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ABSTRACT. A mathematical model of carbon dioxide (CO2) absorption in an aqueous solution consisting of two 

reactants, 2-amino-2-methyl-1-proponal and 1,8-diamino-p-methane is considered. Akbari Ganji Method and 

Differential Transform Method are implemented to resolve the system of nonlinear equations, yielding an analytical 

formulation for the concentration of carbon dioxide, 2-amino-2-methyl-1-proponal, 1,8-diamino-p-methane and the 

molar flux in-terms of reaction rate constants. The obtained analytical findings are used to evaluate the different 

diffusion parameters and compared with numerical results. By assessing Matlab results with analytical findings, a 

successful outcome is discovered. Moreover, the influence of parameters on molar flux is examined. Also, graphical 

representations are presented and discussed here. The new analytical results contribute to optimizing the consistency 

of this model. The ensuring outcomes have been verified utilizing the existing numerical data with prior findings, and 

we are then presented with an adequate level of agreement. 

  

1. Introduction 

 According to the fact that carbon dioxide in exhaust gases produced by burning fossil 

fuels is the primary source of air pollution, acid rain, global warming and other environmental 

issues, the chemical immobilization of CO2 has recently acquired close consideration as a research 

area [1]. Chemical reaction engineering practice often deals with multiphase reaction systems. 
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These systems are commonly encountered in industrially significant processes such as oxidation, 

hydroformylation, gas purification, hydrogenation and oxidation. A lot of attention was aid to 

one of them, the removal of carbon dioxide employing amines in aqueous solutions. The chemical 

absorption technique is a standard approach to accomplish the CO2 removal and recovery on an 

industrial scale. Alkanolamines are chemical compounds that are significant to industry [2]. 

Refineries, natural gas and synthetic gas sectors commonly employ aqueous alkanolamine 

solutions to remove CO2 and other acidic gases from gas streams. 

 Numerous investigations involving basic mass balance analysis have been conducted on 

the principles and kinetics of carbon dioxide’s interaction with different alkanolamines, leading 

to the discovery of zwitterion mechanism [3-4]. A class of sterically hindered amines has recently 

been discovered that exhibits a high amine capacity [5-8] and a reasonably substantial uptake 

rate, even under enhanced carbon dioxide loading. A prime illustration is   2-amino-2-methyl-1-

proponal. Blender amines have been proposed as potentially helpful in facilitating the uptake of 

acid gases through leveraging the positive aspects of amine [9]  

 K.J. Oh et al. presented a theoretical and experimental analysis of the absorption of carbon 

dioxide into aqueous solutions [10]. Paul et al. established the CO2 extraction in the solution of 2-

(1-piperzinyl) ethylamine [11]. Subramaniam et al. presented the study of mass transfer along 

CO2 absorption through phenyl Glycidyl ether solution by Adomian decomposition method [12].  

Anitha et al. examines the carbon dioxide concentration in the solutions that used Homotopy 

analysis method [13].  

 The primary objective of this study is to obtain the analytical approximations regarding 

the absorption of carbon dioxide into the aqueous solutions along with 2-amino-2-methyl-1-

proponal (AMP) and 1,8-diamino-p-methane (DAM), making use of Akbari Ganji Method (AGM) 

and Differential Transform Method (DTM). Quantitative and graphical statistics are presented to 

demonstrate these approaches. 

2. Mathematical formulation 

 The mathematical model of CO2 absorption in the stirred semi batch tank with a planar 

gas liquid was built on the Zwitterion reaction mechanism presented out by K.J. Oh [10].                 

Figure 1 established the schematic representation of the carbon dioxide absorption into an 

aqueous solution containing two reactants of 2-amino-2-methyl-1-proponal and 1,8-diamino-p-

methane in a stirred semi batch tank with a liquid of planar gas. The range of concentrations of 
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AMP and DAM was 0 – 3.0 k mol/m3 and 0.02 k mol/m3 respectively and 298.2-323.2K at 15% of 

Carbon dioxide. The mathematical augmentation proportion of CO2 was determined by 

employing the diffusion coefficient, mass transfer coefficient in the solution composed of AMP 

and DAM.  This succeeded by approximating the mass balance solution for the instantaneous and 

rapid regime in the CO2 – AMP-DAM system. 

Figure 1. Diagrammatic depiction of the carbon dioxide absorber 

 

 

 

 

 

 

 

 

 

 

The irreversible reactions involving reactant and CO2 can be described as,  

𝑃 + 𝑒𝑄 + 𝑒′𝑄′ → 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠  

 where 𝑃, 𝑄, 𝑄′ represents CO2, 2-amino-2-methyl-1-proponal, 1-8-diamino-p-methane 

respectively and 𝑒, 𝑒′ are stoichiometric coefficients of species.  

