup H_{D^*} = G_{D^*}$.

Theorem 2.4. $E_{D^*} \subseteq \Gamma(E)$

Proof. By lemma 2.1, $E_{D^*} \subseteq E^*$ and we know that, $E^* \subseteq \Gamma(E)$ [1]. Therefore, $E_{D^*} \subseteq \Gamma(E)$.

Theorem 2.5. $E_{D^*} \subseteq E_{\delta^*}$

Proof. By lemma 2.1, $E_{D^*} \subseteq E^*$ and we know that, $E^* \subseteq E_{\delta^*}$ [7]. Therefore, $E_{D^*} \subseteq E_{\delta^*}$.

3. The Open Sets of τ_{D*}

A closure operator $cl_{D^*}(E) = E \cup E_{D^*}$ is defined in this section and we prove the Kuratowski closure operator.

Theorem 3.1. Assume Y be an ideal space, $cl_{D^*}(B)=B \cup B_{D^*}$ where B and C are sets of Y. If so the given observations hold:

- (1) $cl_{D^*}(\phi) = \phi$ and $cl_{D^*}(Y) = Y$.
- (2) $B \subseteq cl_{D^*}(B)$.
- (3) $cl_{D^*}(B \cup C) = cl_{D^*}(B) \cup cl_{D^*}(C).$
- (4) $cl_{D^*}(cl_{D^*}(B)) = cl_{D^*}(B).$

Proof. (1) Since $\phi \in Y \, cl_{D^*}(\phi) = \phi_{D^*} \cup \phi = \phi, \, cl_{D^*}(Y) = Y_{D^*} \cup Y = Y.$

(2) We know that $B \subseteq B \cup B_{D^*} = cl_{D^*}(B)$.

(3) As a result of Theorem [2.5], $cl_{D^*}(B \cup C) = (B \cup C)_{D^*} \cup (B \cup C) = (B_{D^*} \cup C_{D^*}) \cup (B \cup C) = (B_{D^*} \cup B) \cup (C_{D^*} \cup C) = cl_{D^*}(B) \cup cl_{D^*}(C).$

 $(4) cl_{D^*}(cl_{D^*}(B)) = cl_{D^*}(B_{D^*} \cup B) = (B_{D^*} \cup B)_{D^*} \cup (B_{D^*} \cup B) = ((B_{D^*})_{D^*} \cup B_{D^*}) \cup (B_{D^*} \cup B) = B_{D^*} \cup (B_{D^*} \cup B) = B_{D^*} \cup B = cl_{D^*}(B), \text{ by Theorem [2.5].}$

Remark 3.1. According to Theorem [3.1], $cl_{D^*}(E) = E \cup E_{D^*}$ is a Kuratoswski closure operator. The open sets in Δ are referred to as τ_{D^*} -open sets while its complement is referred to as τ_{D^*} -closed sets. This topology is represented by τ_{D^*} and defined as $\tau_{D^*} = \{V \subseteq Y/cl_{D^*}(Y-V) = Y-V\}$.

Theorem 3.2. Suppose *Y* is an ideal space with *R*, *C* as sets of *Y*. If so the given observations are true:

- (1) If R is a set of $C \Rightarrow cl_{D^*}(R) \subseteq cl_{D^*}(C)$.
- (2) $cl_{D^*}(R \cap C) \subseteq cl_{D^*}(R) \cap Cl_{D^*}(C).$
- (3) $cl_{D^*}(R) \subseteq cl^*(R)$.

Proof. (1) Assume *R* is a set of *C* where $cl_{D^*}(R) = R \cup R_{D^*} \subseteq C \cup C_{D^*} = cl_{D^*}(C)$ by Theorem [2.2].

(2) We had, $R \cap C$ is a set of R and $R \cap C \subseteq C$ then by (1), $cl_{D^*}(R \cap C) \subseteq cl_{D^*}(R)$ and $cl_{D^*}(R \cap C) \subseteq cl_{D^*}(C) \Rightarrow cl_{D^*}(R \cap C) \subseteq cl_{D^*}(R) \cap Cl_{D^*}(C)$.

$$(3) cl_{D^*}(R) = R \cup R_{D^*} \subseteq R \cup R^* = cl^*(R) \text{ since } R_{D^*} \subseteq R^*.$$

Definition 3.1. Consider, the space (Y, cl_{D^*}) and for $y \in Y$, $I_{cl_{D^*}}(y) = \{E \subseteq Y : y \notin cl_{D^*}(E)\}$ is an ideal on Y called a free ideal on (Y, cl_{D^*})

Theorem 3.3. A space (Y, cl_{D^*}) is a T_o space \iff for any two points w, z of Y and $w \neq z$, $I_{cl_{D^*}}(w) \neq I_{cl_{D^*}}(z)$.