 The following pre-assumptions form the basis of the mathematical equations that govern 

for the assimilation of CO2 over the aqueous solution. (i) The circumstance essentially isothermal 

(ii) Henry’s law constitutes applicable (iii) AMP and DAM species are non-removal (iv)First order 

reactions exist concerning P and Q as well as between P and 𝑄′ with regard to 𝑄 and 𝑄′ 

respectively. 

 The following set of nonlinear differential equations describes the fundamental mass 

balance computations of CO2 absorption in the solution of AMP with DAM. 

 𝔇𝐶𝑂2

𝑑2𝑅𝐶𝑂2(𝜁)

𝑑𝜁2  = 𝑎𝑅𝐶𝑂2
(𝜁) 𝑅𝐴𝑀𝑃(𝜁) + 𝑎′𝑅𝐴𝑀𝑃(𝜁) 𝑅𝐷𝐴𝑀(𝜁)    (2.1) 

𝔇𝐴𝑀𝑃
𝑑2𝑅𝐴𝑀𝑃(𝜁)

𝑑𝜁2  = 𝑒𝑎𝑅𝐶𝑂2
(𝜁) 𝑅𝐴𝑀𝑃(𝜁)                       (2.2) 

𝔇𝐷𝐴𝑀
𝑑2𝑅𝐷𝐴𝑀(𝜁)

𝑑𝜁2  = 𝑒′𝑎′𝑅𝐴𝑀𝑃(𝜁) 𝑅𝐷𝐴𝑀(𝜁)                                 (2.3) 
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The associated boundary conditions are demonstrated as, 

𝑅𝐶𝑂2
(0) =  𝑅𝐶𝑂2𝑖

 , 𝑅𝐴𝑀𝑃(0) =  𝑅𝐴𝑀𝑃𝑖
, 𝑅𝐷𝐴𝑀(0) =  𝑅𝐷𝐴𝑀𝑖

    (2.4) 

𝑅𝐶𝑂2
(𝑙) =  0 , 𝑅𝐴𝑀𝑃(𝑙) =  𝑅𝐴𝑀𝑃0

, 𝑅𝐷𝐴𝑀(𝑙) =  𝑅𝐷𝐴𝑀0
     (2.5) 

Defining the molar flus as, 

 𝐹𝐶𝑂2
 = −𝔇𝐶𝑂2

𝑑𝑅𝐶𝑂2(0)

𝑑𝜁
         (2.6) 

Non-dimensional version of the problem 

To generate the aforementioned nonlinear differential equations in non-dimensional 

manner based on establishing their subsequent parameters in order to compare the analytical 

findings with the simulation results.  

�̃�𝐶𝑂2
= 

𝑅𝐶𝑂2

𝑅𝐶𝑂2𝑖

 ; �̃�𝐴𝑀𝑃= 
𝑅𝐴𝑀𝑃

𝑅𝐴𝑀𝑃𝑖

 ; �̃�𝐷𝐴𝑀= 
𝑅𝐷𝐴𝑀

𝑅𝐷𝐴𝑀𝑖

 ; 𝜉 =  
𝜁

𝑙
 ;  

𝛿1 = 
𝑙2𝑎𝑅𝐴𝑀𝑃𝑖

𝔇𝐶𝑂2

 ; 𝛿2 = 
𝑙2𝑎′𝑅𝐷𝐴𝑀𝑖

𝔇𝐶𝑂2

 ; 𝛿3 = 
𝑙2𝑎𝑅𝐶𝑂2𝑖

 

𝔇𝐴𝑀𝑃
 ; 𝛿1 = 

𝑙2𝑎′𝑅𝐶𝑂2𝑖
 

𝔇𝐷𝐴𝑀
 ;    (2.7) 

The following are the normalized version of the equations (2.1) -(2.3) 

 
𝑑2�̃�𝐶𝑂2(𝜉)

𝑑𝜉2  = 𝛿1�̃�𝐶𝑂2
(𝜉) �̃�𝐴𝑀𝑃(𝜉) + 𝛿2�̃�𝐴𝑀𝑃(𝜉) �̃�𝐷𝐴𝑀(𝜉)     (2.8) 

𝑑2�̃�𝐴𝑀𝑃(𝜉)

𝑑𝜉2  = 𝑒𝛿3�̃�𝐶𝑂2
(𝜉) �̃�𝐴𝑀𝑃(𝜉)       (2.9) 

𝑑2�̃�𝐶𝑂2
(𝜉)

𝑑𝜉2  = 𝑒′𝛿4�̃�𝐶𝑂2
(𝜉) �̃�𝐷𝐴𝑀(𝜉)       (2.10) 

The relevant dimensionless boundary conditions are often expressed as 

 �̃�𝐶𝑂2
(0) = 1 ; �̃�𝐴𝑀𝑃(0) = 1 ; �̃�𝐷𝐴𝑀(0) = 1       (2.11) 

 �̃�𝐶𝑂2
(1) = 1 ; �̃�𝐴𝑀𝑃(1) =  

𝑅𝐴𝑀𝑃0

𝑅𝐴𝑀𝑃𝑖

= 𝛼 ; �̃�𝐷𝐴𝑀(1) =
𝑅𝐷𝐴𝑀0

𝑅𝐷𝐴𝑀𝑖

= 𝛽    (2.12) 

The normalized flux becomes, 

 Ω𝐶𝑂2
= −

𝔇𝐶𝑂2
𝑅𝐶𝑂2𝑖

 

𝑙
 
𝑑�̃�𝐶𝑂2(0)

𝑑𝜉
        (2.13) 

3. Derivation of analytical formulation for the concentrations 

 In recent years, there have been numerous efforts to develop analytical techniques to deals 

with nonlinear problems. A certain number of significant analytical techniques used for solved 

nonlinear equations consists of Akbari Ganji Method [14-21], Homotopy Perturbation Method[22-

25], Taylor Series Method [26-28]and Differential Transform Method [29-35]. 

 Akbari Ganji Method 

 AGM signifies a striking progress in the field of nonlinear sciences. Analytically 

simulating nonlinear differential problems can be considerably more difficult than addressing 
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linear differential equations. This method is an extremely innovative approach to overcoming 

such issues in this sense. Within the AGM, a solution function containing a newly discovered 

constant coefficient satisfies the initial and boundary limitations. Employing this approach, 

nonlinear equations (2.8) - (2.10) may be solved to get the straightforward analytical expressions 

for the concentration of species. 

The AGM proceeds by presumed that the hyperbolic function governs the solution to the 

equations (2.8) - (2.10). 

�̃�𝐶𝑂2
(𝜉) =  ℳ𝐶𝑂2

cosh (𝜑1𝜉) +  𝒩𝐶𝑂2
sinh (𝜑1𝜉)    (3.1) 

�̃�𝐴𝑀𝑃(𝜉) =  ℳ𝐴𝑀𝑃cosh (𝜑2𝜉) +  𝒩𝐴𝑀𝑃sinh (𝜑2𝜉)    (3.2) 

�̃�𝐷𝐴𝑀(𝜉) =  ℳ𝐷𝐴𝑀cosh (𝜑3𝜉) +  𝒩𝐷𝐴𝑀sinh (𝜑3𝜉)    (3.3) 

Where ℳ𝐶𝑂2
, 𝒩𝐶𝑂2

, ℳ𝐴𝑀𝑃 , 𝒩𝐴𝑀𝑃 , ℳ𝐷𝐴𝑀 , 𝒩𝐷𝐴𝑀  and 𝜑𝑖 are acted as constants. 

When boundary conditions (2.11) -(2.12) have been substituted in (3.1) -(3.3), the value of the 

constants are  

 ℳ𝐶𝑂2
= 1;   𝒩𝐶𝑂2

= −coth (𝜑1) ;       (3.4) 

 ℳ𝐴𝑀𝑃 = 1; 𝒩𝐴𝑀𝑃 = 
𝛼−cosh(𝜑2)

sinh(𝜑2)
 ;       (3.5) 

ℳ𝐷𝐴𝑀 = 1;  𝒩𝐷𝐴𝑀 =
𝛽−cosh (𝜑3)

sinh (𝜑3)
 .       (3.6) 

Equation (3.1) -(3.3) now reduces to  

 �̃�𝐶𝑂2
(𝜉) =  

sinh (𝜑1(1−𝜉))

sinh (𝜑1)
        (3.7) 

 �̃�𝐴𝑀𝑃(𝜉) =
𝛼 sinh(𝜑2𝜉)+sinh (𝜑2(1−𝜉))

sinh (𝜑2)
       (3.8) 

 �̃�𝐷𝐴𝑀(𝜉) =  
𝛽 sinh(𝜑3𝜉)+sinh (𝜑3(1−𝜉))

sinh (𝜑3)
       (3.9) 