Proof. Assume (Y, cl_{D^*}) is a T_o space. Suppose $w \notin cl_{D^*}(E)$ then $z \in cl_{D^*}(E)$. But if $w \notin cl_{D^*}(E)$ ⇒ $E \in I_{cl_{D^*}}(w)$. Also $z \in cl_{D^*}(E) \Rightarrow E \notin I_{cl_{D^*}}(z)$. Therefore, $I_{cl_{D^*}}(w) \neq I_{cl_{D^*}}(z)$. Conversely, let $I_{cl_{D^*}}(w) \neq I_{cl_{D^*}}(z)$. Suppose $E \subseteq Y$ such that $E \in I_{cl_{D^*}}(w)$ but $E \notin I_{cl_{D^*}}(z)$. Implies $w \notin cl_{D^*}(E)$ and $z \in cl_{D^*}(E)$ for some $E \subseteq Y$. Therefore, $w \in Y - cl_{D^*}(E)$ but $z \notin Y - cl_{D^*}(E) \Rightarrow (Y, cl_{D^*})$ is a T_o space.

Remark 3.2. $I_{cl^*}(y) \subseteq I_{cl_{D^*}}(y)$

Example 3.1. Consider, $Y = \{p, b, s, d\}$ and

 $\tau = \{\phi, Y, \{p\}, \{s\}, \{d\}, \{p, s\}, \{p, d\}, \{s, d\}, \{p, s, d\}\}.$

Then $I_{cl^*}(b) = \{\phi, \{p\}\}$ and $I_{cl_{D^*}}(b) = \{\phi, \{s\}, \{d\}, \{p, s\}, \{p, d\}, \{s, d\}, \{p, s, d\}\}.$

4. D^* -Compatibility

Definition 4.1. Assume Y is an ideal space. If the given conditions are true for all $F \subseteq Y$ then $F \in I$. If for each $y \in F$, then $\exists a \Delta$ -open set in a way that $V \cap F \in I$ then τ is D^* -compatible with the ideal I, indicated by $\tau \sim_D I$.

Theorem 4.1. Suppose Y be an ideal space, if so the observations given below can be equivalent:

- (1) $\tau \sim_D I$,
- (2) $E \in I$, if E a set of Y has a Δ -open cover, which intersects E is in I,
- (3) For all E set of Y, $E_{D^*} \cap E = \phi \Rightarrow E$ belongs to I,
- (4) For each $E \subseteq Y, E E_{D^*} \in I$,
- (5) For all $E \subseteq Y$ does not contains nonempty subset D with $D \subseteq D_{D^*}$, then $E \in I$.

Proof. (1) \Rightarrow (2): The result is true obviously.

(2) \Rightarrow (3): Suppose, $y \in E$ with $E \subseteq Y$. If $y \notin E_{D^*}$, we can find $V \in \tau^D(y)$ provided $V \cap E \in I$. Hence $E \in I$ since we have $E \subseteq \bigcup \{V_y : y \in E\}$ for V_y is in $\tau^D(x)$ containing y. (3) \Rightarrow (4): For each *E* which is a set of *Y*, $E - E_{D^*}$ is a set of *E* if so, $(E - E_{D^*}) \cap (E - E_{D^*})_{D^*}$ set of $(E - E_{D^*}) \cap E_{D^*} = \phi$, since $E - E_{D^*} \in \mathcal{I}$.

(4) \Rightarrow (5): For each $E \subseteq Y, E - E_{D^*} \in I$ by (4). Consider $E - E_{D^*} = J \in I$, then $E = J \cup (E \cap E_{D^*})$ and according to Theorem [2.5] and [2.2], $E_{D^*} = J_{D^*} \cup (E \cap E_{D^*})_{D^*} = (E \cap E_{D^*})_{D^*}$. Then, we have $E \cap E_{D^*} = E \cap (E \cap E_{D^*})_{D^*}$ is a subset of $(E \cap E_{D^*})_{D^*}$ and $E \cap E_{D^*}$ is a set of E. On the basis of the assumption $E \cap E_{D^*} = \phi$ and hence $E = E - E_{D^*} \in I$.