Substituting (3.7) -(3.9) in (2.8) -(2.10) and at 𝜉 = 0 yields the constants  

 𝜑1 = √𝛿1 +  𝛿2          (3.10) 

 𝜑2 = √𝑒𝛿3          (3.11) 

 𝜑3 = √𝑒′𝛿4          (3.12) 

The analytical expression for the concentration of carbon dioxide, 2-amino-2-methyl-1-proponal 

and 1,8-diamino-p-methane for all dimensionless parameters is derived by substituting equations 

(3.10) -(3.12) into (3.7) -(3.9) 

 �̃�𝐶𝑂2
(𝜉) =  

sinh (√𝛿1+ 𝛿2(1−𝜉))

sinh (√𝛿1+ 𝛿2)
        (3.13) 
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 �̃�𝐴𝑀𝑃(𝜉) =
𝛼 sinh(√𝑒𝛿3𝜉)+sinh (√𝑒𝛿3(1−𝜉))

sinh (√𝑒𝛿3)
       (3.14) 

 �̃�𝐷𝐴𝑀(𝜉) =  
𝛽 sinh(√𝑒′𝛿4𝜉)+sinh (√𝑒′𝛿4(1−𝜉))

sinh (√𝑒′𝛿4)
      (3.15) 

The nondimensional current is determine as  

 Ω𝐶𝑂2
= 

𝔇𝐶𝑂2𝑅𝐶𝑂2𝑖
 

𝑙
(√𝛿1 + 𝛿2 coth (√𝛿1 +  𝛿2))      (3.16) 

 Differential Transform Method 

 The differential transform method had been first proposed by Zhou in 1986 and since 

then, it has been explained in several literatures to solve different types of integral and differential 

problems. With the help of differential transform approach, one may find the coefficient of the 

Taylor series expansion explored for determining differential equations. 

 Equations (2.8) - (2.10) is rewritten as the transform equation for the DTM solution      

process as,  

 (𝑛+1) ( 𝑛 +2) �̃�𝐶𝑂2
(𝑛 +2) - 𝛿1 ∑  𝑛

𝑡=0 �̃�𝐶𝑂2
(𝑡) �̃�𝐴𝑀𝑃(𝑛 − 𝑡) 

       + 𝛿2 ∑  𝑛
𝑡=0 �̃�𝐴𝑀𝑃(𝑡)�̃�𝐷𝐴𝑀(𝑛 − 𝑡) = 0    (3.17) 

 (𝑛 +1) ( 𝑛 +2) �̃�𝐴𝑀𝑃(𝑛 +2) - 𝑒𝛿3 ∑  𝑛
𝑡=0 �̃�𝐶𝑂2

(𝑡) �̃�𝐴𝑀𝑃(𝑛 − 𝑡) = 0     (3.18) 

 (𝑛 +1) ( 𝑛 +2) �̃�𝐷𝐴𝑀(𝑛 +2) - 𝑒𝛿4 ∑  𝑛
𝑡=0 �̃�𝐶𝑂2

(𝑡) �̃�𝐷𝐴𝑀(𝑛 − 𝑡) = 0   (3.19) 

From (3.17) -(3.19), we obtain the following recurrence relations, 

 �̃�𝐶𝑂2
(𝑛 +2) = 

1

(𝑛+1)( 𝑛 +2)
 [𝛿1 ∑  𝑛

𝑡=0 �̃�𝐶𝑂2
(𝑡) �̃�𝐴𝑀𝑃(𝑛 − 𝑡) 

       + 𝛿2 ∑  𝑛
𝑡=0 �̃�𝐴𝑀𝑃(𝑡)�̃�𝐷𝐴𝑀(𝑛 − 𝑡)]     (3.20) 

 �̃�𝐴𝑀𝑃(𝑛 +2) = 
1

(𝑛+1)( 𝑛 +2)
[ 𝑒𝛿3 ∑  𝑛

𝑡=0 �̃�𝐶𝑂2
(𝑡) �̃�𝐴𝑀𝑃(𝑛 − 𝑡)]     (3.21) 

 �̃�𝐷𝐴𝑀(𝑛 +2) = 
1

(𝑛+1)( 𝑛 +2)
 [𝑒𝛿4 ∑  𝑛

𝑡=0 �̃�𝐶𝑂2
(𝑡) �̃�𝐷𝐴𝑀(𝑛 − 𝑡) ]     (3.22) 

Let as assume that �̃�𝐶𝑂2
(1) = 𝜐1, �̃�𝐴𝑀𝑃(1) = 𝜐2, �̃�𝐷𝐴𝑀(1) = 𝜐3    

Using recurrence relations (3.20)-(3.22) along with boundary conditions (2.11)-(2.12) at   𝑛 = 0, we 

have �̃�𝐶𝑂2
(2) =

𝛿1+𝛿2

2
 ;  �̃�𝐴𝑀𝑃(2) =

𝑒𝛿3

2
 ; �̃�𝐷𝐴𝑀(1) =

𝑒′𝛿4

2
     (3.23) 

In DTM Approach, the exact solution set is considered as, 

 �̃�𝐶𝑂2
(𝜉) = ∑  �̃�𝐶𝑂2

(𝑛)2
𝑛=0 𝜉𝑛 = 1+ 𝜐1𝜉 +(

𝛿1+𝛿2

2
) 𝜉2     (3.24) 

 �̃�𝐴𝑀𝑃(𝜉) = ∑  �̃�𝐴𝑀𝑃(𝑛)2
𝑛=0 𝜉𝑛 = 1+ 𝜐2𝜉 +(

𝑒𝛿3

2
) 𝜉2     (3.25) 

 �̃�𝐷𝐴𝑀(𝜉) = ∑  �̃�𝐷𝐴𝑀(𝑛)2
𝑛=0 𝜉𝑛 = 1+𝜐3𝜉 +(

𝑒′𝛿2

2
) 𝜉2     (3.26) 

At  𝜉 = 1, we obtain the values, 
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   𝜐1 =  −1 −(
𝛿1+𝛿2

2
); 𝜐2 = 𝛼 − 1 −

𝑒𝛿3

2
; 𝜐3 = 𝛽 − 1 −

𝑒′𝛿4

2
 

After substituting the constants in (3.24) -(3.26), we are able to compute the analytical formulation 

that follows. 

 �̃�𝐶𝑂2
(𝜉) = 1−𝜉 − (

𝛿1+𝛿2

2
)𝜉 +(

𝛿1+𝛿2

2
) 𝜉2       (3.27) 

 �̃�𝐴𝑀𝑃(𝜉) = 1+(𝛼 − 1 −
𝑒𝛿3

2
)𝜉 +

𝑒𝛿3

2
 𝜉2       (3.28) 

 �̃�𝐷𝐴𝑀(𝜉) = 1+(𝛽 − 1 −
𝑒′𝛿3

2
)𝜉 +

𝑒′𝛿3

2
 𝜉2      (3.29) 

We determine the analytical equation for the current expressed as, 

 Ω𝐶𝑂2
=

𝔇𝐶𝑂2𝑅𝐶𝑂2𝑖
 

𝑙
(1 +

𝛿1+𝛿2

2
 )        (3.30) 

4. Evaluation of analytical findings with numerical simulation 

 The numerical technique provides an approximation to solve a mathematical issue. 

Additionally, the validation of analytical findings is also advantageous. Figure (2-6) summaries 

the findings of concentration predictions for the nonlinear differential equation that was 

numerically solved using MATLAB software to examine the appropriateness of these analytical 

approaches. Table (1-3) compares the simulation results with AGM and DTM results. The 

maximum average error of CO2, AMP and DAM is reported as 0.01%, 0.01%, 0.02% by applying 

AGM and 0.01%, 0.02% and 0.2% using DTM respectively. It provides a good agreement for all 

parameter values upon comparison.  

Table 1. Deviation between Numerical result (2.8) and Analytical results (3.13) and (3.27) of the 

concentration of Carbon dioxide for different parameters. 

𝜹𝟏 = 𝟎. 𝟎𝟏, 𝜹𝟐 = 𝟎. 𝟏 𝜹𝟏 = 𝟎. 𝟏, 𝜹𝟐 = 𝟎. 𝟏 

𝜉 Num. 

Value 

AGM of 

(3.13) 

Error % 

of AGM 

DTM of 

(3.27) 

Error of 

DTM 

Num. 