(5) \Rightarrow (1): Let $E \subseteq Y$ with each $y \in E$, $\exists V \in \tau^D(y)$ in such a way that $V \cap E \in I \Rightarrow E \cap E_{D^*} = \phi$. Also assume that E contains D such that $D \subseteq D_{D^*}$. Then $D = D \cap D_{D^*} \subseteq E \cap E_{D^*} = \phi$. Hence, E does not contains nonempty subset D with $D \subseteq D_{D^*}$. Hence, $E \in I$.

Theorem 4.2. The given statements can be equivalent for an ideal space Y and if τ is D^* compatible in I.

- (1) If for all $E \subseteq Y, E \cap E_{D^*} = \phi \Rightarrow E_{D^*} = \phi$,
- (2) If every $E \subseteq Y$, then $(E E_{D^*})_{D^*} = \phi$,
- (3) If every $E \subseteq Y$, then $(E \cap E_{D^*})_{D^*} = E_{D^*}$.

Proof. (1) ⇒ (2): For each $E \subseteq Y$, $E \cap E_{D^*} = \phi \Rightarrow E_{D^*} = \phi$. Let $F = E - E_{D^*}$, so $F \cap F_{D^*} = (E \cap (Y - E_{D^*})) \cap (E \cap (Y - E_{D^*}))_{D^*} \subseteq [E \cap (Y - E_{D^*})] \cap [E_{D^*} \cap (Y - E_{D^*})_{D^*}] = \phi$. By (1), we have $F_{D^*} = \phi \Rightarrow (E - E_{D^*})_{D^*} = \phi$.

$$(2) \Rightarrow (3): \text{ For each } E \subseteq Y, E = (E - E_{D^*}) \cup (E \cap E_{D^*}). E_{D^*} = (E - E_{D^*})_{D^*} \cup (E \cap E_{D^*})_{D^*} = (E \cap E_{D^*})_{D^*}.$$

$$(3) \Rightarrow (1): \text{ For all } E \subseteq Y, E \cap E_{D^*} = \phi \text{ and } (E \cap E_{D^*})_{D^*} = E_{D^*} \Rightarrow \phi = \phi_{D^*} = E_{D^*}.$$

Corollary 4.1. Suppose Y be an ideal space with E set of Y and τ is D*-compatible in ideal $I \Rightarrow E_{D^*} = (E_{D^*})_{D^*}$.

Proof. Assume $E \subseteq Y$, using Theorem [4.2] and the result in Theorem [2.2], we get $E_{D^*} = (E \cap E_{D^*})_{D^*} \subseteq E_{D^*} \cap (E_{D^*})_{D^*} = (E_{D^*})_{D^*}$. Hence we could have $E_{D^*} \subseteq (E_{D^*})_{D^*}$. Then by the result of Theorem [2.3], $(E_{D^*})_{D^*}$ is a subset of $E_{D^*} \Rightarrow E_{D^*} = (E_{D^*})_{D^*}$.

Theorem 4.3. *The results can be equivalent to an ideal space* Y

- (1) $\tau^D(y) \cap I = \phi$, such that $\tau^D(y) = \{V \in \tau^D / y \in V\}$,
- (2) When $I \in I \Rightarrow int_{\theta}(I) = \phi$,
- (3) $F \subseteq F_{D^*}$, For each clopen F,
- (4) $Y = Y_{D^*}$.

Proof. (1) \Rightarrow (2): Assume $J \in I$ and $\tau^D(y) \cap I = \phi$. Also, assume $y \in int_{\theta}(I)$. Then $\exists W$ belongs to $\tau^D(y)$ in such a way that $y \in W \subseteq cl(W) \subseteq I$. Since $J \in I \Rightarrow \phi \neq \{y\} \subseteq cl(W) \in \tau^D(y) \cap I$. This is a contradiction to $\tau^D(y) \cap I = \phi$. Hence, $int_{\theta}(J) = \phi$.

(2) \Rightarrow (3): Let $y \in F$. Assume $y \notin F_{D^*}$, such that $V \in \tau^D(y)$ in a way that $F \cap V \in I$. As F is clopen, by [1], $y \in F \cap V = int (F \cap V) = int_{\theta} (F \cap (V)) = \phi$. This becomes a contradiction $\Rightarrow y \in F_{D^*}$. Hence $F \subseteq F_{D^*}$.

(3) \Rightarrow (4): When *Y* is clopen \Rightarrow *Y* \subseteq *Y*_{*D*^{*}} then by (3) *Y* = *Y*_{*D*^{*}}.

(4)
$$\Rightarrow$$
 (1): Assume $Y = Y_{D^*} = \{y \in Y \mid V \cap Y = V \notin \mathcal{I} \text{ where } V \in \tau^D(y)\}$. So $\tau^D(y) \cap \mathcal{I} = \phi$.

Theorem 4.4. Let Y be in (Y, τ, I) and τ is of D^* -compatible of I. If so for each $S \in \tau^D$, any set T of Y, $(S \cap T)_{D^*} = (S \cap T_{D^*})_{D^*} = cl_D(S \cap T_{D^*}).$

Proof. Let *S* ∈ τ^{D} . Then by Lemma [2.4] and by Theorem[2.2] $(S \cap T_{D^{*}})_{D^{*}} \subseteq ((S \cap T)_{D^{*}})_{D^{*}} \subseteq (S \cap T)_{D^{*}}$. Also, $(S \cap (T - T_{D^{*}}))_{D^{*}} \subseteq S_{D^{*}} \cap (T - T_{D^{*}})_{D^{*}} = S_{D^{*}} \cap \phi = \phi$ by Theorem [2.2] and [4.2]. Moreover, $(S \cap T)_{D^{*}} - (S \cap T_{D^{*}})_{D^{*}} \subseteq ((S \cap T) - (S \cap T_{D^{*}}))_{D^{*}} = (S \cap (T - T_{D^{*}}))_{D^{*}} = \phi \Rightarrow (S \cap T)_{D^{*}} \subseteq (S \cap T_{D^{*}})_{D^{*}}$. Hence, $(S \cap T)_{D^{*}} = (S \cap T_{D^{*}})_{D^{*}}$. Also, $(S \cap T)_{D^{*}} = (S \cap T_{D^{*}})_{D^{*}} \subseteq cl_{D}(S \cap T_{D^{*}})$, by Theorem [2.2]. By Lemma [2.4], $S \cap T_{D^{*}} \subseteq (S \cap T)_{D^{*}} \Rightarrow cl_{D}(S \cap T_{D^{*}}) \subseteq cl_{D}((S \cap T)_{D^{*}}) = (S \cap T)_{D^{*}}$. Thus $(S \cap T)_{D^{*}} = (S \cap T_{D^{*}})_{D^{*}} = cl_{D}(S \cap T_{D^{*}})$. □

5. η -Operator

Definition 5.1. An operator $\eta: \mathcal{P}(Y) \to \tau$ in an ideal space Y is given by the following; for each E belongs to Y, $\eta(E) = \{y \in Y: \exists a \Delta \text{-open set } V \text{ in a way that } V - E \in I\}$ and also we have $\eta(E) = Y - (Y - E)_{D^*}$.

Theorem 5.1. Suppose *Y* is an ideal space. If so then the given statements are true:

- (1) If $M \subseteq Y$, then $\eta(M)$ is open.
- (2) If M is a subset of $E \Rightarrow \eta(M) \subseteq \eta(E)$.
- (3) If $M, E \in \mathcal{P}(Y)$, then $\eta(M \cap E)$ equals $\eta(M) \cap \eta(E)$.
- (4) If $M \subseteq Y$, then $\eta(M)$ equals $\eta(\eta(M))$ if and only if $(Y M)_{D^*} = ((Y M)_{D^*})_{D^*}$.
- (5) If $M \in I$, then $\eta(M)$ equals $Y Y_{D^*}$.
- (6) If $M \subseteq Y$ and $J \in \mathcal{I} \Rightarrow \eta(M J) = \eta(M)$.
- (7) If M set of Y, $J \in I \Rightarrow \eta(M \cup J) = \eta(M)$.
- (8) If $(M E) \cup (E M) \in I$, then $\eta(M) = \eta(E)$.

Proof. (1) By Theorem [2.2], M_{D^*} is closed $\Rightarrow (Y - M)_{D^*}$ is closed $\Rightarrow \eta(M)$ is open.

(2) If $M \subseteq E$ in such a way that (Y - E) is a set of $(Y - M) \Rightarrow (Y - E)_{D^*} \subseteq (Y - M)_{D^*}$. Hence $Y - (Y - M)_{D^*}$ is a set of $Y - (Y - E)_{D^*}$, that is $\eta(M) \subseteq \eta(E)$.