Value 

AGM 

of (3.13) 

Error % 

of AGM 

DTM of 

(3.27) 

Error of 

DTM 

0.1 0.8977 0.8999 0.0022 0.8951 0.0026 0.8952 0.8997 0.0045 0.891 0.0042 

0.2 0.7961 0.7999 0.0038 0.7912 0.0049 0.7918 0.7945 0.0027 0.7840 0.0078 

0.3 0.6948 0.6999 0.0051 0.6885 0.0063 0.6845 0.6994 0.0149 0.6790 0.0055 

0.4 0.5937 0.5999 0.0062 0.5868 0.0069 0.5880 0.5993 0.0113 0.5760 0.012 

0.5 0.4927 0.4999 0.0072 0.4863 0.0064 0.4872 0.4994 0.0122 0.4750 0.0122 

0.6 0.3919 0.3999 0.008 0.3868 0.0051 0.3870 0.3995 0.0125 0.3760 0.011 

0.7 0.2912 0.2999 0.0087 0.2885 0.0027 0.2873 0.2996 0.0123 0.2790 0.0083 

0.8 0.1907 0.1999 0.0092 0.1912 0.0005 0.1880 0.1997 0.0117 0.1840 0.004 

0.9 0.0903 0.0999 0.0096 0.0950 0.0047 0.0889 0.0999 0.011 0.0910 0.0021 

Average 

Error % 

 0.0067 

 

 0.0045 

 

  0.0103 

 

 0.0075 
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Table 2. Comparison of numerical findings (2.9) and new analytical findings (3.14) and (3.28) of 

the concentration of 2-amino-2-methyl-1-proponal for various values of parameters. 

𝜹𝟑 = 𝟏, 𝒆 = 𝟎. 𝟏, 𝜶 = 𝟏 𝜹𝟑 = 𝟎. 𝟏, 𝒆 = 𝟎. 𝟏, 𝜶 = 𝟏 

𝜉 Num. 

Value 

AGM of 

(3.14) 

Error % 

of AGM 

DTM of 

(3.28) 

Error of 

DTM 

Num. 

Value 

AGM 

of (3.14) 

Error % 

of AGM 

DTM of 

(3.28) 

Error of 

DTM 

0.1 0.9972 0.9955 0.0017 1.0055 0.0083 0.9997 0.9995 0.0002 1.0005 0.0008 

0.2 0.9952 0.9920 0.0032 1.0120 0.0168 0.9995 0.9992 0.0003 1.0012 0.0017 

0.3 0.9941 0.9896 0.0045 1.0195 0.0254 0.9994 0.9989 0.0005 1.0019 0.0025 

0.4 0.9937 0.9881 0.0056 1.0280 0.0343 0.9994 0.9988 0.0006 1.0028 0.0034 

0.5 0.9939 0.9876 0.0063 1.0375 0.0436 0.9994 0.9987 0.0007 1.0038 0.0044 

0.6 0.9946 0.9881 0.0065 1.0480 0.0534 0.9995 0.9988 0.0007 1.0048 0.0053 

0.7 0.9956 0.9896 0.006 1.0595 0.0639 0.9996 0.9989 0.0007 1.0059 0.0063 

0.8 0.997 0.9920 0.005 1.0720 0.075 0.9997 0.9992 0.0005 1.0072 0.0075 

0.9 0.9985 0.9955 0.003 1.0855 0.087 0.9999 0.9995 0.0004 1.0086 0.0087 

Average 

Error % 

 

 0.0046  0.0453  

  

0.0005 

  

0.0045 

 

 

Table 3. Comparative analysis of numerical solution (2.10) and analytical solutions (3.15) and 

(3.29) of the concentration of 1,8-diamino-p-methane for different parameter values. 

𝜹𝟑 = 𝟏, 𝒆 = 𝟎. 𝟓, 𝜶 = 𝟏 𝜹𝟑 = 𝟎. 𝟏, 𝒆 = 𝟎. 𝟓, 𝜶 = 𝟏 

𝜉 Num. 

Value 

AGM of 

(3.15) 

Error % 

of AGM 

DTM of 

(3.29) 

Error of 

DTM 

Num. 

Value 

AGM 

of (3.15) 

Error % 

of AGM 

DTM of 

(3.29) 

Error of 

DTM 

0.1 0.9862 0.9784 0.0078 1.0275 0.0289 0.9986 0.9977 0.0009 1.0028 0.0042 

0.2 0.9768 0.9618 0.015 1.0600 0.0624 0.9976 0.9960 0.0016 1.0060 0.0084 

0.3 0.9714 0.9500 0.0214 1.0975 0.1004 0.9971 0.9947 0.0024 1.0098 0.0127 

0.4 0.9694 0.9429 0.0265 1.1400 0.1431 0.9969 0.9940 0.0029 1.0140 0.0171 

0.5 0.9703 0.9405 0.0298 1.1875 0.1905 0.9970 0.9937 0.0033 1.0188 0.0218 

0.6 0.9735 0.9429 0.0306 1.2400 0.2427 0.9973 0.9940 0.0033 1.0240 0.0267 

0.7 0.9787 0.9500 0.0287 1.2975 0.2997 0.9978 0.9947 0.0031 1.0298 0.032 

0.8 0.9853 0.9618 0.0235 1.3600 0.3615 0.9985 0.9960 0.0025 1.0360 0.0375 

0.9 0.9928 0.9784 0.0144 1.4275 0.4282 0.9993 0.9977 0.0016 1.0428 0.0435 

Average 

Error % 

 