(3)
$$\eta(M \cap E) = Y - (Y - (M \cap E))_{D^*} = Y - [(Y - M) \cup (Y - E)]_{D^*} = Y - [(Y - M)_{D^*} \cup (Y - E)_{D^*}] = [Y - (Y - M)_{D^*}] \cap [Y - (Y - E)_{D^*}] = \eta(M) \cap \eta(E).$$

(4) If $(Y - M)_{D^*} = ((Y - M)_{D^*})_{D^*}$ Then, $\eta(\eta(M)) = \eta(Y - (Y - M)_{D^*}) = Y - (Y - (Y - (Y - M)_{D^*})_{D^*})_{D^*} = Y - ((Y - M)_{D^*})_{D^*} = Y - ((Y - M)_{D^*})_{D^*} = \eta(M).$

(5) By Corollary [2.6.1], we get $(Y - M)_{D^*} = Y_{D^*}$. Therefore, $\eta(M) = Y - Y_{D^*}$.

(6) $\eta(M-J) = Y - [Y - (M-J)]_{D^*} = Y - [(Y-M) - J]_{D^*} = Y - (Y-M)_{D^*} = \eta(M)$, by using Corollary [2.6.1].

(7) $\eta(M \cup J) = Y - [Y - (M \cup J)]_{D^*} = Y - [(Y - M) \cap (Y - J)]_{D^*} = Y - [(Y - M) - J]_{D^*} = Y - (Y - M)_{D^*} = \eta(M)$, by using Corollary [2.6.1].

(8) Assume that, union of (M - E) and (E - M) belongs to I. Let M - E = I and E - M = J. We observed that I, J belongs to I by the property heredity. Also, we can have $E = (M - I) \cup J$. Thus, $\eta(M) = \eta(M - I) = \eta[(M - I) \cup J] = \eta(E)$ by (6) and (7).

Corollary 5.1. Suppose Y is in (Y, τ, I) . For each θ -open W set of Y, $W \subseteq \eta(W)$.

Proof. We have $\eta(W) = Y - (Y - W)_{D^*}$. Then $(Y - W)_{D^*} \subseteq cl_{\theta}(Y - W) = Y - W$, though Y - W is θ -closed. We can have $W = Y - (Y - W) \subseteq Y - (Y - W)_{D^*} = \eta(W)$.

6. CONCLUSION

In this paper, we have defined the local function using Δ -open sets and studied its various properties in ideal topological space. We defined a closure operator and determined whether it was a Kuratowski closure operator. Also, the compatibility property of the topology with the ideal was verified. We then defined a new operator η and its characterizations were studied. Future work in this topic would be to generalize the Δ -closed set, compare it with the already existing generalized closed sets, and verify some of its properties.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- [1] A. Al-Omari, T. Noiri, Local Closure Functions in Ideal Topological Spaces, Novi Sad J. Math. 43 (2013), 139–149.
- [2] D. Janković, T.R. Hamlett, New Topologies from Old via Ideals, Amer. Math. Mon. 97 (1990), 295–310. https://doi.org/10.1080/00029890.1990.11995593.
- [3] K.P. Hart, J.i. Nagata, J.E. Vaughan, Encyclopedia of General Topology, Elsevier, 2003.
- [4] M.V. Kumar, On δ -Open Sets in Topology, In Press.
- [5] K. Kuratowski, Topology: Volume I, Elsevier, 2014.
- [6] M.N. Mukherjee, B. Roy, R. Sen, On Extensions of Topological Spaces in Terms of Ideals, Topol. Appl. 154 (2007), 3167–3172. https://doi.org/10.1016/j.topol.2007.08.014.
- [7] P. Periyasamy, P. Rock Ramesh, δ-Local Closure Functions in Ideal Topological Spaces, Adv. Math., Sci. J. 9 (2020), 2379–2388. https://doi.org/10.37418/amsj.9.5.1.

- [8] N. Velicko, H-Closed Topological Spaces, Mat. Sb. (N.S.), 70 (1966), 98–112.
- [9] R. Vaidyanathaswamy, Set Topology, Courier Corporation, 1960.
- [10] R. Vaidyanathaswamy, The Localisation Theory in Set-Topology, Proc. Indian Acad. Sci.-Sect. A. 20 (1944), 51-61.