0.0219  0.2064  

  

0.0024 

  

0.0227 
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5. Results and discussion 

Equations (3.13)-(3.15) and (3.27)-(3.29)are the newly developed approximative analytical 

expressions for the concentration of species in Akbari Ganji Method and Differential Transform 

Method respectively. The dimensionless reaction rate constant  𝛿𝑖 and stoichiometric coefficients 

e and e’ affects the species concentration. The normalized current of CO2 is derived by using the 

concentration of carbon dioxide which expressed in equations (3.16) and (3.30).  

 

Figure 2: Graph of Analytical and Numerical solutions for different values of parameter 𝛿1 and 

the fixed value of  𝛿2.  

 

 Figure 2 represents that the nondimensional concentration of carbon dioxide �̃�𝐶𝑂2
 versus 

non dimensional diffusion coordinate of gas 𝜉 for the various values of the dimensionless 

parameter 𝛿1 using (3.13). Figure 2 demonstrates that with a sense of decreasing amount of  𝛿1, 

the concentration of carbon dioxide reduces into an aqueous solution. That means, the reaction 

rate constant 𝛿1 is inversely proportional to the concentration profile of CO2 for all minimal 

amount of 𝛿2.  

The concentration �̃�𝐶𝑂2
 approaches the steady state regarding the range of 𝛿1 ≥ 100  

whereas the gas’s diffusion coordinate exceeds in the bound 0.4 ≤  𝜉 ≤ 1. At the initial state of the 

diffusion coordinate of gas, �̃�𝐶𝑂2
 attains its optimum value. A linear tandem occurs among the 

concentration and reaction rate constant 𝛿2 meanwhile �̃�𝐶𝑂2
 is minimal and closes in steady state. 
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Figure 3: Plot of the solutions both  Analytically and Numerically various amounts of values of  

𝛿2 for all 𝛿1. 

Figure 3 shows that  the normalized concentration of  carbon dioxide for the different 

values of 𝛿2 and for fixed value of 𝛿1. Figure 3 leads to the conclusion that �̃�𝐶𝑂2
 decreases when 

𝛿2 falls depends on the diffusion coordinate of gas 𝜉 . Even with increasing diffusion film 

thickness or the reaction rate constant of CO2 and the maximum value of 𝛿2 ≥ 100 , the 

concentration of CO2  remains constant. Additionally considering  the diffusion gas approaches  

𝜉 ≤ 0.1, the inclined curve of the concentration reflects that the elevated level of concentration of 

CO2. For any significant amount of the reaction rate constant, the curve succeeds the value of 

steady state within 0.5 ≤  𝜉 ≤ 1.  

 

Figure 4(a)-(b). Plot of dimensionless concentration of AMP versus dimensionless diffusion 

coordinate of gas. (a)for fixed e and various 𝛿3 (b)fixed value of 𝛿3 and numerous value of e. 
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Figure 4(a)-(b) depicts that the compact influence on the concentration of 2-amino-2-

methyl-1-proponal due to the nondimensional parameter  𝛿3 and the stoichiometric coefficient e. 

From Figure 4(a), it evident that the concentration of AMP decreases for maximal value of 

reaction rate constant 𝛿3 and the stoichiometric coefficient e = 1. The analytical and numerical 

outcomes are coincide at the equilibrium value of the diffusion coordinate of gas 𝜉 = 0.5. The 

Concentration profile �̃�𝐴𝑀𝑃 attains its peak value whenever the range of  𝜉 is both of  𝜉 ≤ 0.01 

and 𝜉 ≥ 1. 

Figure 4(b) illustrates that the dimensionless concentration of 2-amino-2-methyl-1-

proponal according to the various amount of stoichiometric coefficient e with the fixed value of 

𝛿3= 3. It is observable that �̃�𝐴𝑀𝑃 decreases for large values of 𝛿3 and the stoichiometric coefficient 

rises. For the very minimal amount of  e≤0.01, it clear that the AMP concentration is uniform. The 

effect of the stoichiometric coefficient which is inversely proportional to the amount of 2-amino-

2-methyl-1-proponal. 

 

Figure 5(a)-(b). Graph of nondimensional DAM concentration with the dimensionless distance 

for numerous amount of constant 𝛿4. 

Figure 5(a)-(b) exhibits a graph of the concentratoion of 1,8-diamino-p-methane   

contrasted with the gas’s diffusion coordinate considering various reaction rate constant 𝛿4 and 

fixed values of the stoichiometric coefficient e’. It is clear that DAM concentration drops at the 

highest  𝛿4 values. A comparison of figure 5(a) and 5(b) shows that for all maximal e’, the 

concentration profile �̃�𝐷𝐴𝑀 ≤0.5. According to figure 5(a)-(b), the stoichiometric coefficient e’ 

which is inverted with respect to �̃�𝐷𝐴𝑀 but immediately correlated to the reaction rate constant 

𝛿4.  
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Figure 6(a)-(b)  Graph of  nondimensional concentration of flux for CO2 determined by the 

various nondimensional reaction rate constants 𝛿1 and (a)for fixed 𝔇𝐶𝑂2
= 0.1, 𝑅𝐶𝑂2𝑖

= 1, 𝑙 =1. 

(b) for fixed 𝔇𝐶𝑂2
= 0.01, 𝑅𝐶𝑂2𝑖

= 1, 𝑙 =1. 

Figure 6(a)-(b) suggests the normalized current response fluctuations under many 

different kinds of parameter values 𝛿1 and 𝛿2. It represent how the non dimensional parameters 

𝛿1 and 𝛿2 impact current circumstances profiles. The following information indicates that as the 

reaction rate constant 𝛿1 is increased, the molar flux climbs at a  modest diffusion coefficient 𝔇𝐶𝑂2
. 

The variation of normalized current  Ω𝐶𝑂2
 ≤ 1 for numerous values of reaction rate constant 𝛿2 

and 𝔇𝐶𝑂2
≥0.1. For any maximum value of the diffusion coefficient 𝔇𝐶𝑂2

 ≤0.01, the normalized 

current becomes lower in the range of Ω𝐶𝑂2
 ≤ 0.1.                            From figure 6(a)-(b), it depicts 

that Ω𝐶𝑂2
 is exactly correlated to the diffusion coefficient 𝔇𝐶𝑂2

 and the reaction rate constant 𝛿2. 

Nomenclature 

𝔇𝐶𝑂2
 Diffusion coefficient of CO2 𝜇𝑚2/𝑠 𝑙 Diffusion film thickness m 

𝔇𝐴𝑀𝑃 Diffusion coefficient of AMP 𝜇𝑚2/𝑠 𝐹𝐶𝑂2
 Molar flux  

𝔇𝐷𝐴𝑀 Diffusion coefficient of DAM 𝜇𝑚2/𝑠 𝛿𝑖 Dimensionless parameters 

 𝑅𝐶𝑂2
 Concentration of CO2  𝜇𝑚 �̃�𝐶𝑂2

 Dimensionless Concentration of CO2 

𝑅𝐴𝑀𝑃 Concentration of AMP 𝜇𝑚 �̃�𝐴𝑀𝑃 Dimensionless concentration of AMP  

𝑅𝐷𝐴𝑀 Concentration of DAM 𝜇𝑚 �̃�𝐷𝐴𝑀 Dimensionless concentration of DAM  

𝜁 Diffusion coordinate of gas 𝑚 𝜉 Dimensionless diffusion coordinate of gas 

𝑎, 𝑎′ Reaction rate constants(m3/kmol.s) Ω𝐶𝑂2
 Dimensionless normalized current 

𝑒, 𝑒′ Stiochiometric coefficients of species  𝜙𝑖  Relevant flux factor 
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6. Conclusion 

 Mathematical formulation of Carbon dioxide absorption into an aqueous solution were 

discussed. A steady state behavior of system of non-linear equations were solved analytically by 

using Akbari Ganji Method and Differential Transform Method in order to obtain the analytical 

solution for the concentrations of CO2, AMP and DAM for all parameter values. The normalized 

current was also analytically expressed in simple closed form. A remarkable outcome might be 

observed graphically while comparing the new analytical results of AGM and DTM along with 

numerical simulation results for differing parameter reliability. The absorption rate of CO2 in an 

aqueous solution was examined by the new approximate result of the diffusion model. These 

excellent outcomes are used to estimate a removal of gases released from power plant flues for 

the purpose of using Carbon dioxide.  There was an extensive comprehension of the system while 

these outcomes were in good accordance our two techniques are simple to use in addition to the 

possibility that solve other nonlinear equations.  
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